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Adaptive Genetic Operators Based on Coevolution
with Fuzzy Behaviors

Francisco Herrera and Manuel Lozano

Abstract—This paper presents a technique for adapting control
parameter settings associated with genetic operators. Its principal
features are: 1) the adaptation takes place at the individual level
by means of fuzzy logic controllers (FLCs) and 2) the fuzzy rule
bases used by the FLCs come from a separate genetic algorithm
(GA) that coevolves with the GA that applies the genetic operator
to be controlled. The goal is to obtain fuzzy rule bases that pro-
duce suitable control parameter values for allowing the genetic op-
erator to show an adequate performance on the particular problem
to be solved. The empirical study of an instance of the technique has
shown that it adapts the parameter settings according to the par-
ticularities of the search space allowing significant performance to
be achieved for problems with different difficulties.

Index Terms—Adaptive genetic algorithms, coevolution, fuzzy
logic controllers.

I. INTRODUCTION

F INDING robust variation operators or control parameter
settings is not a trivial task since their interaction with the

performance of an evolutionary algorithm is complex and the
optimal choices are problem dependent [3]. For the discussion
here, we will focus on genetic algorithms (GAs) and genetic op-
erators. Different genetic operators or control parameter values
may be necessary during the course of a run for inducing an op-
timal exploration/exploitation balance. For these reasons, adap-
tive GAs (AGAs) have been built that dynamically adjust se-
lected control parameters or genetic operators during the course
of evolving a solution [1], [28], [31], [40], [48].

One way for building AGAs involves the application of fuzzy
logic controllers (FLCs) [10], [17] for adjusting GA control pa-
rameters. Although much literature on this adaptive approach
has appeared, there are still important challenges that may be
considered for applying it. They include the application of FLCs
for adapting parameters that control the operation of the genetic
operators, taking into account features associated with the par-
ents, and the task of finding good fuzzy rule bases [28].

This paper proposes a technique for adapting genetic oper-
ators based on FLCs called coevolution with fuzzy behaviors
(FBs), which deals with the two aforementioned challenges.

1) During each genetic operator application event, particular
FLCs specify its current genetic control parameter values
depending on particular features of the parents. The fuzzy
rule bases for an FLC may be coded by means of vectors
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with the linguistic values of the fuzzy rule consequent.
These vectors will be called FBs.

2) The fuzzy rule bases used by the FLCs come from a sep-
arate GA thatcoevolveswith the GA that uses the genetic
operator to be controlled (coevolution). The goal of co-
evolution with FBs is to obtain fuzzy rule bases that pro-
duce suitable control parameter values for allowing the
genetic operator to show an adequate performance.

The termcoevolutionis used for describing the fact that two
different types of structures evolve in a parallel way with some
type ofcooperation[9]. In our case, FBs coevolve with the chro-
mosomes representing solutions to the particular problem. They
induce control parameter values for a genetic operator applied
to these chromosomes and evolve according to the efficacy in-
duced on the genetic operator (i.e., whether it generates off-
spring that are more fit than the parents or introduces high di-
versity levels, etc.). We should point out that coevolution has
been considered as a promising way for producing adaptation
[6], [34], [46], [49], [57].

In order to investigate the effectiveness of the model, we pro-
pose an instance for the adaptation of a crossover operator that
works under real coding: fuzzy recombination (FR) [59]. In par-
ticular,westudytheinstancebydealingwith thefollowing issues:

1) performance improvement, i.e., if its results on a given
test suite are better than the ones for GAs using a fixed
configuration;

2) adaptation itself, i.e., if it adjusts genetic control param-
eters according to the particularities of the problem to be
solved. The distributions of the FBs generated during the
runs will be considered for this point;

3) their relation, i.e., if adaptation is responsible for the per-
formance improvement.

The paper is set up as follows: in Section II, the basic idea of
the AGAs based on FLCs presented in the literature is explained
and the two aforementioned challenges associated with them
are described. In Section III, the adaptive model based on the
coevolution with FBs is presented. In Section IV, an instance
of the model is built for adapting a crossover operator for real-
coded GAs (RCGAs) [59]. In Section V, an empirical study of
the instance is made and, finally, some concluding remarks are
offered in Section VI.

II. A DAPTIVE GAs BASED ONFUZZY LOGIC CONTROLLERS

The interaction of GA control parameter settings and GA per-
formance is generally acknowledged as a complex relationship
that is not completely understood. Although there are ways to
understand this relationship (for instance, in terms of stochastic
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Fig. 1. Structure of the AGA model based on FLCs. GA sends current per-
formance measures and control parameter values to the FLC, which computes
the new control parameter values for the GA.

behavior), this kind of understanding does not necessarily re-
sult in a normative theory. FLCs are particularly suited to en-
vironments that are either ill-defined or are very complex. The
adaptation of GA parameters is one such complex problem that
may benefit from the use of FLCs [51]. The fuzzy rule bases of
FLCs facilitate the capture and representation of a broad range
of adaptive strategies for GAs (so, they may be the support for
the automatic learning of such strategies). Then, the inference
system of FLCs may use this knowledge for carrying out the
adaptation of GAs throughout the run.

AGAs based on FLCs are found in [2], [11], [12], [23], [28],
[36], [37], [51], [55], [60], [61], [64], and [65]. Their main idea
is to use an FLC whose inputs are any combination of GA per-
formance measures or current control parameters and whose
outputs are GA control parameters. Current performance mea-
sures of the GA are sent to the FLC, which computes new con-
trol parameter values that will be used by the GA. Fig. 1 shows
this process.

In general, the following steps are needed in order to design
an AGA based on FLCs [28].

1) Defining the inputs and outputs.Inputs should be robust
measures that describe GA behavior and the effects of
the genetic setting parameters and genetic operators. In
[55], some possible inputs were cited: diversity measures,
maximum, average, and minimum fitness, etc. In [36] and
[64], it is suggested that current control parameters may
also be considered as inputs. Outputs indicate values of
control parameters or changes in these parameters [36].
In [55], the following outputs were reported: mutation
probability, crossover probability, population size, selec-
tive pressure, the time the controller must spend in a target
state in order to be considered successful, the degree to
which a satisfactory solution has been obtained, etc.

2) Defining the data base.Each input and output should have
an associated set of linguistic labels. The meaning of these
labels is specified through membership functions of fuzzy
sets. It is necessary that every input and output have a
bounded range of values in order to define these mem-
bership functions over it.

3) Obtaining the fuzzy rule base.After selecting the inputs
and outputs and defining the data base, the fuzzy rules
describing the relations between them should be defined.
There are different ways to do so:

a) using the experience and the knowledge of the GA
experts;

b) using an automatic learning technique for those
cases where knowledge or expertise are not avail-

able. By using an automatic technique, relevant
relations and membership functions may be au-
tomatically determined and may offer insight for
understanding the complex interaction between
GA control parameters and GA performance [36].

Next, in Section II-A, we review different approaches of
AGAs based on FLCs. Then, in Sections II-B and II-C, we
comment on two challenges relating to these AGAs: the adap-
tation of genetic operators at individual-level based on FLCs
and the task of finding good fuzzy rule bases [28].

A. Review on AGAs Based on FLCs

In this section, we survey different AGAs based on FLCs that
use fuzzy rule bases built through the expertise, experience, and
knowledge on GAs, which have become available as a result of
empirical studies conducted over a number of years.

