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Adaptive Genetic Operators Based on Coevolution
with Fuzzy Behaviors

Francisco Herrera and Manuel Lozano

Abstract—This paper presents a technique for adapting control with the linguistic values of the fuzzy rule consequent.
parameter settings associated with genetic operators. Its principal These vectors will be called FBs.
features are: 1) the adaptation takes place at the individual level 2) The fuzzy rule bases used by the FLCs come from a sep-

by means of fuzzy logic controllers (FLCs) and 2) the fuzzy rule . .
bases used by the FLCs come from a separate genetic algorithm arate GA thatoevolvesvith the GA that uses the genetic

(GA) that coevolves with the GA that applies the genetic operator operator to be controlled (coevolution). The goal of co-
to be controlled. The goal is to obtain fuzzy rule bases that pro- evolution with FBs is to obtain fuzzy rule bases that pro-
duce suitable control parameter values for allowing the genetic op- duce suitable control parameter values for allowing the

erator to show an adequate performance on the particular problem

1 . : genetic operator to show an adequate performance.
to be solved. The empirical study of an instance of the technique has The t lution d for d ibing the fact that t
shown that it adapts the parameter settings according to the par- € termcoevolutions used for aescribing the fact that two

ticularities of the search space allowing significant performance to different types of structures evolve in a parallel way with some

be achieved for problems with different difficulties. type ofcooperatior[9]. In our case, FBs coevolve with the chro-
Index Terms—Adaptive genetic algorithms, coevolution, fuzzy MOSomes representing solutions to the particular problem. They
logic controllers. induce control parameter values for a genetic operator applied

to these chromosomes and evolve according to the efficacy in-
duced on the genetic operator (i.e., whether it generates off-
spring that are more fit than the parents or introduces high di-
INDING robust variation operators or control parameteyersity levels, etc.). We should point out that coevolution has
settings is not a trivial task since their interaction with theeen considered as a promising way for producing adaptation
performance of an evolutionary algorithm is complex and the], [34], [46], [49], [57].
optimal choices are problem dependent [3]. For the discussiorin order to investigate the effectiveness of the model, we pro-
here, we will focus on genetic algorithms (GAs) and genetic opese an instance for the adaptation of a crossover operator that
erators. Different genetic operators or control parameter valugsrks under real coding: fuzzy recombination (FR) [59]. In par-
may be necessary during the course of a run for inducing an ejgular, we study the instance by dealing with the following issues:
timal exploration/exploitation balance. For these reasons, adap—l) performance improvement, i.e., if its results on a given

tive GAs (AGAs) have been built that dynamically adjust se- ~ tegt suite are better than the ones for GAs using a fixed
lected control parameters or genetic operators during the course  configuration:

I. INTRODUCTION

of evolving a solution [1], [28], [31], [40], [48]. 2) adaptation itself, i.e., if it adjusts genetic control param-
One way for building AGAs involves the application of fuzzy eters according to the particularities of the problem to be
logic controllers (FLCs) [10], [17] for adjusting GA control pa- solved. The distributions of the FBs generated during the

rameters. Although much literature on this adaptive approach  ryns will be considered for this point;

has appeared, there are still important challenges that may b&) their relation, i.e., if adaptation is responsible for the per-
considered for applying it. They include the application of FLCS  * formance improvement.

for adapting parameters that control the operation of the geneti

opteratords,trt]aktmgklntfof_agt_:ount fe(;f;ures asisogated V;'éh the R AGASs based on FLCs presented in the literature is explained
ents, and the task of finding good fuzzy rule bases [28]. and the two aforementioned challenges associated with them

This paper proposes a technique fgr adgptlng genetic OP&fe described. In Section I, the adaptive model based on the
ators based on FLCs called coevolution with fuzzy behavio

) . : Cdevolution with FBs is presented. In Section IV, an instance
(FBs), which deals with the two aforementioned challenges. of the model is built for adapting a crossover operator for real-

1) During each genetic operator application event, particulggged GAs (RCGAs) [59]. In Section V, an empirical study of

FLCs specify its current genetic control parameter valugse instance is made and, finally, some concluding remarks are
depending on particular features of the parents. The fuzgyered in Section VI.

rule bases for an FLC may be coded by means of vectors

“The paper is set up as follows: in Section Il, the basic idea of
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Adaptive GA able. By using an automatic technique, relevant
relations and membership functions may be au-

Performance tomatically determined and may offer insight for

FLC | GA conuol parameters | Ga understanding the complex interaction between
GA control parameters GA control parameters and GA performance [36].

Next, in Section II-A, we review different approaches of

‘ AGAs based on FLCs. Then, in Sections II-B and II-C, we
Fig. 1. Structure of the AGA model based on FLCs. GA sends current pela ment on two challenges relating to these AGAs: the adap-
formance measures and control parameter values to the FLC, which computes . .
the new control parameter values for the GA. tation of genetic operators at individual-level based on FLCs

and the task of finding good fuzzy rule bases [28].

behavior), this kind of understanding does not necessarily re-
sult in a normative theory. FLCs are particularly suited to ed. Review on AGAs Based on FLCs

vironments that are either ill-defined or are very complex. The |, this section. we survey different AGAs based on FLCs that
adaptation of GA parameters is one such complex problem thak 1,72y rule bases built through the expertise, experience, and

may benefit from the use of FLCs [51]. The fuzzy rule bases f,qyledge on GAs, which have become available as a result of
FLCs facilitate the capture and representation of a broad rangRpirical studies conducted over a number of years.

of adaptive strategies for GAs (so, they may be the support forj, [64], the use of FLCs to control GAs is considered for
the automatic learning of sugh strategies). Then, the infererg;ﬂving two problems to which a standard GA may be subjected:
system of FLCs may use this knowledge for carrying out thg,ry sjow search speed and premature convergence. These prob-
adaptation of GAs throughout the run. lems are due to: 1) control parameters not well chosen initially
AGAs based on FLCs are found in [2], [11], [12], [23], [28] 4oy 4 given task; 2) parameters always being fixed even though
[36], [37], [51], [55], [60], [61], [64], and [65]. Their main idea e environment in which the GA operates may be variable; and
is to use an FLC whose inputs are any combination of GA pejy gifficulties resulting from selection of other parameters such
formance measures or current control parameters and Whgse,opulation size and in understanding their influence, both in-
outputs are GA control parameters. Current performance Megsiqually and in combination, on the GA performance. FLCs
sures of the GA are sent to the FLC, which computes new cQare proposed for controlling GAs in order to: 1) choose con-
trol parameter values that will be used by the GA. Fig. 1 shows,, parameters before the GA run; 2) adjust the control parame-

this process. _ _ ters online to dynamically adapt to new situations; and 3) assist
In general, the following steps are needed in order to desigfy, yser in accessing, designing, implementing, and validating a
an AGA based on FLCs [28]. GA for a given task. An AGA based on FLCs was presented in

1) Defining the inputs and outputBiputs should be robust which the crossover probability and mutation probability were
measures that describe GA behavior and the effects @fntrolled using two FLCs. Both of them had the same inputs:
the genetic setting parameters and genetic operatorsclitrent generation and population size.

[55], some possible inputs were cited: diversity measures,|n [2], it is claimed that GAs require human supervision
maximum, average, and minimum fitness, etc. In [36] angliring their routine use as practical tools for the following
[64], it is suggested that current control parameters ma¥asons: 1) for detecting the emergence of a solution; 2) for
also be considered as inputs. Outputs indicate valuest@hing algorithm parameters; and 3) for monitoring the evolu-
control parameters or changes in these parameters [3fidn process in order to avoid undesiderable behavior such as
In [55], the following outputs were reported: mutatiorpremature convergence. It is advised as well that any attempt
probability, crossover probability, population size, selego develop artificial intelligence tools based on GAs should
tive pressure, the time the controller must spend in atarggke these issues into account. The authors proposed FLCs for
state in order to be considered successful, the degreai task. They calleflizzy governmerihe collection of fuzzy
which a satisfactory solution has been obtained, etc. rules and routines in charge of controlling the evolution of the

2) Defining the data bas&ach input and output should haveGA population. Fuzzy government was applied to the symbolic
an associated set of linguistic labels. The meaning of theggerence of formulae problem. Genetic programming [35] was
labels is specified through membership functions of fuzzysed to solve the problem along with different FLCs, which
sets. It is necessary that every input and output havejgnamically adjusted the maximum length for genotypes,
bounded range of values in order to define these megicted on the mutation probability, detected the emergence of a
bership functions over it. solution, and stopped the process.

