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Abstract Relevance feedback techniques have demon-
strated to be a powerful means to improve the results
obtained when a user submits a query to an information
retrieval system as the world wide web search engines.
These kinds of techniques modify the user original query
taking into account the relevance judgements provided by
him on the retrieved documents, making it more similar to
those he judged as relevant. This way, the new generated
query permits to get new relevant documents thus im-
proving the retrieval process by increasing recall. How-
ever, although powerful relevance feedback techniques
have been developed for the vector space information re-
trieval model and some of them have been translated to
the classical Boolean model, there is a lack of these tools in
more advanced and powerful information retrieval models
such as the fuzzy one. In this contribution we introduce a
relevance feedback process for extended Boolean (fuzzy)
information retrieval systems based on a hybrid evolu-
tionary algorithm combining simulated annealing and
genetic programming components. The performance of
the proposed technique will be compared with the only
previous existing approach to perform this task, Kraft et
al.’s method, showing how our proposal outperforms the
latter in terms of accuracy and sometimes also in time
consumption. Moreover, it will be showed how the adap-
tation of the retrieval threshold by the relevance feedback
mechanism allows the system effectiveness to be increased.

Keywords Fuzzy information retrieval, Relevance
feedback, Evolutionary algorithms, Genetic programming,
Simulated annealing

1
Introduction
Information retrieval (IR) may be defined, in general, as
the problem of the selection of documentary information
from storage in response to search questions provided by

an user [30]. Information retrieval systems (IRSs) are a
kind of information system that deal with data bases
composed of information items – documents that may
consist of textual, pictorial or vocal information – and
process user queries trying to allow the user to access to
relevant information in an appropiate time interval.
Nowadays, the world wide web constitutes the main
example of an IRS.

The performance of an IRS is usually measured in terms
of precision and recall [30, 36]. When a user submits a
query to the system, a set of documents is retrieved that
can really match or not the user’s information needs. Re-
call is the ratio of the number of relevant documents re-
trieved in that set by the total number of documents in the
data base that are relevant for the user. On the other hand,
precision is the ratio of the number of relevant documents
retrieved to the number of documents retrieved. The ideal
goal would be to maximize both recall and precision,
which are contradictory requirements in practice.

With this aim in mind, several IR models have been
proposed. On the one hand, most of the commercial IRSs
used in corporate intranet, as well as many Internet search
engines, are based on the classical Boolean IR model [36],
which presents some limitations. Due to this fact, some
paradigms have been designed to extend this retrieval
model and overcome its problems, such as the vector space
[30] or the fuzzy IR (FIR) models [4, 6].

FIRSs are based on the fuzzy set theory as enunciated by
L.A. Zadeh in 1965 [39]. In this framework, fuzzy sets are
used as a means to deal with the imprecision and vague-
ness which is always present in the IR activity. This fact is
making the use of fuzzy tools more recognized in the IR
field in the last few years.

However, even the best of the IRSs have a limited recall,
i.e., the formulated queries allow the users to retrieve some
relevant documents but almost never all the relevant
documents in the data base being relevant to their infor-
mation needs. This is a very common fact in the Internet,
where usual search engines such as Altavista have low
degrees of precision and recall [17].

To solve this problem, relevance feedback techniques
have been proposed to improve the retrieval process by
iteratively refining the original user query in order to get
new relevant documents in subsequent searches. Rele-
vance feedback methods have demonstrated their power
specially in vector space models, whose queries are com-
posed of arrays of weighted terms. However, they are less
developed in Boolean and FIRSs, based on the use of
Boolean and weighted Boolean (fuzzy) queries where the
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query terms are joined by the logical operators AND and
OR. This is due to the fact that there is a need to know how
to connect the query terms together using the Boolean
operators in order to perform the relevance feedback
mechanism, which is a difficult process even for human
users.

Focusing on the FIR model, where the relevance feed-
back process also involves the query weight redefinition,
the only existing approach is that of Kraft et al.’s [22],
which is based on genetic programming [21]. Nevertheless,
although this process achieves good results, it is not as
accurate as desired sometimes.