In [64], the use of FLCs to control GAs is considered for
solving two problems to which a standard GA may be subjected:
very slow search speed and premature convergence. These prob-
lems are due to: 1) control parameters not well chosen initially
for a given task; 2) parameters always being fixed even though
the environment in which the GA operates may be variable; and
3) difficulties resulting from selection of other parameters such
as population size and in understanding their influence, both in-
dividually and in combination, on the GA performance. FLCs
were proposed for controlling GAs in order to: 1) choose con-
trol parameters before the GA run; 2) adjust the control parame-
ters online to dynamically adapt to new situations; and 3) assist
the user in accessing, designing, implementing, and validating a
GA for a given task. An AGA based on FLCs was presented in
which the crossover probability and mutation probability were
controlled using two FLCs. Both of them had the same inputs:
current generation and population size.

In [2], it is claimed that GAs require human supervision
during their routine use as practical tools for the following
reasons: 1) for detecting the emergence of a solution; 2) for
tuning algorithm parameters; and 3) for monitoring the evolu-
tion process in order to avoid undesiderable behavior such as
premature convergence. It is advised as well that any attempt
to develop artificial intelligence tools based on GAs should
take these issues into account. The authors proposed FLCs for
this task. They calledfuzzy governmentthe collection of fuzzy
rules and routines in charge of controlling the evolution of the
GA population. Fuzzy government was applied to the symbolic
inference of formulae problem. Genetic programming [35] was
used to solve the problem along with different FLCs, which
dynamically adjusted the maximum length for genotypes,
acted on the mutation probability, detected the emergence of a
solution, and stopped the process.

In [28], two FLCs control the use of exploitative and ex-
ploratory crossovers and the selective pressure. Two diversity
measures are defined for this purpose: genotypical diversity,
which measures the (normalized) average distance of the pop-
ulation from the best chromosome, and phenotypical diversity,
which measures the ratio between the best fitness and the av-
erage fitness. These diversity measures are the inputs to the
FLCs. Every five generations, the FLCs evaluate these measures
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to adjust the probability of using exploitative and exploratory
crossovers and the selection pressure (keeping or eliminating
diversity in the next generation).

In [60], an AGA based on FLCs is presented for multiob-
jective optimization problems. In each generation, an FLC de-
cides what transformation of the cost components into an one-
dimensional fitness function is taken. In [61], a more complex
method calledfuzzy reductionGA is proposed. It attempts to
enable a uniform approximation of thePareto optimalsolutions
(those that cannot be improved with respect to any cost function
without making the value of some other worse). The authors
started by explicitly formulating desirable goals for the evolu-
tion of the population toward the target Pareto optimal solutions
(which could be expressed in vague terms only). Then, they
defined deviation measures of a population from these goals,
which were the inputs to a FLC. Later, they fixed a set of pos-
sible actions that could serve as countermeasures to decrease
the deviations. These actions are different selection mechanisms
based on classical ones proposed for tackling multiobjective op-
timization problems. The FLC determines activation rates for
the actions. The action that should actually be taken is decided
according to the activation rates found.

B. Adaptation at Individual-Level Based on FLCs

In general, there are three levels where the adaptation may
take place in an AGA [1], [48].

1) Population-leveladaptations adjust control parameters
that apply for the entire population. An example is found
in [15]. An RCGA (a representation found commonly in
evolution strategies and evolutionary programming) is
proposed, which uses two types of crossover operator and
three types of mutation operator. Each operator is given
an initial application probability. For each reproduction
event, a single operator is selected probabilistically ac-
cording to the set of operator probabilities. An adaptive
process provides for the alteration of operator probabili-
ties in proportion to the fitness of chromosomes created
by the operators during the course of a run. Operators that
create and cause the generation of better chromosomes
are allotted higher probabilities, i.e., they should be used
more frequently. On the other hand, operators producing
offspring with a fitness which is lower than that of the
parents should be used less frequently.

2) Individual-leveladaptations are centered on the consider-
ation of the individual members of the population rather
than the ensemble as a whole. An instance of this type of
adaptation is the AGA proposed in [50]. Each chromo-
some has its own crossover and mutation probabilities.
They are varied depending on the convergence state of
the population and the fitness value of the chromosome in
such a way that high-fitness solutions are protected, while
solutions with subaverage fitnesses are totally disrupted.
Furthermore, these probabilities are increased when the
population tends to get stuck at a local optimum and they
are decreased when the population is scattered in the so-
lution space.

3) Component-leveladaptations dynamically alter how the
individual components of each chromosome will be ma-
nipulated independently from each other. An approach is
the binary-coded AGA presented in [3] and [4], which
has the following principal features: a) each position of
each chromosome has associated a mutation probability;
b) these probabilities are incorporated into the genetic
representation of the chromosomes encoded as bitstrings;
and c) they are also subject to mutation and selection, i.e.,
they undergo evolution as well as the chromosomes.

Most AGAs based on FLCs presented in the literature in-
volve population-level adaptation. However, adaptive mecha-
nisms at the individual level based on FLCs may be interesting
for adjusting control parameters associated with genetic opera-
tors [28], [65]. In this way, the control parameters will be de-
fined on samples instead of on the whole population. Inputs to
the FLCs may be central measures and/or measures associated
with particular chromosomes or sets of them and outputs may
be control parameters associated with genetic operators that are
applied to those chromosomes. A justification for this approach
is that it allows for the application of different search strategies
in different parts of the search space. This is based on the rea-
sonable assumption that, in general, the search space will not be
homogeneous and that different strategies will be better suited
to different kinds of sublandscapes [48]. For instance, a popula-
tion member residing currently in a relatively flat region of the
search space may be handled more severely than a population
member in a more complex portion of the search space [1].

C. Finding Good Fuzzy Rule Bases is Not an Easy Task

The behavior of GAs and the interrelations between the ge-
netic operators are very complex. Although there are many
possible inputs and outputs for the FLCs, fuzzy rule bases fre-
quently are not easily available. Finding good fuzzy rule bases
is not an easy task. This problem has been recognized by dif-
ferent authors. For example, in [36, p. 78] the following was
stated: “Although much literature on the subject of GA control
has appeared, our initial attempts at using this information to
manually construct a fuzzy system for genetic control were un-
fruitful.”

In [55, p. 466], a related conclusion was reached: “Statistics
and parameters are in part universal to any evolutionary algo-
rithm and in part specific to a particular application. Therefore
it is hard to state general fuzzy rules to control the evolutionary
process.”

As we have mentioned, automatic learning mechanisms
for obtaining fuzzy rule bases may be used for avoiding this
problem. In [36] and [37], this kind of automatic technique
was proposed for learning fuzzy rule bases along with their
data bases. The mechanism is very similar to the meta-GA
of Grefenstette [21]. It is based on a high-level GA whose
chromosomes code possible fuzzy rule bases together with
their corresponding data bases. The fitness function value for
a chromosome is calculated using the averaged online perfor-
mance and averaged offline performance [16] obtained from
an AGA based on FLCs that uses the fuzzy rule base coded in



152 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 5, NO. 2, APRIL 2001

such chromosome on the five test functions in [16]. After the
high-level GA completed 1000 fitness function evaluations, the
best fuzzy rule base reached is returned.

The robustness of the fuzzy rule bases returned by this mecha-
nism depends heavily on the test problem set (which has nothing
to do with the particular problem to be solved) and the perfor-
mance measures used by the high-level GA. Even if the mech-
anism gets a good fuzzy rule base for some set of problem in-
stances, this might not be the best one for the other instance.
Therefore, the fuzzy rule-based definition is still a challenging
feature in the fuzzy control of the GAs.