3) Obtaining the fuzzy rule baséfter selecting the inputs  |n [28], two FLCs control the use of exploitative and ex-
and outputs and defining the data base, the fuzzy rulg®ratory crossovers and the selective pressure. Two diversity
describing the relations between them should be defing@fleasures are defined for this purpose: genotypical diversity,

There are different ways to do so: which measures the (normalized) average distance of the pop-
a) using the experience and the knowledge of the G#lation from the best chromosome, and phenotypical diversity,
experts; which measures the ratio between the best fithess and the av-

b) using an automatic learning technique for thoserage fitness. These diversity measures are the inputs to the
cases where knowledge or expertise are not avait. Cs. Every five generations, the FLCs evaluate these measures
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to adjust the probability of using exploitative and exploratory 3) Component-levehdaptations dynamically alter how the
crossovers and the selection pressure (keeping or eliminating individual components of each chromosome will be ma-
diversity in the next generation). nipulated independently from each other. An approach is
In [60], an AGA based on FLCs is presented for multiob- the binary-coded AGA presented in [3] and [4], which
jective optimization problems. In each generation, an FLC de-  has the following principal features: a) each position of
cides what transformation of the cost components into an one- each chromosome has associated a mutation probability;
dimensional fitness function is taken. In [61], a more complex  b) these probabilities are incorporated into the genetic
method calleduzzy reductiorGA is proposed. It attempts to representation of the chromosomes encoded as bitstrings;
enable a uniform approximation of tiRareto optimakolutions and c¢) they are also subject to mutation and selection, i.e.,
(those that cannot be improved with respect to any cost function  they undergo evolution as well as the chromosomes.

without making the value of some other worse). The authorsy;ost AGAs based on FLCs presented in the literature in-

started by explicitly formulating desirable goals for the evolyjo\e population-level adaptation. However, adaptive mecha-
tion of the population toward the target Pareto optimal solutiongymg ¢ the individual level based on FLCs may be interesting
(Wh,'Ch COUI(,j l,)e expressed in vague terms only). Then, they adjusting control parameters associated with genetic opera-
deflned deV|at|o.n measures of a population _from these goa[[§rs [28], [65]. In this way, the control parameters will be de-
which were the inputs to a FLC. Later, they fixed a set of pPO§req on samples instead of on the whole population. Inputs to
sible actions that could serve as countermeasures to decrgasg cs may be central measures and/or measures associated
the deviations. These actions are different selection mecham% particular chromosomes or sets of them and outputs may

based on classical ones proposed for tackling multiobjective qps ool parameters associated with genetic operators that are

timization problems. The FLC determines activation rates f%r%plied to those chromosomes. A justification for this approach
h

the actions. The action that should actually be taken is decidgghat it allows for the application of different search strategies
according to the activation rates found. in different parts of the search space. This is based on the rea-
sonable assumption that, in general, the search space will not be
B. Adaptation at Individual-Level Based on FLCs homogeneous and that different strategies will be better suited
to different kinds of sublandscapes [48]. For instance, a popula-
In general, there are three levels where the adaptation mn member residing currently in a relatively flat region of the
take place in an AGA [1], [48]. search space may be handled more severely than a population

1) Population-leveladaptations adjust control parameter@ember in a more complex portion of the search space [1].

that apply for the entire population. An example is found
in [15]. An RCGA (a representation found commonly irC. Finding Good Fuzzy Rule Bases is Not an Easy Task
evolution strategies and evolutionary programming) is
proposed, which uses two types of crossover operator andrhe behavior of GAs and the interrelations between the ge-
three types of mutation operator. Each operator is givégtic operators are very complex. Although there are many
an initial application probability. For each reproductioPossible inputs and outputs for the FLCs, fuzzy rule bases fre-
event, a single operator is selected probabilistically aguently are not easily available. Finding good fuzzy rule bases
cording to the set of operator probabilities. An adaptivi Not an easy task. This problem has been recognized by dif-
process provides for the alteration of operator probabifierent authors. For example, in [36, p. 78] the following was
ties in proportion to the fitness of chromosomes creat&éted: “Although much literature on the subject of GA control
by the operators during the course of arun. Operators tms appeared, our initial attempts at using this information to
create and cause the generation of better chromosorfiggnually construct a fuzzy system for genetic control were un-
are allotted higher probabilities, i.e., they should be uségitful.”
more frequently. On the other hand, operators producingln [55, p. 466], a related conclusion was reached: “Statistics
offspring with a fitness which is lower than that of theand parameters are in part universal to any evolutionary algo-
parents should be used less frequently. rithm and in part specific to a particular application. Therefore
2) Individual-leveladaptations are centered on the consideit-is hard to state general fuzzy rules to control the evolutionary
ation of the individual members of the population rathgprocess.”
than the ensemble as a whole. An instance of this type ofAs we have mentioned, automatic learning mechanisms
adaptation is the AGA proposed in [50]. Each chromder obtaining fuzzy rule bases may be used for avoiding this
some has its own crossover and mutation probabilitigszoblem. In [36] and [37], this kind of automatic technique
They are varied depending on the convergence statewds proposed for learning fuzzy rule bases along with their
the population and the fitness value of the chromosomediata bases. The mechanism is very similar to the meta-GA
such away that high-fitness solutions are protected, whité Grefenstette [21]. It is based on a high-level GA whose
solutions with subaverage fithesses are totally disruptechromosomes code possible fuzzy rule bases together with
Furthermore, these probabilities are increased when ttieir corresponding data bases. The fitness function value for
population tends to get stuck at a local optimum and theychromosome is calculated using the averaged online perfor-
are decreased when the population is scattered in the s@nce and averaged offline performance [16] obtained from
lution space. an AGA based on FLCs that uses the fuzzy rule base coded in
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such chromosome on the five test functions in [16]. After th&. FBs
high-level GA completed 1000 fitness function evaluations, the | ot s consider a genetic operator that is applied to sets of
best fuzzy rule base reached is returned. _ chromosomes (parents), withbeing a parameter that controls
_The robustness of the fuzzy rule bases returned by this mech@-peration (either a pairwise crossover operator, a poolwise
nism depends heavily on the test problem set (which has nothijg ssover operator [53], or a mutation operator, etc.). An FLC
to do with the particular problem to be solved) and the perfolrﬁay be built for the adaptation gf which receives: features
mance measures used by the high-level GA. Even if the me¢gciated with the parents as inphisi = 1, ..., n, with L;
anism gets a good fuzzy rule base for some set of problem ging their associated linguistic label sets. The FLC will return
stances, this might not be the best one for the other instange.yajue for each set of parents that undergoes the genetic op-
Therefore, the fuzzy rule-based definition is still a challengingrator. The linguistic label set faris L,. The fuzzy rule base

feature in the fuzzy control of the GAs. for the FLC will have a set of fuzzy control rules with the form
lIl. A DAPTATION OF GENETIC OPERATORS BYCOEVOLUTION If Fyisly andFzisi; and - - andF), isi, Thenpisi,
WITH FBS wherel; € L;i =1, ..., nandl, € L,.

In this section, we present a general proposal for a mechanisnThis fuzzy rule base, constituted by control rules presenting
based on FLCs for the adaptation of genetic operators that wsaput variables and a single output variable, may be repre-
parameters for controlling their operation. Its main features asented using an-dimensional decision table, each dimension
the following. corresponding to each one of the input variables. Every dimen-

1) It incorporates genetic operator adaptation at an indilon will have associated an array containing the elements of the
vidual level based on FLCs. Control parameter values fépncrete linguistic label set and the cells of the table will con-
a genetic operator are computed for each set of parefﬂg'l the concrete linguistic label that the output variable takes as
that undergo it, using an FLC that considers particuld Vvalue for the combination of antecedents represented by this
features associated with the parents as inputs. In ti§@ll (Table Ilin Section IV-C1 shows an example). As we have
way, the proposal attempts to deal with the challenggentioned, all the cells in the complete decision table may be
presented in Section II-B. encoded in a single linear vector, called the FB.

2) The fuzzy rule bases of the FLCs applied are learnt im- . .
plicitly throughout the run by means of a separate GR: Coevolution with FBs
(denoted as FBs-GA) thabevolvesvith the one that ap-  In this section, we propose an adaptive mechanism for ad-
plies the genetic operator to be controlled (denoted assting thep control parameter based on coevolution with FBs.
main GA). Both GAs have an influence on the other. Omihe idea is to introduce a population of FBs (which represent
the one hand, fuzzy rule bases in FBs-GA induce paramessible fuzzy rule bases) thabevolveswvith the population
eter values for the genetic operator applied to main-Géf chromosomes (which represent solutions to the particular
(FBs-GA — main-GA). On the other hand, they evolveproblem). During the application of the genetic operator to be
according to the performance of the operator on the elesntrolled, arandom assignment is established between FBs and
ments of main-GA (main-GA— FBs-GA). The goal of sets of parents. Then, the genetic operator is applied to each set
FBs-GA is to obtain the fuzzy rule bases that produagsing the control parameter value obtained from an FLC that
suitable control parameter values for allowing the geneticses the fuzzy rule represented by the corresponding FB.
operator to show aadequate performanamn the partic-  The population of FBs will undergo evolution through the ef-
ular problem to be solved (the meaning of this term willects of its own selection process and crossover and mutation
be discussed in Section IV-C2). Since the learning techperators. The fitness of the FBs will depend on the efficacy in-
nique underlying this approach only takes into accoudiuced by them on the genetic operator. Some aspects to be con-
the problem to be solved (in contrast to the approach sidered may include: whether they generate offspring that are
[36] and [37], which never considers it), the fuzzy rulenore fit than the parents or introduce high diversity levels, etc.
bases obtained will specify adaptation strategies partidm-this way, the adaptive model proposed is based on observing
larly appropriate for this problem. With this aim, the prothe relative performance of different strategies (represented by
posal attempts to tackle the challenge in Section 1I-C the FBs), which appear to be very effective [48].