In this paper, a new relevance feedback technique for
FIRSs based on a hybrid simulated annealing-genetic
programming evolutionary algorithm will be introduced
with the aim of improving the performance of Kraft et al.’s
proposal in terms of retrieval accuracy. Two different
variants of this new approach will be introduced, showing
how the adaptation of the retrieval threshold allows the
effectiveness of the system to be increased. Moreover, the
fact of being based on a neighborhood search technique
will make the proposed algorithm to have a quicker
convergence than Kraft et al.’s algorithm, thus making
the relevance feedback process sometimes consume less
processing time.

As other relevance feedback approaches based on the
use of evolutionary algorithms [8, 9, 12, 13, 22, 35], the
proposed technique will be useful for users that have a
persistent need for the same type of information and are
able to sacrifice a quick on-line response in order to
increase the retrieval effectiveness.

This paper is structured as follows. Section 2 is devoted
to the preliminaries, including the basis of Boolean IRSs
and FIRSs, a short review of relevance feedback tech-
niques, a brief overview of evolutionary algorithms and a
review of their use in IR. Then, Kraft et al.’s proposal is
introduced in Sect. 3. Section 4 presents the composition
of the new algorithm proposed while the experiments
developed to test it are showed in Sect. 5. Finally, several
concluding remarks are pointed out in Sect. 6.

2
Preliminaries

2.1
Boolean information retrieval systems
An IRS is basically constituted of three main components,
as showed in Fig. 1:

1. A documentary data base, which stores the documents
and the representation of their information contents. It
is associated with the indexer module, which automati-
cally generates a representation for each document by
extracting the document contents. Textual document
representation is typically based on index terms (that
can be either single terms or sequences) which are the
content identifiers of the documents.

2. A query subsystem, which allows the users to formulate
their queries and presents the relevant documents
retrieved by the system to them. To do so, it includes a
query language, that collects the rules to generate

legitimate queries and procedures to select the relevant
documents.

3. A matching or evaluation mechanism, which evaluates
the degree to which the document representations
satisfy the requirements expressed in the query, , the so
called retrieval status value (RSV), and retrieves those
documents that are judged to be relevant to it.

In the Boolean retrieval model, the indexer module
performs a binary indexing in the sense that a term in a
document representation is either significant (appears at
least once in it) or not (it does not appear in it at all).
Let D be a set of documents and T be a set of
unique and significant terms existing in them. The
indexer module of the Boolean IRS defines an indexing
function:

F : D � T ! f0; 1g
where Fðd; tÞ takes value 1 if term t appears in document d
and 0 otherwise.

On the other hand, user queries in this model are
expressed using a query language that is based on these
terms and allows combinations of simple user require-
ments with logical operators AND, OR and NOT [30, 36].
The result obtained from the processing of a query is a set
of documents that totally match with it, i.e., only two
possibilities are considered for each document: to be
(RSV = 1) or not to be (RSV = 0) relevant for the user’s
needs, represented by the user query.

Thus, the Boolean model presents several problems that
are located in the different Boolean IRS components such as:

� It does not provide the user with tools to express the
degree of relevance of the index terms to the documents
(indexer module).

� It has no method to express a user’s judgement of the
importance of the terms in the query (query language).

� There are no partial degrees of relevance of documents
to queries possibly useful in ranking (matching
mechanism).

2.2
Fuzzy information retrieval systems
FIRSs make use of the fuzzy set theory [39] to deal with the
imprecision and vagueness that characterizes the IR pro-
cess. As stated in [4], the use of fuzzy sets in IR is suitable
due to two main reasons:

1. It is a formal tool designed to deal with imprecision and
vagueness.

2. It facilitates the definition of a superstructure of the
Boolean model, so that the existing Boolean IRSs can be
modified without redesigning them completely.

Hence, trying to solve the previously introduced problems
of the Boolean IR model, FIR mainly extends it in three
aspects:

1. Document representations become fuzzy sets defined in
the universe of terms, and terms become fuzzy sets
defined in the universe of discourse of documents, thus
introducing a degree of relevance (aboutness) between a
document and a term.
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2. Numeric weights (and in recenty proposals, linguistic
terms [4,18]) are considered in the query with different
semantics (a review of them all is to be found in [4]),
thus allowing the user to quantify the ‘‘subjective
importance’’ of the selection requirements.