III. A DAPTATION OF GENETIC OPERATORS BYCOEVOLUTION

WITH FBS

In this section, we present a general proposal for a mechanism
based on FLCs for the adaptation of genetic operators that use
parameters for controlling their operation. Its main features are
the following.

1) It incorporates genetic operator adaptation at an indi-
vidual level based on FLCs. Control parameter values for
a genetic operator are computed for each set of parents
that undergo it, using an FLC that considers particular
features associated with the parents as inputs. In this
way, the proposal attempts to deal with the challenge
presented in Section II-B.

2) The fuzzy rule bases of the FLCs applied are learnt im-
plicitly throughout the run by means of a separate GA
(denoted as FBs-GA) thatcoevolveswith the one that ap-
plies the genetic operator to be controlled (denoted as
main GA). Both GAs have an influence on the other. On
the one hand, fuzzy rule bases in FBs-GA induce param-
eter values for the genetic operator applied to main-GA
(FBs-GA main-GA). On the other hand, they evolve
according to the performance of the operator on the ele-
ments of main-GA (main-GA FBs-GA). The goal of
FBs-GA is to obtain the fuzzy rule bases that produce
suitable control parameter values for allowing the genetic
operator to show anadequate performanceon the partic-
ular problem to be solved (the meaning of this term will
be discussed in Section IV-C2). Since the learning tech-
nique underlying this approach only takes into account
the problem to be solved (in contrast to the approach in
[36] and [37], which never considers it), the fuzzy rule
bases obtained will specify adaptation strategies particu-
larly appropriate for this problem. With this aim, the pro-
posal attempts to tackle the challenge in Section II-C

FBs-GA does not handle fuzzy rule bases directly. Instead,
it uses structures called FBs for representing them, which are
more adequate for being treated as chromosomes by a GA. FBs
consist of vectors with the linguistic values of the fuzzy rule
consequent. They are presented in Section III-A. Then, in Sec-
tion III-B, we propose the model for the adaptation of genetic
operators based on coevolution with FBs, and describe an ex-
ample for the case of adapting a parameter associated with a
pairwise crossover operator. Finally, in Section III-C, we enu-
merate different ways for applying the technique proposed to
genetic operators with control parameters associated.

A. FBs

Let us consider a genetic operator that is applied to sets of
chromosomes (parents), withbeing a parameter that controls
its operation (either a pairwise crossover operator, a poolwise
crossover operator [53], or a mutation operator, etc.). An FLC
may be built for the adaptation of, which receives features
associated with the parents as inputs, , with
being their associated linguistic label sets. The FLC will return
a value for each set of parents that undergoes the genetic op-
erator. The linguistic label set for is . The fuzzy rule base
for the FLC will have a set of fuzzy control rules with the form

If is and is and and is Then is

where and .
This fuzzy rule base, constituted by control rules presenting
input variables and a single output variable, may be repre-

sented using an-dimensional decision table, each dimension
corresponding to each one of the input variables. Every dimen-
sion will have associated an array containing the elements of the
concrete linguistic label set and the cells of the table will con-
tain the concrete linguistic label that the output variable takes as
a value for the combination of antecedents represented by this
cell (Table II in Section IV-C1 shows an example). As we have
mentioned, all the cells in the complete decision table may be
encoded in a single linear vector, called the FB.

B. Coevolution with FBs

In this section, we propose an adaptive mechanism for ad-
justing the control parameter based on coevolution with FBs.
The idea is to introduce a population of FBs (which represent
possible fuzzy rule bases) thatcoevolveswith the population
of chromosomes (which represent solutions to the particular
problem). During the application of the genetic operator to be
controlled, a random assignment is established between FBs and
sets of parents. Then, the genetic operator is applied to each set
using the control parameter value obtained from an FLC that
uses the fuzzy rule represented by the corresponding FB.

The population of FBs will undergo evolution through the ef-
fects of its own selection process and crossover and mutation
operators. The fitness of the FBs will depend on the efficacy in-
duced by them on the genetic operator. Some aspects to be con-
sidered may include: whether they generate offspring that are
more fit than the parents or introduce high diversity levels, etc.
In this way, the adaptive model proposed is based on observing
the relative performance of different strategies (represented by
the FBs), which appear to be very effective [48].

As an example, Fig. 2 shows a pseudocode algorithm inte-
grating main-GA (which applies a pairwise crossover operator
whose operation depends on acontrol parameter) and FBs-GA
for evolving FBs. denotes the population of chromosomes
of main-GA at generation and is the population of
FBs of FBs-GA at generation . In the following, we explain
the algorithm steps briefly.

1) Main-GA. Steps 2, 4, 5.2, 5.5, and 5.6 constitute
main-GA;

2) FBs-GA. Steps 5.8.1 to 5.8.4 form the main loop of
FBs-GA. The parameter (step 5.8) is the gap
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Fig. 2. Pseudocode algorithm integrating main GA and FBs-GA.

(number of generations performed by main-GA) be-
tween two consecutive applications of this main loop of
FBs-GA. This parameter determines the synchronization
between the run of main-GA and the one of FBs-GA.

3) Cooperation FBs-GA main-GA.In steps 5.3 and 5.4,
the cooperation from FBs-GA to main-GA is carried out.
Throughout these steps, FBs in induce values
for the operation of the adaptive crossover operator in
main-GA. The parameter used in step 5.3 represents
the number of pairs of parents to which an FB is assigned.

4) Cooperation main-GA FBs-GA.In step 5.7, the cooper-
ation is from main-GA to FBs-GA. If , the same
FBs are assigned to pairs of parents that belong to
successive populations of main-GA. Their fitness should
be calculated in terms of their average performance over
such generations (step 5.8.1), i.e., taking into account their
historical behavior. In order to do this, step 5.7 collects
performance measures describing the behavior of the FBs
in over the generations of the main-GA in
which they are used for generatingvalues. Later, in step
5.8.1, these measures are used for obtaining an average
performancemeasure foreachFB,whichwill be its fitness.

Finally, we consider some important aspects related with
and .

1) Ratio Between the Population Sizes of Main-GA and
FBs-GA: determines the ratio between the population
sizes of the two GAs. In particular, there will be as many FBs
as pairs of parents that should undergo the crossover operator
to be adapted (i.e., , where is the crossover
probability) divided by .

Under a fixed population size for main-GA, the higher is,
the lower the population size of FBs-GA will result. If the popu-
lation size of FBs-GA is too small, it may converge too quickly
due to a lack of diversity. On the other hand, if is high, FBs
may be evaluated using information about their performance on

many different environments (i.e., combinations of values of the
features of the parents). In this way, FBs may capture knowledge
for inducing adequatevalues for parents showing very different
feature values. However, this advantage may be achieved as well
for low values since the crossover of FBs being found ade-
quate for few combinations of parent features will produce FBs
that are adequate for many combinations.

2) Historical knowledge:There are two important factors
determining the way in which the use of the historical knowl-
edge about the behavior of FBs may influence posi-
tively on the adaptation of the genetic operator: the topology of
the particular problem to be solved and the speed of main-GA
for visiting different regions of the search space. For example,
a high value may favor a misleading synchronization be-
tween the two GAs when dealing with problems showing ir-
regular landscapes, since FBs-GA may select FBs considering
their historical effects on a particular region, which shall not be
exploited by main-GA in the next generations. This situation
probably does not occur on problems with regular landscapes,
where the regions considered by the main-GA before and after
the application of FBs-GA are likely to show similar features.