FBs-GA does not handle fuzzy rule bases directly. Instead,As an example, Fig. 2 shows a pseudocode algorithm inte-
it uses structures called FBs for representing them, which &f#@ting main-GA (which applies a pairwise crossover operator
more adequate for being treated as chromosomes by a GA. pgwse operation depends opeontrol parameter) and FBs-GA
consist of vectors with the linguistic values of the fuzzy ruléor evolving FBs.P(t) denotes the population of chromosomes
consequent. They are presented in Section IlI-A. Then, in S&f-main-GA at generatiosy and Prp;(t2) is the population of
tion 111-B, we propose the model for the adaptation of genetfcBs of FBs-GA at generatiofy. In the following, we explain
operators based on coevolution with FBs, and describe an & algorithm steps briefly.
ample for the case of adapting a parameter associated with d) Main-GA. Steps 2, 4, 5.2, 5.5, and 5.6 constitute
pairwise crossover operator. Finally, in Section IlI-C, we enu- main-GA;
merate different ways for applying the technique proposed to 2) FBs-GA. Steps 5.8.1 to 5.8.4 form the main loop of
genetic operators with control parameters associated. FBs-GA. The trps parameter (step 5.8) is the gap
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L1 =0,t2=0;

. Initialize P(t,);

. Initialize Pyp,(t2);
. Bualuate P(t1);

U R N -

. While (not termination-condition ) do
Bl b=t +1;
5.2. Select P(t1) from P(t, — 1);
5.3. Assign each FB in Prps(t2) to npp pairs of parents in P(t1), at random;
5.4. Calculate p for each pair of parents through its FB associated,
5.5. Perform adaptive crossover (using the p values) and mutation on P(t1);
5.6. Evaluate P(t1);
5.7. Collect performance measures about the behavior of FBs in Prps(t2) on P(t1).
5.8. If (t1 is multiple of trps) then
5.8.1. Evaluate Ppp,(t2) (using the information collected in 5.7);
5.8.2. t =ty + I;
5.8.3. Select Prps(t2) from Prpy(te — 1);

5.8.4. Perform crossover and mutation on Prps(t2);

Fig. 2. Pseudocode algorithm integrating main GA and FBs-GA.

(number of generations performed by main-GA) bemany different environments (i.e., combinations of values of the
tween two consecutive applications of this main loop d&atures of the parents). In this way, FBs may capture knowledge
FBs-GA. This parameter determines the synchronizatidor inducing adequatevalues for parents showing very different
between the run of main-GA and the one of FBs-GA. feature values. However, this advantage may be achieved as well
3) Cooperation FBs-GA—~ main-GA.In steps 5.3 and 5.4, for low n,,, values since the crossover of FBs being found ade-
the cooperation from FBs-GA to main-GA is carried outquate for few combinations of parent features will produce FBs
Throughout these steps, FBshhp(2) inducep values that are adequate for many combinations.
for the operation of the adaptive crossover operator in2) Historical knowledge:There are two important factors
main-GA. Then,,, parameter used in step 5.3 representietermining the way in which the use of the historical knowl-
the number of pairs of parents to which an FB is assigneetige about the behavior of FBs-5; > 1) may influence posi-
4) Cooperation main-GA- FBs-GAIn step 5.7, the cooper- tively on the adaptation of the genetic operator: the topology of
ation is from main-GA to FBs-GA. lfrgs > 1, the same the particular problem to be solved and the speed of main-GA
FBs are assigned to pairs of parents that belongg-tg for visiting different regions of the search space. For example,
successive populations of main-GA. Their fithess shoullhightrg, value may favor a misleading synchronization be-
be calculated in terms of their average performance ovgreen the two GAs when dealing with problems showing ir-
such generations (step 5.8.1), i.e., taking into account theégular landscapes, since FBs-GA may select FBs considering
historical behavior In order to do this, step 5.7 collectstheir historical effects on a particular region, which shall not be
performance measures describing the behavior of the F®gloited by main-GA in the next generations. This situation
in Prps(t2) over thetpp, generations of the main-GA in probably does not occur on problems with regular landscapes,
which they are used for generatipgalues. Later, in step where the regions considered by the main-GA before and after
5.8.1, these measures are used for obtaining an averdgeapplication of FBs-GA are likely to show similar features.
performance measure foreach FB, which will be its fitness. with low ¢rp. values, the synchronization between main-GA
Finally, we consider some important aspects related wjth and FBs-GA will always be established in a more direct way,
andtgps. since FBs-GA learns FBs, taking into account exclusively their
1) Ratio Between the Population Sizes of Main-GA amkrformance on the most recent visited regions. Moreover, a
FBs-GA: n,, determines the ratio between the populatiolow value fortrps does not imply sacrificing the existence of
sizes of the two GAs. In particular, there will be as many FBSBs with a suitable past in the population of FBs-GA. This GA
as pairs of parents that should undergo the crossover operatidrkeep FBs with a suitable past whenever they have a suitable
to be adapted (i.e(|P(t)| - p.)/2, wherep, is the crossover present (this is due to its own characteristics as GA). In this way,
probability) divided byn,,,. the historical knowledge about FBs is handled adaptively: it is
Under a fixed population size for main-GA, the highgy, is, used while useful.
the lower the population size of FBs-GA will result. If the popu- To sum up, all the above considerations seem to recommend
lation size of FBs-GA is too small, it may converge too quicklyhe use of lown,,,, andtpp, values. The effects that these vari-
due to a lack of diversity. On the other handyjf, is high, FBs ables have upon the adaptive proposal are investigated empiri-
may be evaluated using information about their performance cally in Section V-F.
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C. Applications resenting recombination operators are coevolved with the pop-
ulation of genetic programs and learn to recombine the main
Different types of parameter settings were associated with ggypulation programs better than a random genetic recombina-
netic operators, which may be adapted by means of coevolutigsh. Another important example involveslf-adaptation3],
with FBs. They include the following. [4], [6], [40], [46], [49], [57]. Generally, control parameters are

1) Operator probabilitiesThere is a type of GAs that do notdirectly coded onto gach member of the population and thig al-
apply both crossover and mutation to the selected Soi&yvs them to evolve, i.e., they undergo mutation and recombina-

tions. as in the traditional ones. Instead. a set of operaté'r‘%ﬂ- Self-adaptation exploits the indirect link between favorable
is available, each with a probability of being used angPntrol parameter values and objective function values, with the

one is selected to produce offspring. Many AGAs haJ@arameters being capable of adapting implicitly, according to

been designed starting from this GA approach, which af1€ topology of the objective function [6].
just the operator probabilities throughout the run (see [15] The evolution of the FBs, like self-adaptation, allows valuable
and [57]). hints from evolution to be obtained implicitly and later they may

2) Operator parametersThese parameters determine tth used to guide the further steps of the GA. However, there is a
way in which genetic operators work. Examples incIudé‘.Otable difference between the model presented and self-adapta-

a) the step size of mutation operators for RCGASs, whidiPn: FBs represent general strategies (fuzzy rule bases) instead

determines the strength in which real genes are muta{éfaoamcular values. In this way, they may handle different envi-

[5], [29]; b) parameters associated with crossover opelré)_nments represented by the possible combination of values of

tors for RCGAS, such as FR operator [59], BloX- 5 —-y the features of the chromosomes.
operator [19], and dynamic FCB-crossover operators
[26], [27]; and c) parameters associated with crossover — |V. ADAPTIVE FRBY COEVOLUTION WITH FBs

operators for binary-coded GAs, such aspoint . _ . . .
In this section, we implement an instance of the adaptation

crossover [18] and uniform crossover [52]. del d usi 1 led ER [59
The adaptation at individual-level of operator probar-no €l proposed using a crossover operalor calle [59],

bilities and operator parameters by coevolution with FBWhICh was presented for working with RCGAS. In RCGAS,

: o . chromosomes are vectors of floating point numbers, the size
may be carried out by considering these variables as con- . . :

: of which is kept the same as the length of the vector, which
sequents of the fuzzy rules represented in the FBs. F

th th iate feat f th ts sh the solution to the problem. They have been proven to be
ermore, Ihe appropriate fealures ot the parents sno %re efficient than binary-coded GAs in certain real parameter

be chosen in the basis of which the adjustment of theﬁﬁtimization problems [30], [44].
variable is expressed. On the other hand, hybrid modelSyey; \ve explain the reasons of having chosen FR for our
may be built in such a way that FBs include informatiof,siance application. Crossover operators for RCGAs are able
for both the adaptation of operator probabilities and Oy produce exploration or exploitation (at different degrees) de-
erator parameters. In this case, the model will detect th@ding on the way in which they handle the current diversity
operators that should be applied more frequently alorgthe population. They may either generate additional diversity
with favorable operator parameter values for them.  starting from the current one (and so exploration takes effect) or
3) Mate selection parametersn mate selection mecha-yse this diversity for creating better elements (and so exploita-
nisms [43], chromosomes carry out the choice of mate fgbn comes into force). The performance of an RCGA on a par-
crossover on the basis of their own preferences (whiglgular problem will be determined strongly by the degrees of
are formulated in terms of different chromosome chaexploration and exploitation associated with the crossover oper-
acteristics, such as the phenotypical distance betwestior being applied. Inthe case of FR, these degrees may be easily
individuals). adjusted by means of varying an associated operator parameter.
Mate selection strategies may be expressed by meddyadjusting this parameter by coevolution with FBs, FR may
of FBs. In particular, given two chromosomes, an FiBe able to adapt its degrees of exploration and exploitation to
may induce a probability of mating depending on theiihe particular problem to be solved (which seems a promising

characteristics. This probability determines whether #yay to improve the RCGA performance).
not they are crossed. Then, the process of coevolutionWe present FR in Section IV-A, describe the RCGA model

with FBs will discover FBs Containing mate Selectioﬁlsed as main-GA in Section IV'B, and in Section |V-C, eXplain

Strategies that encourage recombination between Chns)y\/ the adaptation model based on coevolution with FBs may

mosomes that have useful information (Characteristics)%’ used for controlling the parameter associated with this oper-
exchange. ator, resulting amdaptiveFR.