3. Since the evaluation of the relevance of a document to
a query is also an imprecise process, a degree of
document relevance is introduced, i.e., the RSV is
defined as a real value in [0, 1]. To do so, the classical
complete matching approach and Boolean set
operators are modeled by means of fuzzy operators
appropriately performing the matching of queries to
documents in a way that preserves the semantics of the
former.

Thus, the operation mode of the three components of an
FIRS is showed as follows.

2.2.1
Indexer Module
The indexer module of the FIRS defines an indexing
function which maps the pair document-term into the real
interval [0, 1]:

F : D � T ! ½0; 1	
It can be seen that F is the membership function of a two-
dimensional fuzzy set (a fuzzy relation) mapping the de-
gree to which document d belongs to the set of documents
‘‘about’’ the concept(s) represented by term t. By pro-
jecting it, a fuzzy set can be associated to each document
and term:

di ¼ fht; ldi
ðtÞijt 2 Tg; ldi

ðtÞ ¼ Fðdi; tÞ
tj ¼ fhd; ltj

ðdÞijd 2 Dg; ltj
ðdÞ ¼ Fðd; tjÞ

There are different ways to define the indexing function F.
In this paper, we will work with the normalized inverse
document frequency [30]:

wd;t ¼ fd;t � logðN=NtÞ; Fðd; tÞ ¼ wd;t

Maxdwd;t

where fd;t is the frequency of term t in document d, N is
the number of documents in the collection and Nt is the
number of documents where term t appears at least
once.

2.2.2
Matching mechanism
It operates in a different way depending on the interpre-
tation associated to the numeric weights included in the
query (the interested reader can refer to [4, 6] to get
knowledge about the three existing approaches). In this
paper, we consider the importance interpretation, where
the weights represent the relative importance of each term
in the query.

In this case, the RSV of each document to a fuzzy query
q is computed as follows [31]. When a single term query is
logically connected to another by means of the AND or OR
operators, the relative importance of the single term in the
compound query is taken into account by associating a
weight to it. To maintain the semantics of the query, this
weighting has to take a different form according as the
single term queries are ANDed or ORed. Therefore, as-
suming that A is a fuzzy term with assigned weight w, the
following expressions are applied to obtain the fuzzy set
associated to the weighted single term queries Aw (in the
case of disjunctive queries) and Aw (for conjunctive ones):

Aw ¼fhd;lAw
ðdÞijd 2 Dg; lAw

ðdÞ ¼ Minðw;lAðdÞÞ
Aw ¼fhd;lAwðdÞijd 2 Dg; lAwðdÞ ¼ Maxð1�w;lAðdÞÞ
On the other hand, if the term is negated in the query, a
negation function is applied to obtain the corresponding
fuzzy set:

�AA ¼ fhd; l�AAðdÞijd 2 Dg; l�AAðdÞ ¼ 1 � lAðdÞ
Once all the single weighted terms involved in the
compound query have been evaluated, the fuzzy set
representing the RSV of the compound query is obtained
by combining them into a single fuzzy set by means of
the following operators:

A AND B ¼ fhd; lA AND BðdÞijd 2 Dg;
lA AND BðdÞ ¼ MinðlAðdÞ; lBðdÞÞ
A OR B ¼ fhd; lA OR BðdÞijd 2 Dg;
lA OR BðdÞ ¼ MaxðlAðdÞ; lBðdÞÞ
We should note that all the previous expressions can be
generalized to work with any other t-norm, t-conorm and
negation function different from the usual minimum,

Fig. 1. Generic structure of an informa-
tion retrieval system
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maximum and one-minus function. In this contribution,
we will consider these ones.

2.2.3
Query subsystem
It affords a fuzzy set q defined on the document domain
specifying the degree of relevance of each document in the
data base with respect to the processed query:

q ¼ fhd; lqðdÞijd 2 Dg; lqðdÞ ¼ RSVqðdÞ
Thus, one of the advantages of the FIRSs is that documents
can be ranked in order to the membership degrees of
relevance – as in IRSs based on the vector space model
[30] – before being presented to the user as query re-
sponse. The final relevant document set can be specified by
him in two different ways: providing an upper bound for
the number of retrieved documents or defining a threshold
r for the relevance degree (as can be seen, the latter
involves obtaining the r-cut of the query response fuzzy
set q).