With low values, the synchronization between main-GA
and FBs-GA will always be established in a more direct way,
since FBs-GA learns FBs, taking into account exclusively their
performance on the most recent visited regions. Moreover, a
low value for does not imply sacrificing the existence of
FBs with a suitable past in the population of FBs-GA. This GA
will keep FBs with a suitable past whenever they have a suitable
present (this is due to its own characteristics as GA). In this way,
the historical knowledge about FBs is handled adaptively: it is
used while useful.

To sum up, all the above considerations seem to recommend
the use of low and values. The effects that these vari-
ables have upon the adaptive proposal are investigated empiri-
cally in Section V-F.
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C. Applications

Different types of parameter settings were associated with ge-
netic operators, which may be adapted by means of coevolution
with FBs. They include the following.

1) Operator probabilities. There is a type of GAs that do not
apply both crossover and mutation to the selected solu-
tions, as in the traditional ones. Instead, a set of operators
is available, each with a probability of being used, and
one is selected to produce offspring. Many AGAs have
been designed starting from this GA approach, which ad-
just the operator probabilities throughout the run (see [15]
and [57]).

2) Operator parameters. These parameters determine the
way in which genetic operators work. Examples include:
a) the step size of mutation operators for RCGAs, which
determines the strength in which real genes are mutated
[5], [29]; b) parameters associated with crossover opera-
tors for RCGAs, such as FR operator [59], BLX-
operator [19], and dynamic FCB-crossover operators
[26], [27]; and c) parameters associated with crossover
operators for binary-coded GAs, such as-point
crossover [18] and uniform crossover [52].

The adaptation at individual-level of operator proba-
bilities and operator parameters by coevolution with FBs
may be carried out by considering these variables as con-
sequents of the fuzzy rules represented in the FBs. Fur-
thermore, the appropriate features of the parents should
be chosen in the basis of which the adjustment of these
variable is expressed. On the other hand, hybrid models
may be built in such a way that FBs include information
for both the adaptation of operator probabilities and op-
erator parameters. In this case, the model will detect the
operators that should be applied more frequently along
with favorable operator parameter values for them.

3) Mate selection parameters. In mate selection mecha-
nisms [43], chromosomes carry out the choice of mate for
crossover on the basis of their own preferences (which
are formulated in terms of different chromosome char-
acteristics, such as the phenotypical distance between
individuals).

Mate selection strategies may be expressed by means
of FBs. In particular, given two chromosomes, an FB
may induce a probability of mating depending on their
characteristics. This probability determines whether or
not they are crossed. Then, the process of coevolution
with FBs will discover FBs containing mate selection
strategies that encourage recombination between chro-
mosomes that have useful information (characteristics) to
exchange.

The use of coevolution for producing adaptation is not new in
the AGA literature. In [34], a separate GA is used as well, which
controls the strategies that are applied to a main GA, in order to
supervise the schemata that are processed by this main GA. In
[54], an adaptive model based on coevolution is proposed for the
case of the genetic programming [35]. Operator programs rep-

resenting recombination operators are coevolved with the pop-
ulation of genetic programs and learn to recombine the main
population programs better than a random genetic recombina-
tion. Another important example involvesself-adaptation[3],
[4], [6], [40], [46], [49], [57]. Generally, control parameters are
directly coded onto each member of the population and this al-
lows them to evolve, i.e., they undergo mutation and recombina-
tion. Self-adaptation exploits the indirect link between favorable
control parameter values and objective function values, with the
parameters being capable of adapting implicitly, according to
the topology of the objective function [6].

The evolution of the FBs, like self-adaptation, allows valuable
hints from evolution to be obtained implicitly and later they may
be used to guide the further steps of the GA. However, there is a
notable difference between the model presented and self-adapta-
tion; FBs represent general strategies (fuzzy rule bases) instead
of particular values. In this way, they may handle different envi-
ronments represented by the possible combination of values of
the features of the chromosomes.

IV. A DAPTIVE FR BY COEVOLUTION WITH FBs

In this section, we implement an instance of the adaptation
model proposed using a crossover operator called FR [59],
which was presented for working with RCGAs. In RCGAs,
chromosomes are vectors of floating point numbers, the size
of which is kept the same as the length of the vector, which
is the solution to the problem. They have been proven to be
more efficient than binary-coded GAs in certain real parameter
optimization problems [30], [44].

Next, we explain the reasons of having chosen FR for our
instance application. Crossover operators for RCGAs are able
to produce exploration or exploitation (at different degrees) de-
pending on the way in which they handle the current diversity
of the population. They may either generate additional diversity
starting from the current one (and so exploration takes effect) or
use this diversity for creating better elements (and so exploita-
tion comes into force). The performance of an RCGA on a par-
ticular problem will be determined strongly by the degrees of
exploration and exploitation associated with the crossover oper-
ator being applied. In the case of FR, these degrees may be easily
adjusted by means of varying an associated operator parameter.
By adjusting this parameter by coevolution with FBs, FR may
be able to adapt its degrees of exploration and exploitation to
the particular problem to be solved (which seems a promising
way to improve the RCGA performance).

We present FR in Section IV-A, describe the RCGA model
used as main-GA in Section IV-B, and in Section IV-C, explain
how the adaptation model based on coevolution with FBs may
be used for controlling the parameter associated with this oper-
ator, resulting anadaptiveFR.

A. FR

Let us assume that and
are two real-coded chro-

mosomes to be crossed. Then, FR generates an offspring
, where is obtained from a distribution
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Fig. 3. FR operator.

in which and are triangular probability dis-
tributions having the following features ( is assumed):

where under its initial formulation. Fig. 3 shows an
example of applying this crossover operator for the case of

. The greater the value is, the higher the variance (diversity)
introduced into the population.

The strategy for applying this crossover operator to the pop-
ulation is the following: for each pair of chromosomes from a
total of (obtained from a sampling scheme), whereis
the crossover probability and is the population size, two off-
spring are generated, the result of applying the operator to them.
They substitute their parents.

B. Main GA

We consider an RCGA model called two-loop RCGA with
adaptive control of mutation step sizes (TRAMSS) [29] as
main-GA that applies FR. TRAMSS is composed by aninner
loop and anouter loop.

1) Inner Loop: It is designed for processing useful diver-
sity in order to lead the population toward the most promising
search areas, producing an effective refinement on them. So, its
principal mission is to obtain the best possibleaccuracylevels.

The inner loop performs the selection process and fires the
crossover and mutation operators. Furthermore, for achieving
its objective, it controls the step size of the mutation operator.

2) Outer Loop: It introduces new population diversity, after
the inner loop reaches a stationary point where there are no im-
provements, that helps the next inner loop to reach better solu-
tions. Therefore, it attempts to inducereliability in the search
process.

The outer loop iteratively performs the inner one, and later,
it applies arestart operatorthat reinitializes the population by
mutating all the genes, using a step size that is adapted as well,
throughout the runs for this loop.

The Appendix provides a more detailed description of
TRAMSS.

In [29], it is shown that TRAMSS manipulates the population
diversity adequately for improving both reliability and accuracy
with regard to other mechanisms presented for controlling mu-
tation step sizes. This is an important feature for allowing the
adaptation of FR to be carried through to a suitable conclusion,
such as is suggested in [48, pp. 86]:

“It is the experience of several authors working with
adaptive recombination mechanisms that convergence

makes the relative assessment of different strategies
impossible. Variety within the population is vital as the
driving force of selective pressure in all evolutionary algo-
rithms, and will be doubly so in self-adaptive algorithms.”

Another reason for using TRAMSS is that it couples suit-
ably with FR. In [29], it was suggested that this occurs because
this crossover operator adjusts the intervals for the generation
of genes depending on the current population diversity.