The use of coevolution for producing adaptation is not new in
the AGA literature. In [34], a separate GAis used as well, which FR
controls the strategies that are applied to a main GA, in order toLet us assume that = (x1---x,,) andY = (y1 - y,)
supervise the schemata that are processed by this main GA(4n v; € [a;, ;] C R, i = 1---n) are two real-coded chro-
[54], an adaptive model based on coevolution is proposed for timsomes to be crossed. Then, FR generates an offsriag
case of the genetic programming [35]. Operator programs reps - - - z, ), Wherez; is obtained from a distributio®(z;) €
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makes the relative assessment of different strategies
impossible. Variety within the population is vital as the
‘. | 1 { driving force of selective pressure in all evolutionary algo-

a; X; y. b rithms, and will be doubly so in self-adaptive algorithms.”
Another reason for using TRAMSS is that it couples suit-
Fig. 3. FR operator. ably with FR. In [29], it was suggested that this occurs because

this crossover operator adjusts the intervals for the generation
{$,, ¢y, } inwhich ¢,, andg,, are triangular probability dis- of genes depending on the current population diversity.
tributions having the following features{ < ¥; is assumed):
C. Adapting thel Parameter by Coevolution with FBs

Prob.Dist. — Min.Val.  ModalVal.  Max.Val. In this section, we use the application of the coevolution with

FBs to the adaptation of théoperator parameter used by FR
(its range was constrained to the inter{@l 1]). We describe
first the FB structure chosen (Section IV-C1), then the fitness
function for the FBs (Section IV-C2), and finally the design of
whered > 0.5 under its initial formulation. Fig. 3 shows anFBs-GA for evolving FBs (Section IV-C3).
example of applying this crossover operator for the case-ef 1) FB Structure: We propose using the index of the parents
0.5. The greater the value is, the higher the variance (diversity)n the populationindex(X), Index(Y) € {1, ..., N} (IV is
introduced into the population. the population size) as the features of the parents to take into
The strategy for applying this crossover operator to the pogecount for building FBs. The index of the best chromosome
ulation is the following: for each pair of chromosomes from g& v and the index of the worst chromosome is one (the fitter
total of p. - IV (obtained from a sampling scheme), wheres  gjements will have larger indexes). FBs have information for the
the_crossover probability amd is the pop.ulatlon size, two off- adaptation ofl depending on the goodness of the parents with
spring are generate_d, the result of applying the operator to ther@bards to the chromosomes in the population.
They substitute their parents. Different mechanisms presented in the GA literature operate
B. Main GA considering the importance of the fitness of the chromosomes
in the population. An example is the linear ranking selection [7]
We consider an RCGA model called two-loop RCGA with, which the selection probability of each chromosome is com-
adaptive control of mutation step sizes (TRAMSS) [29] a§yted according to its rank. Adaptive strategies at the individual
main-GA that applies FR. TRAMSS is composed byirmer e, e| were proposed as well, which use this type of feature. For

loop and arputer loop. example, in [50], each chromosome has its own crossover and

1) Inner Loop: It is designed for processing useful diveryy, ation probabilities, which are varied depending on the im-

sity in order to lead the population toward the most prom's'q@ortance of its fitness value in the population, with the need to

sgarqh allre:.:\s,.prold utcm%ta n e&ecgve:eﬁneg;nt on theml. SOplrtéserve good solutions (lower probability values are assigned
principal mission is to obtain the best possibiuracylevels. or high fitness solutions and higher values for low fithess so-

The inner loop per_forms the selection process and flre_s t.u?ions). In [20], a similar approach is followed for the case of
crossover and mutation operators. Furthermore, for achievin . . . )
) o . ; adapting the strength in which real-coded genes are mutated:
its objective, it controls the step size of the mutation operator, . ! o . :
2) Outer Loop: Itintroduces new population diversity afterJENES in the fittest individuals undergo mutations with small
the inner loop reaches a stationary point where there are no Isrﬁr:?;]gths.t  linquistic label iated e q
provements, that helps the next inner loop to reach better SOIIU& eysve. OL Tguﬁs Ic ;- is a_lrshsoua ed w f)t(é ) ?nb |
tions. Therefore, it attempts to inducgliability in the search ™ ex(Y)is I = {Low, High}. The meanings of these labels

process. are depicted in Fig. 4(a). The set of linguistic labels dois

The outer loop iteratively performs the inner one, and latefd = t1Low, Medium, High}. Their meanings are shown in
it applies arestart operatorthat reinitializes the population by F19- 4(b). Therefore, FBs are vectors with four positions con-
mutating all the genes, using a step size that is adapted as wWiing labels belonging té,. Table | shows the antecedents to

(/)907' xz_dlyz - $z| T $z+dlyz — JZZ|
Py, yi—d-ly; — Yi yi+d-by; —

throughout the runs for this loop. which each position corresponds. For example, the FB (High,
The Appendix provides a more detailed description ¢foW: High, Medium) has associated the fuzzy rule base shown
TRAMSS. in Table II. Although thel set looks poor, it was chosen with

In[29], it is shown that TRAMSS manipulates the populatioffgards to the following aspects.
diversity adequately for improving both reliability and accuracy ¢ Itslabels differentiate between two important categories of
with regard to other mechanisms presented for controlling mu-  chromosomes: the best chromosomes and the worst ones
tation step sizes. This is an important feature for allowing the  (the heuristic rule underlying in the adaptive mechanism
adaptation of FR to be carried through to a suitable conclusion, proposed in [50] is expressed in terms of these categories
such as is suggested in [48, pp. 86]: as well). FBs may inducé values attending to the level

“It is the experience of several authors working with with which the parents match with the two categories.
adaptive recombination mechanisms that convergence Experiments have demonstrated that this is sufficient for
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In fact, the overall performance of a GA depends upon it main-
taining an acceptable level of productivity throughout the search
LOW HGH [57]. However, this is not enough: an efficient crossover oper-
: ator should introduce the right portion of variance into the off-
spring population. If the variance is too large, then the GA does
not converge at all, whereas if it is too small, then it converges
prematurely [59].
: Taking into account this two-fold objective, we propose the
1 N following fitness function for each FBn Prp(t2) (minimiza-
tion is assumed)

@) , if fo < f(X)< f(Y)

0
Fit(FB;) = § 2—d;, if £(X) < fo < F(Y)
3, if f(X)<SfY)< fo

LOW MEDIUM HIGH

where
fo average of the fitness of the two offspring
generated;
f(X)andf(Y) fitness function values of the parents
(f(X) < f(Y) is assumed);
0.0 0.5 1.0 d; d value calculated from FB and
) Index(X) andIndex(Y).
This function induces the aforementioned two-fold objective
Fig. 4. Meanings for the linguistic labels considered. (a) Chromosome indd®r reaching crossover operator performance in the following

(b) d parameter. ways:
1) Fit(-) rewards FBs that produce offspring that are more
ANTECEDENTS FCPI:\SAI;ZIIE-! ILOSITION IN AN FB fit than the .parentS; .
2) Fit(-) penalizes FBs that produce offspring that are worse
Position | Index(X) Index(Y) than the parents;

; gigﬁ 1;;5‘1; 3) when the fitness of the offspring is between that of the par-

3 Low High ents, FBs introducing more diversity (those using greater
4 Low Low d values) are preferred. Regardless, the fithess of these

FBs will be better than the ones assigned to the FBs in

TABLE i case 2, and worse than the ones in case 1.
Fuzzy RULE BASE We should point out that in the experimenfs, is the average

Trdea(X) Trdes(¥) | Consequent pf the fit_ness of the of_fspring after thgy undergo mutation. This
High Tigh Tiigh is done in order to avoid the waste of fitness function evaluations

High Low Low after the crossover operator application. In doing so, it seems
o igh gh that the adaptation abilities of the mechanism may disappear.