Focusing on the latter approach, which will be the
one considered in this paper, the final set of documents
retrieved would be:

R ¼ fd 2 DjRSVqðdÞ � rg

2.3
Relevance feedback
The basis of relevance feedback lie in the fact that either
users normally formulate queries composed of terms that
do not match the terms used to index the documents that
are relevant to their needs or they do not provide the
appropriate weights for the query terms. The operation
mode involving modifying the previous query – adding
and removing terms or changing the weights of the
currently existing query terms – taking into account the
relevance judgements of the documents retrieved by it
constitutes a good way to solve the latter two problems
and to improve the precision and especially the recall
of the previous query [36]. This operation mode is
represented in Fig. 2.

The difficulty found by non-expert users to express
their retrieval needs in the form of a query makes nec-
essary the design of automatic methods to perform the
said task. The most of the research in automatic query
modification has been developed in the field of vector
space IRSs, where significantly good results have been
obtained with very simple methods such as the Ide
dec-hi [20].

However, it is not so easy to apply relevance feedback in
Boolean and extended Boolean (fuzzy) IRSs as the auto-
matic method must know how to connect the query terms
together using the Boolean operators [35]. The existing
approaches for Boolean systems link together terms based
on their frequencies in documents and collections [10, 11].
On the other hand, in [35], it was proposed the use of
genetic programming to perform this task, as we will see in
Sect. 2.4.2. As regards FIRSs, up to our knowledge, the
only approach developed to change the whole query is that
of Kraft et al.’s [22], also based on genetic programming,
that will be introduced in Sect. 3.

2.4
Evolutionary algorithms and its application
to information retrieval

2.4.1
Introduction to evolutionary algorithms
Evolutionary computation uses computational models of
evolutionary processes as key elements in the design and
implementation of computer-based problem solving sys-
tems. There are a variety of evolutionary computational
models that have been proposed and studied which are
referred as evolutionary algorithms (EAs) [2]. There have
been four well-defined EAs which have served as the basis
for much of the activity in the field: genetic algorithms
(GAs) [25], evolution strategies [34], genetic programming
(GP) [21] and evolutionary programming [14].

An EA maintains a population of trial solutions, im-
poses random changes to these solutions, and incorporates
selection to determine which ones are going to be main-
tained in future generations and which will be removed
from the pool of the trials. But there are also important
differences between them. GAs emphasize models of ge-
netic operators as observed in nature, such as crossover
(recombination) and mutation, and apply these to
abstracted chromosomes with different representation
schemes according to the problem being solved. Evolution
strategies and evolutionary programming only apply to
real-valued problems and emphasize mutational transfor-
mations that maintain the behavioral linkage between each
parent and its offspring.

As regards GP, it constitutes a variant of GAs, based on
evolving structures encoding programs such as expression
trees. Apart from adapting the crossover and mutation
operators to deal with the specific coding scheme
considered, the remaining algorithm components remain
the same.

GP has obtained succesful results in different applica-
tions such as symbolic regression but it suffers from a key
limitation: while it performs really well in the generation of
structures, adapting them both by crossover and mutation,
the learning of the numeric values of the constants con-
sidered in the encoded structure – which are generated by
the implementation program when the GP starts – can
only be altered by mutation. Hence, good trees solving the
problem can be discarded by the selection procedure as
the parameters involved in them are not well adjusted.

Several solutions have been proposed for this problem.
On the one hand, one can use a local search algorithm to
learn the coefficients associated to each tree in the popu-
lation. On the other hand, the GA-P [19] paradigm, an
hybrid algorithm combining traditional GAs with the GP
technique can be considered to concurrently evolve the
tree and the coefficients used in them, both of them
encoded in the individual being adapted.

2.4.2
Previous applications of evolutionary algorithms
to information retrieval
There have been an increasing interest in the application
of artificial intelligence tools to IR in the last few years.
Concretely, the machine learning paradigm, whose aim is
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the design of systems able to automatically acquire
knowledge by themselves, seems to be interesting in this
topic [5].

EAs are not specifically learning algorithms but they
offer a powerful and domain independent search ability
that can be used in many learning tasks, as learning and
self organization can be considered as optimization
problems in many cases. Due to this reason, the applica-
tion of EAs to IR has increased in the last decade. Among
others, EAs have been applied to solve the following
problems [7]:

1. Automatic document indexing, either by learning the
relevant terms to describe them [15] or their weights [37].
Both approaches are based on a GA adapting the docu-
ment descriptions in order to make them match more
easily with querys to which they must be relevant.