C. Adapting the Parameter by Coevolution with FBs

In this section, we use the application of the coevolution with
FBs to the adaptation of theoperator parameter used by FR
(its range was constrained to the interval ). We describe
first the FB structure chosen (Section IV-C1), then the fitness
function for the FBs (Section IV-C2), and finally the design of
FBs-GA for evolving FBs (Section IV-C3).

1) FB Structure: We propose using the index of the parents
in the population , ( is
the population size) as the features of the parents to take into
account for building FBs. The index of the best chromosome
is and the index of the worst chromosome is one (the fitter
elements will have larger indexes). FBs have information for the
adaptation of depending on the goodness of the parents with
regards to the chromosomes in the population.

Different mechanisms presented in the GA literature operate
considering the importance of the fitness of the chromosomes
in the population. An example is the linear ranking selection [7]
in which the selection probability of each chromosome is com-
puted according to its rank. Adaptive strategies at the individual
level were proposed as well, which use this type of feature. For
example, in [50], each chromosome has its own crossover and
mutation probabilities, which are varied depending on the im-
portance of its fitness value in the population, with the need to
preserve good solutions (lower probability values are assigned
for high fitness solutions and higher values for low fitness so-
lutions). In [20], a similar approach is followed for the case of
adapting the strength in which real-coded genes are mutated:
genes in the fittest individuals undergo mutations with small
strengths.

The set of linguistic labels associated with and
is . The meanings of these labels

are depicted in Fig. 4(a). The set of linguistic labels foris
. Their meanings are shown in

Fig. 4(b). Therefore, FBs are vectors with four positions con-
taining labels belonging to . Table I shows the antecedents to
which each position corresponds. For example, the FB (High,
Low, High, Medium) has associated the fuzzy rule base shown
in Table II. Although the set looks poor, it was chosen with
regards to the following aspects.

• Its labels differentiate between two important categories of
chromosomes: the best chromosomes and the worst ones
(the heuristic rule underlying in the adaptive mechanism
proposed in [50] is expressed in terms of these categories
as well). FBs may induce values attending to the level
with which the parents match with the two categories.
Experiments have demonstrated that this is sufficient for
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(a)

(b)

Fig. 4. Meanings for the linguistic labels considered. (a) Chromosome index.
(b) d parameter.

TABLE I
ANTECEDENTS FOREACH POSITION IN AN FB

TABLE II
FUZZY RULE BASE

adapting the parameter in a suitable way for improving
the results of FR with static values (Section V).

• The size of the space of FBs is (it increases with
the number of labels in following an exponential way).
In a large space of FBs, FBs-GA may have difficulties for
reaching suitable FBs and, therefore, the adaptive mech-
anism may not be effective. With , this space be-
comes easy to be dealt with.

2) Fitness for the FBs: As we have mentioned, the fitness
function associated with the FBs should take into account the
performance of the genetic operator when it is applied to the
parents with the value obtained from them. But according to
what criterion should we judge this performance? One possi-
bility that has received attention is the ability of an operator to
produce children of improved fitness [15], [58], [62]. Clearly,
this is necessary for optimization to progress (the aim of a GA
is, after all, to uncover new fitter points in the search space).

In fact, the overall performance of a GA depends upon it main-
taining an acceptable level of productivity throughout the search
[57]. However, this is not enough: an efficient crossover oper-
ator should introduce the right portion of variance into the off-
spring population. If the variance is too large, then the GA does
not converge at all, whereas if it is too small, then it converges
prematurely [59].

Taking into account this two-fold objective, we propose the
following fitness function for each FBin (minimiza-
tion is assumed)

if

if

if

where
average of the fitness of the two offspring
generated;

and fitness function values of the parents
( is assumed);

value calculated from FB and
and .

This function induces the aforementioned two-fold objective
for reaching crossover operator performance in the following
ways:

1) rewards FBs that produce offspring that are more
fit than the parents;

2) penalizes FBs that produce offspring that are worse
than the parents;

3) when the fitness of the offspring is between that of the par-
ents, FBs introducing more diversity (those using greater

values) are preferred. Regardless, the fitness of these
FBs will be better than the ones assigned to the FBs in
case 2, and worse than the ones in case 1.

We should point out that in the experiments, is the average
of the fitness of the offspring after they undergo mutation. This
is done in order to avoid the waste of fitness function evaluations
after the crossover operator application. In doing so, it seems
that the adaptation abilities of the mechanism may disappear.
However, we think (and results have confirmed this) that the
latter does not occur. The adaptation operates considering the
joint effect of the crossover and mutation, as if they formed a
single operator, but still exploiting its suitable abilities.

D. FBs-GA for Evolving FBs

The evolution of the FBs is carried out by means of a GA with
the following properties.

1) Population Size: , i.e., the
number of pairs of parents to be crossed in main-GA divided
by (Section III-B).

2) Crossover Operator:FBs are crossed by means of the
simplecrossover operator [33], [66]. Given two FBs, FB

and FB , the offspring FB
and FB

are generated, whereis a random number belonging to
. The crossover probability is 0.6.

3) Mutation Operator: The mutation of a gene in an FB is
carried out as follows: 1) if the gene is High, produce Medium;
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Fig. 5. Test functions.

2) if it is Medium, produce High or Low at random; and 3) if it
is Low, produce Medium. The mutation probability is 0.01.

4) Selection Mechanism:The selection probability calcu-
lation follows linear ranking [7]. Chromosomes are sorted in
order of raw fitness and then the selection probability of each
chromosome is computed according to its rank
(with ) by using the following nonincreasing
assignment function

where is the population size and specifies the
expected number of copies for the worst chromosome (the best
one has expected copies). In the experiments,

.
Linear ranking is performed along withstochastic universal

sampling [8]. This procedure guarantees that the number of
copies of any chromosome is bounded by the floor and by the
ceiling of its expected number of copies.

5) Restart Mechanism:An important aspect to highlight is
that the population of FBs is reinitialized at the same time as
the restart mechanism in the outer loop of the main RCGA (Sec-
tion IV-B) is fired. In the case of multimodal functions, the outer
loop applies the restart mechanism after the inner loop has found
and refined a local optimum. If the next inner loop run starts
from a new population, then it will probably consider a new
local optimum. The process for learning FBs should be restarted
in order to be able to include the specific properties of this cur-
rent optimum.

Finally, we should point out that the cooperation strategy be-
tween FBs-GA and main-GA follows the structure of the ex-
ample described in Section III-B.

V. EXPERIMENTS

Minimization experiments on the test suite described in Sec-
tion V-A have been carried out in order to study the behavior of
the Adaptive FR proposed in Section IV.

The algorithms built in order to do this are described in Sec-
tion V-B, the results are shown in Section V-C, they are ana-
lyzed in Section V-D, a study of the adaptation itself is made in
Section V-E, and finally, in Section V-F, the effects of the
and parameters (see Section III-B) upon Adaptive FR per-
formance are analyzed.