However, we think (and results have confirmed this) that the
latter does not occur. The adaptation operates considering the
adapting thel parameter in a suitable way for improvingjoint effect of the crossover and mutation, as if they formed a
the results of FR with stati¢ values (Section V). single operator, but still exploiting its suitable abilities.
« The size of the space of FBs iB4|!”! (it increases with
the number of labels i following an exponential way). D. FBs-GA for Evolving FBs
In a large space of FBs, FBs-GA may have difficulties for The evolution of the FBs is carried out by means of a GA with
reaching suitable FBs and, therefore, the adaptive meghe following properties.
anism may not be effective. Wili.| = 2, this space be- 1) Population Size:|Peps| = (pe - (N/2))/n,p, i€., the
comes easy to be dealt with. number of pairs of parents to be crossed in main-GA divided
2) Fitness for the FBs: As we have mentioned, the fitnessby »,,, (Section III-B).
function associated with the FBs should take into account the2) Crossover Operator:FBs are crossed by means of the
performance of the genetic operator when it is applied to tisenplecrossover operator [33], [66]. Given two FBs, FB-
parents with thel value obtained from them. But according ta/} --- %) and FB = (IZ---12), the offspring FB =
what criterion should we judge this performance? One poséii, ..., I}, 17,1, ..., [2)and FB, = (I}, ..., 1, l{;,. ...,
bility that has received attention is the ability of an operator ) are generated, wherieis a random number belonging to
produce children of improved fitness [15], [58], [62]. Clearly{1, ..., n — 1}. The crossover probability is 0.6.
this is necessary for optimization to progress (the aim of a GA3) Mutation Operator: The mutation of a gene in an FB is
is, after all, to uncover new fitter points in the search space&garried out as follows: 1) if the gene is High, produce Medium;
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.f‘Ph fRoa
Foon (@) = Y7 @t Fros(E) = E:::(lOO Azig1 —23)? + (z: = 1)?)
—-5.12< z; <5.12 512 < ¢; < 5.12
fopr(z™) =0 . fRos(z*) =10
Fsen Jori
) 2
fsen@ = X0, (Tioi2s) fors(@ = § Xy o = Tl cos () +1
—65.536 < z; < 65.536 d = 4000
fsen(z*) =0 —600.0 < z; < 600.0
fGrl’(x* =0
fRa.a e.flO

fras(@ =a-n+Y; z—a-cos(w-z:) efio(®) = fro(z1,22) +... + fro(n-1,Zn) + fio{n, 1)

a=10,w="2r froz, y) = (2% + %)% . [sin®(50 - (22 + y2)%1) + 1]
—5.12 < z; < 5.12 z,y € (—100,100]
fras(2") =0 efio(z*) =0
Fig. 5. Test functions.
2) if it is Medium, produce High or Low at random; and 3) if it V. EXPERIMENTS

is Low, produce Medium. The mutation probability is 0.01. S ) _ ) )

4) Selection MechanismThe selection probability calcu- Minimization experiments on the test suite described in Sec-
lation follows linear ranking[7]. Chromosomes are sorted infion V-A have been carried out in order to study the behavior of
order of raw fitness and then the selection probability of ea¢he Adaptive FR proposed in Section IV.
chromosomeC; is computed according to its ranknk(C;) The algorithms built in order to do this are described in Sec-
(with rank(Ches;) = 1) by using the following nonincreasing tion V-B, the results are shown in Section V-C, they are ana-

assignment function lyzed in Section V-D, a study of the adaptation itself is made in
Section V-E, and finally, in Section V-F, the effects of thg,
1 rank(C;) — 1 andtgg, parameters (see Section I11-B) upon Adaptive FR per-
ps(Ci) = 7+ (hmax = (e = Thuin) * ——7 ) formance are analyzed.

whereN is the population size angl.i, € [0, 1] specifies the A. Test Suite
expected number of copies for the worst chromosome (the bes,
one has)uax = 2 — Nmin €Xpected copies). In the experiment%,e
Thmin = 0.75.

Linear ranking is performed along wiitochastic universal
sampling[8]. This procedure guarantees that the number
copies of any chromosome is bounded by the floor and by t
ceiling of its expected number of copies. )

5) Restart MechanismAn important aspect to highlight is the sea_lrch spa(_:e s 25. . . )
that the population of FBs is reinitialized at the same time as/sph IS & continuous, strictly convex, and unimodal function.
the restart mechanism in the outer loop of the main RCGA (Sec-/Res 1S @ continuous and unimodal function, with the op-
tion IV-B) is fired. In the case of multimodal functions, the outefMmum located in a steep parabolic valley with a flat bottom.
loop applies the restart mechanism after the inner loop has foutds feature will probably cause slow progress in many algo-
and refined a local optimum. If the next inner loop run starfdthms since they must continually change their search direc-
from a new population, then it will probably consider a newon to reach the optimum. This function has been considered
local optimum. The process for learning FBs should be restart@yjsome authors to be a real challenge for any continuous func-
in order to be able to include the specific properties of this cuion optimization program [47]. A great part of its difficulty lies
rent optimum. in the fact that there are nonlinear interactions between the vari-

Finally, we should point out that the cooperation strategy bables, i.e., it imonseparable
tween FBs-GA and main-GA follows the structure of the ex- fse, IS @ continuous and unimodal function. Its difficulty con-
ample described in Section IlI-B. cerns the fact that searching along the coordinate axes only gives

Itior the experiments, we have considered six frequently used
st functions: 1) sphere mod¢l,,) [16], [45]; 2) Generalized
Rosenbrock’s functionfizes) [16]; 3) Schwefel's Problem 1.2
scn) [45]; 4) Griewangk’s function fa,;) [22]; 5) Generalized
gastrigin’s function {r.s) [4], [56]; and 6) Expansion ofq

(eeflo) [63]. Fig. 5 shows their formulation. The dimension of
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TABLE Il 1) A performance: average of the best fithess function found
RULE BASES FORT-FRB1AND T-FRB2, RESPECTIVELY at the end of each run:
“Tndea(¥) 2) SD performance: standard deviation. Fdy,,, some
Index(X) [High |Low standard deviations have been rounded to 0.0, because
High High Medium i H i
Tou ot Tor the correspo_ndlng glgonthms have achieved very low
g — results for this function;
ndex .
Tndez(X) | High | Low 3) B performance: best of the fltness_values averaged
High Low Medium as A performance. If the global optimum has been
Low Medium | High reached sometimes, this performance will represent the

percentage of runs in which this happens.

Moreover, a two-sided-test (H,: means of the two groups
are equal H,: means of the two group are not equal) at 0.05
its valley is much narrower. level of significance was applied in order.to _a_scertain if differ-

fras IS a scalable, continuous, separable, and multimoaearllcesmtheq performance for T-FBs are significant when com-

; o ... pared against the one for the other algorithms in the respective
Lu.ng:)':(z .V\;h')Ch is produced fronfs,, by modulating it with table. The direction of any significant differences is denoted ei-

. . . . : ._ther by:
fari is a continuous and multimodal function. This function _ _ )
is difficult to optimize because it is nonseparable and the searchl) & PIUs sigr(+) for an improvement im performance;
algorithm has to climb a hill to reach the next valley. Neverthe- 2) & minus sigr(—) for a reduction; or _
less, one undesirable property exhibited is that it becomes easier) 0 @Pproximate sigfr) for non significant differences.
as the dimensionality is increased [63]. The places in Table IV where these signs do not appear cor-
f10 is a function that has nonlinear interactions between twespond with the performance values for T-FBs.
variables. Its expanded versieyf,, is built in such a way that
it induces nonlinear interaction across multiple variables. It {5 Analysis of the Results
nonseparable as well.

a poor rate of convergence, since the gradierfsgf is not ori-
ented along the axes. It presents similar difficultieggg,, but

First, we deal with the results of the TRAMSS versions with
B. Algorithms fixed d values, T-0.0, T-0.5, and T-1.0. Then, in order to study
) ) ) the effects of the adaptation dfat individual-level by means
For the experiments, we |mplement a version of TRAMS§f an FLC, we compare the behavior of T-FRB1 and T-FRB2
called T-FBs that uses adaptive FR (Section IV). It considefg, the one from the previous algorithms. Finally, in order to
npp = 1 andtpp, = 1 (Section 1lI-B). The general features ofgy,qy the performance of adaptive FR, we compare the results
the FLCs are the following: thenin operator is used for con- ¢ T_EBs with the ones from the other algorithms.
junction of clauses in théF" part of a rule, thenin operator 1) Analysis for T-0.0, T-0.5, and T-1.0ith regards to the

is used to fire each rule, and tkenter of gravity weighted by TRAMSS versions with fixed! values, the following may be
matchingstrategy as the defuzzification operator is considereghderlined.

This setting was chosen from [13]. This paper studies the com-
bination of inference systems and defuzzification methods using
different applications and defining a degree of behavior. The
previous combination was the most effective one in the sense
that it obtained the best behavior for all the applications. More-
over, other papers have accepted the general good behavior for ance for most functions.

this combination [41], [42]. ~« However, for fres, T-0.0 shows bettert behavior than
We include three TRAMSS instances based on FR withfixed 1.9 5 and betteB performance than T-0.5 and T-1.0. FR

* In general, the besti and B results are reached with
d = 0.5 (T-0.5). This agrees with [59], where thissalue
seemed a good choice for a large class of functions. So,
with d = 0.5, FR introduces a suitable balance between
the progress of the average fithess and the standard vari-

d values. They are called T-0.0, T-0.5, and T-1.0 anddise is a volume-oriented search. The volume to be searched is
0.0, d = 0.5, andd = 1.0, respectively. We also execute two al- a hyperrectangle defined by the parents, which is parallel
gorithms wherel is adapted at individual level throughan FLC o the axes. If the minimum of the function is located at
with Index(X) andIndex(Y’) as inputs. Each one uses a dif-  the end of a very steep and curved valley (as in the case
ferent fixed fuzzy rule base (Table IIl), which seemed particu-  of fg_.), this operator will have difficulty in locating the
larly interesting for us. They are called T-FRB1 and T-FRB2. minimum since the steep valley is a very small part of the

All the algorithms were executed 30 times, each one with  hyperrectangle [59]. Whed = 0, the hyperrectangle is
10000 generations. The crossover probability is 0.6, the mu-  minimum, allowing the steep valley to be followed in the
tation probability 0.005, and the population size is 60 chromo-  most profitable way.