On the other hand, in [12, 13], a GP algorithm to design
a customized term weigthing function for web pages in the
Internet is proposed obtaining very good results. The
proposal constitutes a different approach to relevance
feedback where the term weighting function is adapted to
match the user’s needs instead of the user query.

2. Clustering of documents [16, 27] and terms [28]. In
the three cases, a GA is considered to obtain the cluster
configuration. The first two approaches deal with the
problem of obtaining user-oriented clusters of documents,
i.e., groups of documents that should be relevant to the
same user’s information needs. The latter looks for groups
of terms which appear with similar frequencies in the
documents of a collection.

3. Query definition, by means of an on-line relevance
feedback or and off-line inductive query by example [5]
process. This is the most extended group of applications of
EAs to IR. Among the different proposals, we can find:

� a GA to learn the query terms that best describe a set of
relevant documents provided by an user [5],

� several GAs to perform relevance feedback by adapting
the query term weights in vector space [23, 29, 38] and
fuzzy [32] IRSs. Notice that the latter approach deals
with extented Boolean queries as the proposal in this
paper but it maintains fixed the structure of the query
and only adapts its weights. However, the GA considered
also adapts the retrieval threshold, which is an
interesting idea that will also be used in this paper,

� GP-based relevance feedback processes for Boolean [35]
and fuzzy [22] IRSs, and

� inductive query by example algorithms following the
GA-P paradigm to learn the fuzzy query best describing
a set of documents provided by an user [8, 9].

4. Design of user profiles for IR in the Internet. In [24], it
was proposed an agent to model the user’s information
needs for searches in the web by an adaptive process based
on a GA with fuzzy genes.

For a review of several of the previous approaches, see [7].

3
The Kraft et al.’s genetic programming-based relevance
feedback algorithm for fuzzy information retrieval systems
In [22], Kraft et al. proposed a relevance feedback process
to deal with extended Boolean queries in FIRSs. The al-
gorithm is based on GP and its components are described
next.1

Coding scheme: The fuzzy queries are encoded in ex-
pression trees, whose terminal nodes are query terms with
their respective weights and whose inner nodes are the
Boolean operators AND, OR or NOT.

Selection scheme: It is based on the classical generational
scheme, where an intermediate population is created from
the current one by means of Baker’s stochastic universal
sampling [3], together with the elitist selection.

Genetic operators: The usual GP crossover is considered
[21], which is based on randomly selecting one edge in
each parent and exchanging both subtrees from these
edges between the both parents.

On the other hand, the following three possibilities are
randomly selected – with the showed probability – for the
GP mutation:

a) Random selection of an edge and random generation of
a new subtree that substitutes the old one located in that
edge ðp ¼ 0:4Þ.

Fig. 2. The relevance feedback process

1 Notice that the composition of several components is not the
original one proposed by Kraft et al. but they have been changed
in order to improve the algorithm performance. Of course, the
basis of the algorithm have been maintained.
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b) Random change of a query term for another one, not
present in the encoded query, but belonging to any
relevant document ðp ¼ 0:1Þ.

c) Random change of the weight of a query term ðp ¼ 0:5Þ.
For the latter case, Michalewicz’s non-uniform mutation
operator [25] is considered. It is based on making a
uniform search in the initial space in the early generations,
and a very local one in later stages. Let w be the query
weight selected for mutation (the domain of w is ½0; 1	), the
new value for it is:

w0 ¼ w þ4ðt; 1 � wÞ; if a ¼ 0
w �4ðt;wÞ; if a ¼ 1

�

where a 2 f0; 1g is a random number and the function
4ðt; yÞ returns a value in the range ½0; y	 such that the
probability of 4ðt; yÞ being close to 0 increases as the
number of generations increases.

Generation of the initial population: A first individual is
obtained by generating a random tree representing a query
with a maximum predefined length and composed of
randomly selected terms existing in the initial relevant
documents provided by the user, and with all the term
weights set to 1. The remaining individuals are generated
in the same way but with random weights in [0, 1].