A. Test Suite

For the experiments, we have considered six frequently used
test functions: 1) sphere model ( ) [16], [45]; 2) Generalized
Rosenbrock’s function ( ) [16]; 3) Schwefel’s Problem 1.2
( ) [45]; 4) Griewangk’s function ( ) [22]; 5) Generalized
Rastrigin’s function ( ) [4], [56]; and 6) Expansion of
( ) [63]. Fig. 5 shows their formulation. The dimension of
the search space is 25.

is a continuous, strictly convex, and unimodal function.
is a continuous and unimodal function, with the op-

timum located in a steep parabolic valley with a flat bottom.
This feature will probably cause slow progress in many algo-
rithms since they must continually change their search direc-
tion to reach the optimum. This function has been considered
by some authors to be a real challenge for any continuous func-
tion optimization program [47]. A great part of its difficulty lies
in the fact that there are nonlinear interactions between the vari-
ables, i.e., it isnonseparable.

is a continuous and unimodal function. Its difficulty con-
cerns the fact that searching along the coordinate axes only gives
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TABLE III
RULE BASES FORT-FRB1AND T-FRB2, RESPECTIVELY

a poor rate of convergence, since the gradient of is not ori-
ented along the axes. It presents similar difficulties to , but
its valley is much narrower.

is a scalable, continuous, separable, and multimodal
function, which is produced from by modulating it with

.
is a continuous and multimodal function. This function

is difficult to optimize because it is nonseparable and the search
algorithm has to climb a hill to reach the next valley. Neverthe-
less, one undesirable property exhibited is that it becomes easier
as the dimensionality is increased [63].

is a function that has nonlinear interactions between two
variables. Its expanded version is built in such a way that
it induces nonlinear interaction across multiple variables. It is
nonseparable as well.

B. Algorithms

For the experiments, we implement a version of TRAMSS
called T-FBs that uses adaptive FR (Section IV). It considers

and (Section III-B). The general features of
the FLCs are the following: the operator is used for con-
junction of clauses in the part of a rule, the operator
is used to fire each rule, and thecenter of gravity weighted by
matchingstrategy as the defuzzification operator is considered.
This setting was chosen from [13]. This paper studies the com-
bination of inference systems and defuzzification methods using
different applications and defining a degree of behavior. The
previous combination was the most effective one in the sense
that it obtained the best behavior for all the applications. More-
over, other papers have accepted the general good behavior for
this combination [41], [42].

We include three TRAMSS instances based on FR with fixed
values. They are called T-0.0, T-0.5, and T-1.0 and use
, , and , respectively. We also execute two al-

gorithms where is adapted at individual level through an FLC
with and as inputs. Each one uses a dif-
ferent fixed fuzzy rule base (Table III), which seemed particu-
larly interesting for us. They are called T-FRB1 and T-FRB2.

All the algorithms were executed 30 times, each one with
10 000 generations. The crossover probability is 0.6, the mu-
tation probability 0.005, and the population size is 60 chromo-
somes.

C. Results

Table IV shows the results obtained. The performance mea-
sures used are the following:

1) performance: average of the best fitness function found
at the end of each run;

2) performance: standard deviation. For , some
standard deviations have been rounded to 0.0, because
the corresponding algorithms have achieved very low
results for this function;

3) performance: best of the fitness values averaged
as performance. If the global optimum has been
reached sometimes, this performance will represent the
percentage of runs in which this happens.

Moreover, a two-sided-test ( : means of the two groups
are equal, : means of the two group are not equal) at 0.05
level of significance was applied in order to ascertain if differ-
ences in the performance for T-FBs are significant when com-
pared against the one for the other algorithms in the respective
table. The direction of any significant differences is denoted ei-
ther by:

1) a plus sign for an improvement in performance;
2) a minus sign for a reduction; or
3) an approximate sign for non significant differences.

The places in Table IV where these signs do not appear cor-
respond with the performance values for T-FBs.

D. Analysis of the Results

First, we deal with the results of the TRAMSS versions with
fixed values, T-0.0, T-0.5, and T-1.0. Then, in order to study
the effects of the adaptation ofat individual-level by means
of an FLC, we compare the behavior of T-FRB1 and T-FRB2
with the one from the previous algorithms. Finally, in order to
study the performance of adaptive FR, we compare the results
of T-FBs with the ones from the other algorithms.

1) Analysis for T-0.0, T-0.5, and T-1.0:With regards to the
TRAMSS versions with fixed values, the following may be
underlined.

• In general, the best and results are reached with
(T-0.5). This agrees with [59], where thisvalue

seemed a good choice for a large class of functions. So,
with , FR introduces a suitable balance between
the progress of the average fitness and the standard vari-
ance for most functions.

• However, for , T-0.0 shows better behavior than
T-0.5 and better performance than T-0.5 and T-1.0. FR
is a volume-oriented search. The volume to be searched is
a hyperrectangle defined by the parents, which is parallel
to the axes. If the minimum of the function is located at
the end of a very steep and curved valley (as in the case
of ), this operator will have difficulty in locating the
minimum since the steep valley is a very small part of the
hyperrectangle [59]. When , the hyperrectangle is
minimum, allowing the steep valley to be followed in the
most profitable way.

2) T-FRB1 and T-FRB2 Versus T-0.0, T-0.5, and
T-1.0: T-FRB1 improves the and behavior of all
TRAMSS versions with fixed values for all test functions,
except for , and T-FRB2 does the same for . These
facts show that:
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TABLE IV
RESULTS OFEXPERIMENTS

• the adaptation at individual-level of theparameter by
means of an FLC is a suitable way for improving the re-
sults of FR;

• the use of inputs representing the importance of the fitness
of the parents in the population has allowed the
performance of the FLCs to be effective.

On the other hand, neither T-FRB1 nor T-FRB2 have in-
troduced a good behavior for all test functions. T-FRB1 has
achieved good results for most functions; however, it shows a
low measure (40%) for . T-FRB2 has found the global
optimum of in the 100% of the runs; however, it has re-
turned worse results than T-FRB1 for the remaining functions.
Therefore, a different fuzzy rule base may be needed for ob-
taining the best results for each test function.

3) Analysis for T-FBs:Regarding the results for T-FBs, we
may observe that:

• thet-test indicates that T-FBs improves theperformance
of the other algorithms for the complex (it achieves
the best behavior as well);

• its results for the remaining test functions are similar to
the ones for the most successful algorithms. Particularly,
the -test results (and the measure) show that there is no
significant difference on performance between T-FBs and
T-FRB1 for and and the same occurs for
with regard to T-FRB2.

These results show that adaptive FR induces arobustopera-
tion. A robust operation means that the proposal obtains results
that are similar to the ones for the most successful algorithms
(based on fixed values or fixed fuzzy rule bases) for each one
of the test functions. However, the important point here is that
the most successful algorithm for any problem may be different
from the one for the other problems (as is claimed above). Figs. 6
and 7 were included in order to observe this fact graphically.
They outline the log-scaled best fitness value for each gener-
ation in the first run of T-FBs, T-FRB1, and T-FRB2 on the
unimodal and the multimodal , respectively. There are
two notable differences between the plot for (Fig. 6) and
the one for (Fig. 7).

• The plot for shows many peaks while the one for
shows none. They are produced by the application of the
restart operator, which is called by the outer loop of these
algorithms after the inner loop found and refined a local
optimum of this function. This does not occur for the case
of because it is unimodal.

• Another difference concerns the opposing behaviors
of T-FRB1 and T-FRB2 on these functions. For ,
T-FRB2 was able to find the global optimum (around
the generation 2000) without requiring restarts (which
suggests that the fuzzy rule base used by this algorithm is
very adequate for dealing with this function). However,
for , it shows a poor behavior as compared with the
one of T-FRB1, which, on the contrary, never found the
global optimum of .

On the other hand, we may see the good behavior of T-FBs for
the two functions. For , it followed the evolution trajectory
of T-FRB1, reaching a better result, at the end. For , it might
learn suitable FBs for finding the global optimum after the third
restart operator call (this fact will be checked in Section V-E2).