Somes. 2) T-FRB1 and T-FRB2 Versus T-0.0, T-0.5, and

T-1.0: T-FRB1 improves theA and B behavior of all

C. Results TRAMSS versions with fixed! values for all test functions,
Table 1V shows the results obtained. The performance mexcept for fr.s, and T-FRB2 does the same f¢r.s. These

sures used are the following: facts show that:



HERRERA AND LOZANO: ADAPTIVE GENETIC OPERATORS BASED ON COEVOLUTION WITH FUZZY BEHAVIORS 159

TABLE IV
RESULTS OFEXPERIMENTS

Saph SfRos fsech
Alg. A SD B A SD B A SD B
T-0.0 3.67e-85 (1) | 8.29e-85 | 6.41e-91 1.38el (~) | 1.95el | 1.0le-1 || 8.06e-2 (+) | 8.60e-2 | 6.31e-3
T-0.5 1.02¢-184(+) 0.00e0 2.09e-200 || 1.47el +) | 1.04el | 2.96e-1 || 9.29e-6 (+) | 9.60e-6 | 5.88e-8
T-1.0 3.08e-129(4+) | 1.11e-128 | 6.69e-135 || 1.26el () [ 1.17e0 | 9.08e0 1.24e0 () | 1.37¢0 | 7.27e-3
T-FRB1 || 1.19e-200(~) 0.00e0 1.17e-201 1.18el (~) | 1.26el | 7.97e-4 || 3.68e-7 (+) | 6.82e-7 | 8.83e-10
T-FRB2 || 4.05e-170+) 0.00e0 | 2.90e-183 || 1.04el (~) | 6.88e0 | 1.14e-2 || 1.72e-5 (+) | 1.89e-5 | 2.27e-7
T-FBs 2.69e-200 0.00e0 | 2.76e-201 1.02el 4.91e0 | 8.31e-2 || 9.25e-9 1.46e-8 | 5.88e-11

fRas fari efio
Alg. A SD B A SD B A SD B
T-0.0 3.32e-2 (v | 1.79e-1 56.6% 1.12e-2 () | 1.11e-2 | 26.6% 1.98e-1 (~) | 5.70e-1 | 5.04e-9
T-0.5 6.64e-2 (v | 2.48e-1 90.0% 3.70e-18(~) | 1.99¢-17 | 96.6% 5.82¢-4 (~) | 2.18e-3 | 1.15e-49
T-1.0 5.20e0 2.33e0 9.95e-1 4.11e4 (~) | 2.21e-3 | 96.6% | 3.00e-24(~) | 7.75e-24 | 2.19¢-26
T-FRB1 1.09¢0 1.32e0 40.0% 0.00e0 (~) | 0.00e0 | 100.0% | 1.71e-32(~) | 8.95¢-32 | 1.67e-50
T-FRB2 0.00e0 (~) 0.00e0 100.0% 1.23e-3 () | 3.23¢-3 | 86.6% | 1.55e-17(~) | 8.33e-17 | 8.55e-43
T-FBs 3.32e-2 1.79e-1 96.6% 0.00e0 0.00e0 | 100.0% || 3.55e-25 1.91e-24 | 1.50e-48

« the adaptation at individual-level of thé parameter by ¢ The plot forfr.s shows many peaks while the one ffagy,
means of an FLC is a suitable way for improving the re-  shows none. They are produced by the application of the

sults of FR; restart operator, which is called by the outer loop of these

« the use of inputs representing the importance of the fithess  algorithms after the inner loop found and refined a local
of the parents in the populatijhudex(-)] has allowed the optimum of this function. This does not occur for the case
performance of the FLCs to be effective. of fsa, because it is unimodal.

< Another difference concerns the opposing behaviors
of T-FRB1 and T-FRB2 on these functions. Ff.,
T-FRB2 was able to find the global optimum (around
the generation 2000) without requiring restarts (which
suggests that the fuzzy rule base used by this algorithm is
very adequate for dealing with this function). However,
for fscu, it shows a poor behavior as compared with the
one of T-FRB1, which, on the contrary, never found the
global optimum offg ;.
Onthe other hand, we may see the good behavior of T-FBs for
the two functions. Foffs.,, it followed the evolution trajectory
» thet-testindicates that T-FBs improves thgperformance of T-FRB1, reaching a better result, at the end. gt it might
of the other algorithms for the compléefk, (it achieves learn suitable FBs for finding the global optimum after the third
the bestB behavior as well); restart operator call (this fact will be checked in Section V-E2).
* its results for the remaining test functions are similar to Finally, we should point out that the proposal needs more
the ones for the most successful algorithms. Particularbomputational time than the algorithms with fixed settings.
thet-test results (and thB measure) show that there is naHowever, performance was compared with all algorithms
significant difference on performance between T-FBs andquiring the same number of fitness evaluations, which is
T-FRBL1 for f.,1, and fa.; and the same occurs fgfkas  usually the principal time resource taken into account.
with regard to T-FRB2. .
These results show that adaptive FR inducesbastopera- E- Study of the Adaptation ltself
tion. A robust operation means that the proposal obtains result§ here are at least two ways to study the operation of an adap-
that are similar to the ones for the most successful algorithitige mechanism for GAs [49]. The first is from the point of view
(based on fixed values or fixed fuzzy rule bases) for each onef performance (test functions are commonly used to evaluate
of the test functions. However, the important point here is thpérformance improvement). The second view is quite different
the most successful algorithm for any problem may be differeint that it ignores performance and concentrates more on the
from the one for the other problems (as is claimed above). Figaadaptive mechanism itself, i.e., its ability to adjust the GA con-
and 7 were included in order to observe this fact graphicalfyguration according to the particularities of the problem to be
They outline the log-scaled best fithess value for each gensolved. Once given these two points of view, it is natural to in-
ation in the first run of T-FBs, T-FRB1, and T-FRB2 on thesestigate the way in which adaptive behavior is responsible for
unimodalfsq, and the multimodafr.s, respectively. There are the performance improvement.
two notable differences between the plot ffag;, (Fig. 6) and In Section V-D, we studied adaptive FR from the first point of
the one forfr,s (Fig. 7). view. In this section, we consider the point of view of the adap-

On the other hand, neither T-FRB1 nor T-FRB2 have in-
troduced a good behavior for all test functions. T-FRB1 has
achieved good results for most functions; however, it shows a
low B measure (40%) fofr.s. T-FRB2 has found the global
optimum of fr,s in the 100% of the runs; however, it has re-
turned worse results than T-FRB1 for the remaining functions.
Therefore, a different fuzzy rule base may be needed for ob-
taining the best results for each test function.

3) Analysis for T-FBs:Regarding the results for T-FBs, we
may observe that:
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. Fig. 8. Distributions of FBs folf.,1, and fras.
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TABLE V

Fig. 6. Log-scaled best fitness value for each generation of T-FBs, T-FRB1, RESULTS FORf.pn AND fras USING DIFFERENTFBS

and T-FRB2 onfs.,.

Foph

FBs A SD B
HMMM || 1.57e-200 | 0.00e+00 | 7.88e-202
MMHM || 2.05e-200 | 0.00e+00. | 1.35e-201
MHHM || 2.24e-198 | 0.00e+00 | 1.84e-201
HHMM || 9.45e-189 | 0.00e+-00 | 4.68e-196

te+10 T T T

SRas

FBs A SD B

LMMM [ 0.00e-+00 | 0.00e+00 | 100.00%
:_ : . . MLMM | 0.00e-+00 | 0.00e+00 | 100.00%

1e-10 | . MMMM || 3.32e02 | 1.78¢-01 | 90.00%
‘= ; i\ MMHM || 3.98e-01 | 7.53e-01 | 70.00%

1-20 ) ‘ i L than for f.,1, whereas the opposite effect occurs with re-

0 2000 4000 5200 8000 10000 gard to the FBs on the right side. In the casg¢gf;, these
Generation effects are more noticeable for FBs similar MMM