Finally, we should point out that the proposal needs more
computational time than the algorithms with fixed settings.
However, performance was compared with all algorithms
requiring the same number of fitness evaluations, which is
usually the principal time resource taken into account.

E. Study of the Adaptation Itself

There are at least two ways to study the operation of an adap-
tive mechanism for GAs [49]. The first is from the point of view
of performance (test functions are commonly used to evaluate
performance improvement). The second view is quite different
in that it ignores performance and concentrates more on the
adaptive mechanism itself, i.e., its ability to adjust the GA con-
figuration according to the particularities of the problem to be
solved. Once given these two points of view, it is natural to in-
vestigate the way in which adaptive behavior is responsible for
the performance improvement.

In Section V-D, we studied adaptive FR from the first point of
view. In this section, we consider the point of view of the adap-
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Fig. 6. Log-scaled best fitness value for each generation of T-FBs, T-FRB1,
and T-FRB2 onf .

Fig. 7. Log-scaled best fitness value for each generation of T-FBs, T-FRB1,
and T-FRB2 onf . Peaks in this plot are associated with the application of
the restart operator. T-FBs might find the global optimum after the third restart
operator call produced at generation 5200.

tation itself. In order to do this, in Section V-E1, we analyze
the distributions of FBs appearing during the runs of T-FBs for
two test functions with different features. Furthermore, in Sec-
tion V-E2, we check whether the adaptation behavior induces
the performance improvement observed in Section V-D.

1) Distributions of FBs: Fig. 8 outlines the distributions of
FBs for and (which have different features as is in-
dicated in Section V-A). FBs are represented in the coordinate
axis following a lexicographical order, starting atLLLL (Low,
Low, Low, Low) and ending atHHHH (High, High, High, High).
The figure shows the number of instances of each FB appeared
during the runs of T-FBs divided by the total number of FBs
appeared. We may make two important observations.

• The MMMM FB and FBs similar to it (such asMMHM,
MHMM, andHMMM) stand out in the two distributions.
These FBs induce values similar to 0.5, which is very
suitable as was mentioned above. So, we may point out
that Adaptive FR has been able to detect this circumstance.

• There are differences between the distributions. FBs lo-
cated on the left side ofMMMM are more fruitful for

Fig. 8. Distributions of FBs forf andf .

TABLE V
RESULTS FORf AND f USING DIFFERENTFBs

than for , whereas the opposite effect occurs with re-
gard to the FBs on the right side. In the case of , these
effects are more noticeable for FBs similar toMMMM
havingLow labels such asLMMM andMLMM and in the
case of , for ones that incorporateHigh labels such as
MHMM, MHHM, andHHMM.

These differences between distributions arise as a sign
of the adaptation ability (from the point of view of the
adaptation itself) of adaptive FR since they confirm that
this operator generates distributions of FBs whose shape
depends on the particular problem to be solved.

2) Adaptive Behavior and Performance Improve-
ment: Although adaptive FR may show signs of adaptation,
we have to check whether this one is the cause of performance
improvement. In order to do so, we have executed TRAMSS
versions that adapt through a different FLC, each one based
on FBs that represent significant points in the distributions in
Fig. 8. Table V has these FBs along with their results.

We observe that FBs similar toMMMM, includingHigh, la-
bels are very suitable for and ones withLow labels are ef-
fective for . These results together with the observations of
the previous section seem to corroborate that performance im-
provement is causally related with the adaptation ability since
adaptive FR was able to generate different FBs depending on
the particular problem (adaptation), which induce a suitable be-
havior on it (performance improvement).

To see this fact more clearly, we should establish a direct rela-
tion between the FBs produced during a particular time interval
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(a)

(b)

Fig. 9. FBs generated forf during two runtime intervals. (a) From
generation 1 to 300. (b) From generation 5200 to 5500.

and their impact on the behavior of T-FBs during this time in-
terval. Fig. 9 was included for this purpose. Fig. 9(a) shows the
appearance of significant FBs (chosen from Fig. 8) during the
first 300 generations of the first run of T-FBs on . Fig. 9(b)
illustrates the same information, but during the 300 generations
following the restart operator call produced at generation 5200
(see the third peak in the plot for T-FBs in Fig. 7). A mark is
printed in the FBs being generated during the generations in
these time intervals. A careful observation of the two graphs
reveals that the most fruitful FBs are different from one to an-
other.

• FBs similar to MMMM having a Low label (LMMM,
MLMM, MMLM, etc.) predominate in Fig. 9(b) (these
FBs have arisen as very suitable for this function as is
shown in Table V), whereas the remaining ones are prac-
tically absent. Now, observing Fig. 7, we may observe
that the effects of these FBs on the performance of T-FBs
are very beneficial: T-FBs reaches the global optimum of

during generations following 5200.
• The situation of Fig. 9(a) is different. Here, the proportion

of FBs havingHigh labels stand out against the one of FBs
havingLow labels (these ones are very slight, in particular
MLMM andMMML). Fig. 7 shows as this distribution of
FBs caused T-FBs to be trapped in a local optimum during
the initial generations of the run. So, in this case, the FBs
learnt were not adequate for finding the global optimum.

We may remark two important conclusions from all these re-
sults: 1) Adaptive FR allows adequate distributions of FBs to be
generated (thanks to its adaptation ability) for producing a ro-

bust operation for problems with different difficulties, and 2) a
part of this suitable operation is possible thanks to the use of the
TRAMSS model, since its restart operator (along with the restart
operator applied to FBs-GA) gives Adaptive FR the chance of
learning adequate FBs for different search zones as soon as one
of them has been totally exploited.

F. Empirical Study of and

As explained in Section III-B, the adaptive mechanism
proposed requires two new control parameters, and ,
which determine the number of pairs of parents to which an FB
is assigned and the gap between consecutive applications of
FBs-GA, respectively. In the previous experiments, they were
fixed to one. Next, we study their effects upon the performance
of Adaptive FR in Sections V-F1 and V-F-2.

1) Effects of Varying : The relationship between the per-
formance of the T-FBs algorithm and is investigated in this
section. In particular, we set the main population size to 180 and

to one and consider the results of T-FBs with , ,
and (i.e., , , and , respectively). When

, each FB is evaluated using the average of the indi-
vidual fitness values (Section IV-C2) obtained from each one
of its pairs of parents assigned. At-test was applied in order to
ascertain if differences in the performance for are
significant when compared against the one for . The
results are shown in Table VI.

In general, we notice no dramatic differences in the per-
formance measures of T-FBs with different values (see
t-test results). These results agree with the claim made in
Section III-B: the effects achieved with (to obtain
FBs capturing knowledge for inducing adequatevalues for
parents showing very different feature values) are provided
with as well, since successive crossovers of FBs being
found adequate for one combination of parent features will
produce FBs that are adequate for many combinations. This
may explain the similarity in the results obtained.

2) Effects of Varying : In this section, we examine the
performance of T-FBs when using different values of (1,
5, 10, and 20). The population size of main-GA is 60 andis
set to one. When , the evaluation of the FBs is carried
out following the same way as in the previous section. A-test
was applied in order to support the possible differences in the
performance for compared with the one for the other
values. The results are shown in Table VII.

We observe that with , the higher level of robustness
is achieved (see thet-test results for , , and , and
the performance for and ). Furthermore, for ,

, and , we see a significant drop in performance with
.

• For the case of , these results are not the expected
ones. With , FBs may be evaluated with regards
to their historical performance, which seems a promising
heuristic for this function with a regular landscape. How-
ever, since FBs-GA applies its selection mechanism less
frequently than with , some FBs may be kept
(and applied) showing low performance. With ,
these FBs disappears rapidly, and so results are better.
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TABLE VI
RESULTS FORT-FBsWITH n = 1, 2, and3

TABLE VII
RESULTS FORT-FBsWITH t = 1, 5, 10, AND 20

• For the case of and , we think that the lower
performance of is due to the location of their
global optimum (in a steep parabolic valley with a flat
bottom). This feature will probably cause a misleading
synchronization between main-GA and FBs-GA (see
Section III-B). With , the synchronization is
established in a more direct way, which allowed better
results for these functions to be reached. Finally, we
should observe an important fact: themeasure for these
functions is better as increases. During some runs the
synchronization was suitable, the historical knowledge
about the performance of the FBs was useful for leading
the search toward better solutions. However, this did not
happen during all the runs (as shown by themeasure).

These results along with the ones of the previous section jus-
tify the choice of and as suitable values,
since they allow the higher level of robustness to be kept on the
different test functions. This conclusion agrees with the recom-
mendations made in Section III-B.

VI. CONCLUDING REMARKS

This paper presented a general model for the adaptation of
genetic operators based on coevolution with FBs. Values for the
parameter to control are specified by FLCs during each genetic
operator application event depending on particular features of
the parents. The fuzzy rule bases of these FLCs are learnt by
means of a separate GA that coevolves with the GA that uses the
genetic operator to be controlled. In order to study the effective-

ness of the model, we have built an instance for the adaptation
of the parameter associated with FR. An empirical study of
this instance has been made from two different points of view,
one of performance and one of adaptation itself, and the relation
between them has been established. The principal conclusions
reached are the following.

• The adaptation at the individual level of theparameter by
means of an FLC (whose inputs represent the importance
of the fitness of the parents in the population) is a suitable
way for improving the results of FR.

• The adaptation ability of adaptive FR allows suitable
distributions of FBs to be obtained for producing a robust
operation for test functions with different difficulties.
Moreover, the integration of this operator in the TRAMSS
model has been fundamental in order to demonstrate its
good qualities.

These conclusions show promise in the use of the adaptation
of genetic operators by coevolution of FBs, for future applica-
tions and extensions. They include the following: 1) the adap-
tation of other genetic operators whose operation is determined
by particular control parameters, such as the ones enumerated in
Section III-C and ones proposed for genetic programming sys-
tems [35]; 2) include into the FBs the meaning of the linguistic
labels used, allowing the learning of the whole knowledge base;
and 3) the extension to adaptations at component level.

Finally, we should explain the position of the model proposed
in relation to the topic of the integration of GAs andfuzzy logic.
This integration has been accomplished by following two dif-
ferent approaches [25]: 1) the use of fuzzy logic-based tech-
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niques for improving GA behavior (such as AGAs based on
FLCs) and 2) the application of GAs in optimization and search
problems involving fuzzy systems [14], [24], [32], [38], [39]).
The adaptation of genetic operators by coevolution with FBs op-
erates by means of the integration of both techniques (GA adap-
tation based on FLCs and learning of fuzzy rule bases through
GAs), each one following one of these approaches.

APPENDIX

DESCRIPTION OFTRAMSS

The mutation operator may be considered to be an important
element for solving the premature convergence problem since
it serves to create random diversity in the population. In the
case of working with real coding, a topic of major importance
related with this operator involves the control of the proportion
or strength in which real-coded genes are mutated, i.e., thestep
size[5].

In this Appendix, we describe TRAMSS [29]. It adjusts the
step size of a mutation operator applied during the inner loop,
for producing efficient local tuning. It also controls the step size
of a mutation operator used by a restart operator performed in
the outer loop, for reinitializing the population in order to ensure
that different promising search zones are focused by the inner
loop throughout the run.

In Sections A and B, we describe the TRAMSS inner and
outer loops, respectively.

A. TRAMSS Inner Loop

The inner loop performs the usual GA process (selection,
crossover, and mutation) over a number of generations,,
called thetime interval between observations. Then, depending
on the progress of the population mean fitness found throughout
these generations, it adjusts the step size of the mutation oper-
ator, and calculates a new value for.

In short, the objective of the inner loop is to find and refine
local optima (or the global one), in an efficient way. Next, we
outline this loop (a minimization problem is assumed).

Selection and Mutation (Step 2.2).:Over the time interval
between observations , the following selection mechanism
and crossover and mutation operators are applied.

• The selection probability calculation followslinear
ranking [7], with and the sampling algo-
rithm is thestochastic universal sampling[8]. The elitist
strategy[16] is considered as well. It involves making sure
that the best performing chromosome always survives
intact from one generation to the next. This is necessary
since it is possible that the best chromosome disappears,
due to crossover or mutation.

• FR and adaptive FR were considered as crossover opera-
tors.

• The mutation operator used is denoted asMutation( ),
where is the step size ( ). This operator is
defined as follows: if is a gene to be mutated,
then the gene resulting from the application of this oper-
ator will be a random (uniform) number chosen from

.

Fig. 10. TRAMSS inner loop structure.

Adaptive Control of (Step 2.3): After generations, the
parameter used by the mutation operator is adapted according to
the following heuristic: “increase when observing progress on

(population mean fitness), decrease it when stuck.” is kept
in the interval , where is a parameter calculated by
the outer loop as described in Section B and is
the minimum threshold defined by the user (in experiments we
assume a value of 1.0e-100).

The inner loop ends whenreaches the value or when
a maximum number of generations is reached.

The update rates fordepend on the number of previous suc-
cessive observations that were successful or not successful. Two
variables, and , are used for recording these occurrences,
respectively. If progress is made during many successive pre-
vious observations ( , being the population mean
fitness of the previous iteration), then the increasing rate for
is very high (in particular, is multiplied by ), whereas if
these observations were not successful, then the decreasing rate
is high ( is divided by ).

Time Interval Calculation (Step 2.4):The time interval be-
tween observations is calculated depending on the current
values of with regard to . If is similar to , then the time
interval is high ( in the experiments) and, if it is lower,
the time interval will become like ( in the ex-
periments).

Fig. 10 shows the pseudocode algorithm for the whole
TRAMSS inner loop.

B. TRAMSS Outer Loop

The outer loop randomly initializes the population that will be
handled throughout the TRAMSS run. It fires the inner loop and
when this one returns, it applies a restart operator that reinitial-
izes the population. The restart operator uses a mutation whose
step size is controlled adaptively throughout its execution.

The outer loop attempts to introduce adequate diversity levels
for allowing the subsequent inner loop processing to be capable
of finding better local optima or the global one every time. Now,
we outline the main issues related to this loop.

Restart Operator Application (Step 3.4):The outer loop ap-
plies a restart operator calledRestart that ap-
pliesMutation to all the genes in the chromosomes stored
in the population. The objective of this operator is to maintain a
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Fig. 11. TRAMSS outer loop structure.

continuous level of exploration of the search space while trying
to use the promising zones located as a kind of sketch.

Adaptive Control of (Step 3.3): The outer loop adapts the
parameter using information obtained after each inner loop

run by means of the following heuristic: “decrease when ob-
serving progress on (fitness of the best element found so
far), otherwise increase it.” This is implemented by dividing the
previous value by two or multiplying it by two, respectively.
The new value will be the first value for the parameter used
in the next inner loop. is kept in the interval . Its ini-
tial value was assigned to 1 in the experiments.

The pseudocode algorithm for the outer loop is depicted in
Fig. 11.
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