Fig. 7. Log-scaled best fitness value for each generation of T-FBs, T-FRB1, havmgLOW|abels such asMMM andMLMM and in the

and T-FRB2 onfr... Peaks in this plot are associated with the application of case off,, for ones that incorporateigh labels such as
the restart operator. T-FBs might find the global optimum after the third restart MHMM, MHHM, andHHMM.
operator call produced at generation 5200. These differences between distributions arise as a sign
of the adaptation ability (from the point of view of the
tation itself. In order to do this, in Section V-E1, we analyze  adaptation itself) of adaptive FR since they confirm that
the distributions of FBs appearing during the runs of T-FBs for  this operator generates distributions of FBs whose shape
two test functions with different features. Furthermore, in Sec-  depends on the particular problem to be solved.
tion V-E2, we check whether the adaptation behavior induces?) Adaptive Behavior and Performance Improve-
the performance improvement observed in Section V-D.  ment: Although adaptive FR may show signs of adaptation,
1) Distributions of FBs: Fig. 8 outlines the distributions of we have to check whether this one is the cause of performance
FBs for fsp1 and fras (Which have different features as is inimprovement. In order to do so, we have executed TRAMSS
dicated in Section V-A). FBs are represented in the coordinajgrsions that adapt through a different FLC, each one based
axis following a lexicographical order, startingldtLL (Low, on FBs that represent significant points in the distributions in
Low, Low, Lovyand ending atiHHH (High, High, High, Higl).  Fig. 8. Table V has these FBs along with their results.
The figure shows the number of instances of each FB appearegye observe that FBs similar idMMM, includingHigh, la-
during the runs of T-FBs divided by the total number of FBEE'S are very suitable qusph and ones withLow labels are ef-
appeared. We may make two important observations. fective for fr.s. These results together with the observations of
« The MMMM FB and FBs similar to it (such &dMHM, the previous section seem to corroborate that performance im-
MHMM, andHMMM) stand out in the two distributions. provement is causally related with the adaptation ability since
These FBs inducd values similar to 0.5, which is very adaptive FR was able to generate different FBs depending on
suitable as was mentioned above. So, we may point dbe particular problem (adaptation), which induce a suitable be-
that Adaptive FR has been able to detect this circumstanbavior on it (performance improvement).
« There are differences between the distributions. FBs lo-To see this fact more clearly, we should establish a direct rela-
cated on the left side dfIMMM are more fruitful forfg,s tion between the FBs produced during a particular time interval
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HHHM | oxx = m— o mm | bust operation for problems with different difficulties, and 2) a
HHMM feome = omoxoxm - o part of this suitable operation is possible thanks to the use of the
HMEM |- oommm—— ommm— = TRAMSS model, since its restart operator (along with the restart
— operator applied to FBs-GA) gives Adaptive FR the chance of
MHMM e - = — — ] learning adequate FBs for different search zones as soon as one
HMMM g o o 1 of them has been totally exploited.
MMMM [ x s ome camme 3 moex * o - - X XK
MMML = oo - ®x x —ox ]
mm :":--' =* x' 1 F. Empirical Study of:,,, andtrp;
MMM oms = s = o ey As explained in Section 1lI-B, the adaptive mechanism
50 100 _ 150 200 250 300 proposed requires two new control parameters, and typ;,
Generation which determine the number of pairs of parents to which an FB
@) is assigned and the gap between consecutive applications of
e | EBS-GA, respectively. In the pr_evious experiments, they were
HHMM - . ] fixed to one. Next, we study their effects upon the performance
HMHM pee * 1 of Adaptive FR in Sections V-F1 and V-F-2.
MHHM == - 1 1) Effects of Varying.,,,: The relationship between the per-
il . ] formance of the T-FBs algorithm amg,, is investigated in this
HMMM e —mx xw x ] section. In particular, we set the main population size to 180 and
MMMM e o x T —— == tres to one and consider the results of T-FBs witl), = 1, 2,
e e L and3 (i.e., | Prps(t)| = 54, 27, and 18, respectively). When
MLMM hox o momm N nyp > 1, each FB is evaluated using the average of the indi-
LMMM e movemmmemmm e x o o x| vidual fitness values (Section IV-C2) obtained from each one
5200 5250 5300 5350 5400 5450 5500 of its pairs of parents assigned.tAest was applied in order to
Generation ascertain if differences in thd performance fom,, = 1 are
(b) significant when compared against the onesfgy = 2, 3. The
Fig. 9. FBs generated fofr.. during two runtime intervals. (a) From results are shown in Table VI.
generation 1 to 300. (b) From generation 5200 to 5500. In general, we notice no dramatic differences in the per-

formance measures of T-FBs with differemf,, values (see
and their impact on the behavior of T-FBs during this time irt-test results). These results agree with the claim made in
terval. Fig. 9 was included for this purpose. Fig. 9(a) shows tisection IlI-B: the effects achieved with,, > 1 (to obtain
appearance of significant FBs (chosen from Fig. 8) during tids capturing knowledge for inducing adequatealues for
first 300 generations of the first run of T-FBs ¢R... Fig. 9(b) parents showing very different feature values) are provided
illustrates the same information, but during the 300 generatiowgh n,, = 1 as well, since successive crossovers of FBs being
following the restart operator call produced at generation 52@@und adequate for one combination of parent features will
(see the third peak in the plot for T-FBs in Fig. 7). A mark iproduce FBs that are adequate for many combinations. This
printed in the FBs being generated during the generationsniray explain the similarity in the results obtained.
these time intervals. A careful observation of the two graphs2) Effects of Varyingrgs: In this section, we examine the
reveals that the most fruitful FBs are different from one to aperformance of T-FBs when using different valueggif, (1,
other. 5, 10, and 20). The population size of main-GA is 60 apglis
« FBs similar toMMMM having aLow label (MMM, Settoone. Whetipg, > 1, the evaluation of the FBs is carried
MLMM, MMLM, etc.) predominate in Fig. 9(b) (thesedut following the same way as in the previous sectior-tast
FBs have arisen as very suitable for this function as Y¢as applied in order to support the possible differences inithe
shown in Table V), whereas the remaining ones are prakerformance fotyp, = 1 compared with the one for the other
tically absent. Now, observing Fig. 7, we may observéalues. The results are shown in Table VII.
that the effects of these FBs on the performance of T-FBsWe observe that withgps = 1, the higher level of robustness
are very beneficial: T-FBs reaches the global optimum ¢ achieved (see thietest results forfs,n, fros, and fsen, and
fras during generations following 5200. the B performance forfra.s and fq.i). Furthermore, forf,,
« The situation of Fig. 9(a) is different. Here, the proportiorkes: and fs.n, we see a significant drop in performance with
of FBs havingHigh labels stand out against the one of FB&rBs > 1.
havingLowlabels (these ones are very slight, in particular « For the case offspn, these results are not the expected
MLMM andMMML). Fig. 7 shows as this distribution of ones. Withtrg, > 1, FBs may be evaluated with regards
FBs caused T-FBs to be trapped in a local optimum during  to their historical performance, which seems a promising
the initial generations of the run. So, in this case, the FBs  heuristic for this function with a regular landscape. How-
learnt were not adequate for finding the global optimum.  ever, since FBs-GA applies its selection mechanism less
We may remark two important conclusions from all thesere-  frequently than withtrg, = 1, some FBs may be kept
sults: 1) Adaptive FR allows adequate distributions of FBsto be  (and applied) showing low performance. Withs, = 1,
generated (thanks to its adaptation ability) for producing a ro- these FBs disappears rapidly, and so results are better.
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TABLE VI
ResSuLTS FORT-FBSWITH n,, = 1,2, and3

Fapn fRos fson
Tpp A SD B A SD B A SD B
1 2.42e-141 7.79e-141 | 2.23e-147 || 4.81e0 6.28¢0 | 4.30e-3 3.35¢-6 3.60e-6 4.98¢-8
2 8.36e-139¢+) | 3.29¢-138 | 6.07e-151 || 7.73e0 (~) | 1.28el | 4.22e-3 1.33e-4 (~) | 7.03e-4 5.49e-8
3 3.22e-140¢+) | 1.46e-139 | 8.64e-149 || 6.77e0 (~) | 6.77e0 | 1.12e-3 4.81e-6 (~) | 6.64e-6 8.81e-9
fras fari efio
TNpp A SD B A SD B A SD B
1 0.00e0 0.00e0 100.00% || 3.28e-3 6.17e-3 | 70.00% 5.13e-4 2.76e-3 | 4.21e-20
2 0.00e0 (~) 0.00e0 100.00% 2.14e-3¢~) | 4.20e-3 | 76.67% || 1.15e-17(~) | 3.75e-17 | 2.96e-20
3 0.00e0 (~) 0.00e0 100.00% 2.30e-3¢~) | 4.31e-3 | 76.67% 1.14e-1 (~) | 6.15e-1 | 4.89e-21
TABLE VII

RESULTS FORT-FBSWITH tgps = 1,5, 10, AND 20

Foph fRoa fsen
trBs A SD B A SD B A SD B
1 2.69e-200 0.00e0 | 2.76e-201 || 1.02el 4.91e0 | 8.31le-2 9.25e-9 1.46e-8 | 5.88e-11
5 3.40e-194(+) | 0.00e0 | 2.97e-201 || 8.38¢0 (~) | 6.52e0 | 8.36e-3 2.32e-8 (~) | 4.80e-8 | 1.62e-11

10 8.36e-167(+) | 0.00e0 |- 3.03e-201 || 1.12el (+y | 1.40el | 1.53e-2 3.69e-6 (+) | 7.12e-6 | 5.67e-12
20 5.46e-168¢+) | 0.00e0 | 2.24e-201 || 1.10el (+) | 1.35el | 1.24e-4 1.27e-6 (+) | 2.20e-6 | 1.48e-12

fRas fari efio
trBs A SD B A SD B A SD B
1 3.32¢-2 1.79¢-1 | 96.67% 0.00e0 0.00e0 | 100.00% || 3.55e-25 1.91e-24 | 1.50e-48
5 3.32e-2 (v | 1.79e-1 | 96.67% 4.93e-4(~y | 1.84e-3 | 93.33% || 2.14e-29(~) | 1.15e-28 | 4.30e-50
10 0.00e0 () | 0.00e0 | 100.00% 0.00e0 (~) | 0.00e0 | 100.00% || 3.58e-4 (~) | 1.93e-3 | 3.20e-50
20 0.00e0 (~) | 0.00e0 | 100.00% 0.00e0 (~) | 0.00e0 | 100.00% [ 1.18e-5 (~) | 6.37e-5 | 2.10e-50

 For the case offros and fs.,, we think that the lower ness of the model, we have built an instance for the adaptation
performance ofrgs > 1 is due to the location of their of the d parameter associated with FR. An empirical study of
global optimum (in a steep parabolic valley with a flathis instance has been made from two different points of view,
bottom). This feature will probably cause a misleadingne of performance and one of adaptation itself, and the relation
synchronization between main-GA and FBs-GA (seeetween them has been established. The principal conclusions
Section llI-B). Withtpg; = 1, the synchronization is reached are the following.
established in a more direct way, which allowed better « The adaptation at the individual level of tiparameter by
results for these functions to be reached. Finally, we means of an FLC (WhOSG inputs represent the importance
should observe an important fact: temeasure for these of the fitness of the parents in the population) is a suitable
functions is better ag-g, increases. During some runs the way for improving the results of FR.
synchronization was suitable, the historical knowledge « The adaptation ability of adaptive FR allows suitable
about the performance of the FBs was useful for leading  distributions of FBs to be obtained for producing a robust
the search toward better solutions. However, this did not  gperation for test functions with different difficulties.

happen during all the runs (as shown by theneasure). Moreover, the integration of this operator in the TRAMSS
These results along with the ones of the previous section jus- model has been fundamental in order to demonstrate its
tify the choice ofn,, = 1 andirp; = 1 as suitable values, good qualities.

since they allow the higher level of robustness to be kept on theThese conclusions show promise in the use of the adaptation
different test functions. This conclusion agrees with the recoraf genetic operators by coevolution of FBs, for future applica-
mendations made in Section IlI-B. tions and extensions. They include the following: 1) the adap-
tation of other genetic operators whose operation is determined
by particular control parameters, such as the ones enumerated in
Section IlI-C and ones proposed for genetic programming sys-
This paper presented a general model for the adaptationtefs [35]; 2) include into the FBs the meaning of the linguistic
genetic operators based on coevolution with FBs. Values for tladels used, allowing the learning of the whole knowledge base;
parameter to control are specified by FLCs during each genedied 3) the extension to adaptations at component level.
operator application event depending on particular features ofFinally, we should explain the position of the model proposed
the parents. The fuzzy rule bases of these FLCs are learntibyelation to the topic of the integration of GAs afuzzy logic
means of a separate GA that coevolves with the GA that uses Tiies integration has been accomplished by following two dif-
genetic operator to be controlled. In order to study the effectivierent approaches [25]: 1) the use of fuzzy logic-based tech-

VI. CONCLUDING REMARKS
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niques for improving GA behavior (such as AGAs based C 1. §.= A; ¢ :=Go; yes :=0; no:=0;
FLCs) and 2) the application of GAs in optimization and searc
problems involving fuzzy systems [14], [24], [32], [38], [39]).
The adaptation of genetic operators by coevolution with FBs @
erates by means of the integration of both techniques (GA adi
tation based on FLCs and learning of fuzzy rule bases throu
GAs), each one following one of these approaches.

2. while (6 > dpin) and (not termination-condition) do
2.1. fora:=f
2.2. perform Selection, Crossover and Mutation(d) over G generations;
2.3. if (foua > f) then
yes:=yes+1; no:=0;
§:=8-2v¢%; if (§ > A) then § := A;
else
APPENDIX no:=no+1; yes:=0;

DESCRIPTION OFTRAMSS 8= 6/2";
2.4. G :=Go-6/A; if (G < Gin) then G := Grin;

The mutation operator may be considered to be an important
element for solving the premature convergence problem singg 10. TRAMSS inner loop structure.
it serves to create random diversity in the population. In the
case of working with real coding, a topic of major importance

related with this operator involves the control of the proportion ~daptive Control ob (Step 2.3): After G generations, the
or strength in which real-coded genes are mutated, i.estée parameter used by the mutation operator is adapted according to
size[5]. the following heuristic: increased when observing progress on

In this Appendix, we describe TRAMSS [29]. It adjusts thd (Population mean fitness), decrease it when stuéks kept
step size of a mutation operator applied during the inner Iod]‘g,the intervalémin, A], whereA is a parameter calculated by
for producing efficient local tuning. It also controls the step siZ&'€ Outer loop as described in Section B @ngh (8 > 6min) is
of a mutation operator used by a restart operator performedtil¢ Minimum threshold defined by the user (in experiments we
the outer loop, for reinitializing the population in order to ensuf@SSUme a value of 1.0e-100).

that different promising search zones are focused by the inner N inner loop ends whehreaches thé,,i, value or when
loop throughout the run. a maximum number of generations is reached.

In Sections A and B, we describe the TRAMSS inner and Th_e update rat_es f@rdepend on the number of previous suc-

outer loops, respectively. cessive observations that were successful or not successful. Two
variablesyes andno, are used for recording these occurrences,

respectively. If progress is made during many successive pre-
A. TRAMSS Inner Loop vious observationsf(,,y > f, foia Peing the population mean

The inner loop performs the usual GA process (selectidiitness of the previous iteration), then the increasing rate for
crossover, and mutation) over a number of generati6hs, is very high (in particular$ is multiplied by 2¥¢¥), whereas if
called thetime interval between observatiorithen, depending these observations were not successful, then the decreasing rate
on the progress of the population mean fithess found throughdsuhigh ¢ is divided by2™°).
these generations, it adjusts the step size of the mutation operffime Interval Calculation (Step 2.4)The time interval be-
ator, and calculates a new value fGr tween observation§! is calculated depending on the current

In short, the objective of the inner loop is to find and refingalues ofé with regard toA. If § is similar toA, then the time
local optima (or the global one), in an efficient way. Next, wénterval is high (o = 100 in the experiments) and, if itis lower,
outline this loop (a minimization problem is assumed). the time interval will become lik&7 iy, (Guin = 5 in the ex-

Selection and Mutation (Step 2.2)Over the time interval periments).
between observation&, the following selection mechanism Fig. 10 shows the pseudocode algorithm for the whole
and crossover and mutation operators are applied. TRAMSS inner loop.

» The selection probability calculation followdinear

ranking [7], with 7., = 0.25 and the sampling algo- B. TRAMSS Outer Loop
rithm is thestochastic universal samplir[§]. The elitist o ] )
strategy[16] is considered as well. It involves making sure The outer loop randomly initializes the population that will be

that the best performing chromosome always survivéandled throughout the TRAMSS run. Itfires the inner loop and
intact from one generation to the next. This is necessaf§fien this one returns, it applies a restart operator that reinitial-
since it is possible that the best chromosome disapped?&s the population. The restart operator uses a mutation whose

due to crossover or mutation. step size is controlled adaptively throughout its execution.
« FR and adaptive FR were considered as crossover operal he outer loop attempts to introduce adequate diversity levels
tors. for allowing the subsequent inner loop processing to be capable

« The mutation operator used is denotedMstation(), Of finding better local optima or the global one every time. Now,
whereé is the step sized( < § < 1). This operator is we outline the main issues related to this loop.
defined as follows: ifr € [a, b] is a gene to be mutated, Restart Operator Application (Step 3.4).he outer loop ap-
then the gene resulting from the application of this opeplies a restart operator call@estart(A) (0 < A < 1) that ap-
ator z’ will be a random (uniform) number chosen fronplies Mutation (A) to all the genes in the chromosomes stored
[x—6-(x—a),z+6-(b—2a). in the population. The objective of this operator is to maintain a
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1. A=Ay
2. run Initialize;

3. while (not Termination-condition) do

[0l
3.1. fouBest = fBest;
3.2. run Inner Loop;
3.3. if (folaest > fpest) then
A= A2 (A < Gmin) them A = S
else
A:=A-2 if (A>1)then A:=1;
3.4. run Restart(A);

(20]
(11]

(12]

Fig. 11. TRAMSS outer loop structure.

(13]

continuous level of exploration of the search space while trying
to use the promising zones located as a kind of sketch. [14]
Adaptive Control ofA (Step 3.3): The outer loop adapts the
A parameter using information obtained after each inner loop
run by means of the following heuristicd&crease\ when ob-  [15]
serving progress offg.s; (fithess of the best element found so
far), otherwise increase itThis is implemented by dividing the
previousA value by two or multiplying it by two, respectively.
The newA value will be the first value for thé parameter used
in the next inner loopA is kept in the intervalé,,;y, 1]. Its ini-
tial value Ay was assigned to 1 in the experiments.
The pseudocode algorithm for the outer loop is depicted in
Fig. 11. [19]

(16]
(17]

(18]
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