Fitness function: Two different possibilities are considered
based on the classical precision and recall measures (to get
more information about them, see [36]):

F1 ¼
P

d rd � fdP
d rd

; F2 ¼ a �
P

d rd � fdP
d fd

þ b �
P

d rd � fdP
d rd

ð1Þ

with rd 2 f0; 1g being the relevance of document d for the
user and fd 2 f0; 1g being the retrieval of document d in
the processing of the current query. Hence, F1 only con-
siders the recall value obtained by the query, while F2 also
takes its precision into account.

Moreover, as simple queries are always prefered by the
user, a selection criterion has been incorporated to the
algorithm in order to consider more fitted those queries
with a lesser complexity among a group of chromosomes
with the same fitness value.

4
A relevance feedback technique for fuzzy information
retrieval systems based on simulated
annealing-programming
In this section, the main proposal of this paper is intro-
duced. First, the EA considered is reviewed. Then, its ad-
aptation to solve the relevance feedback problem in FIRSs
is described in detail. Finally, an extension of the previous
approach based on also adapting the retrieval threshold r
during the feedback process is presented.

4.1
The SA-P algorithm
EAs, and more concretely GP, were introduced in
Sect. 2.4.1 as powerful global search and optimization
techniques. On the other hand, simulated annealing (SA)
[1] is a neighborhood search algorithm which modifies the

usual acceptance criteria of the basic local search some-
times permitting accepting a worse solution than the
current one to avoid getting trapped in local optima.2 SA
starts from an initial solution and then generates a new
candidate solution (close to it) by applying random
changes on it. If the candidate solution is better than the
current one, then the former replaces the latter. Otherwise,
it still could be randomly accepted with a probability that
depends on the difference between both solutions and on a
parameter called temperature. This temperature is initi-
ated to a high value (meaning that significantly worse
candidate solutions are likely to be accepted) and then this
value is decreased by a procedure called cooling strategy
each time a number of neighbors are generated.

In [33], Sánchez et al. proposed a hybrid EA between SA
and GP. The algorithm was based on encoding both a
expresional part (the parse tree) and a value string (the
coefficients involved in the expression) – as done in the
GA-P (see Sect. 2.4.1) – and adapt it within an usual SA
search scheme by a neighborhood operator based on the
classical GP crossover and a string value mutation oper-
ator. As we will see in the next section, the SA-P algorithm
combines both the high performance of GA-P with the
quickness usually associated to neighborhood search
algorithms.

4.2
Application of the SA-P algorithm to relevance feedback
in FIRSs
To adapt the previous algorithm to the problem of rele-
vance feedback in FIRSs, the extended Boolean query is
encoded by storing the query structure – terms and logical
operators – in the expresional part, and the term weights
in the value string using a real coding scheme, as showed
in Fig. 3.

The neighboorhood operator – called macromutation in
[33] – generates the candidate fuzzy query by either
changing the expresional part – the query structure – or
the value string – the query weights – of the current in-
dividual I. This decision is randomly made with respect to
a value string mutation probability p (p ¼ 1 means ‘‘only
weight mutation’’ while p ¼ 0 means ‘‘only query structure
mutation’’). The query structure is mutated by selecting an
edge of its parse tree and substituting the subtree located
at it by a randomly generated parse tree (which is the same
that crossing the original tree with a randomly generated
one and taking one of the two offspring). The weight
vector is mutated by applying intermediate recombination
[26] between the current values (weightsðIÞ) and a ran-
domly generated vector W with an amplitude parameter
that depends on the current temperature T by a constant
K1 as follows:

weightsðIÞ ¼ weightsðIÞ � ðT=K1Þ þ ð1 � ðT=K1ÞÞ � W

The SA-P algorithm considered in our case, which is an
adaptation of the one proposed in [33], is showed as
follows:

2 For an application of SA to IR, see [5].
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As seen in the algorithm, the initial solution is a random
fuzzy query. The initial temperature T0 is computed by
means of the following expression:

T0 ¼
l

� lnð/Þ � FðIÞ

with I being the initial solution and / being the prob-
ability of acceptance for a solution that can be l per 1

worse than FðIÞ. Both parameters are defined in the in-
terval ½0; 1	.

Finally, notice that we consider the function F2 showed
in (1) as fitness function to measure the quality of a fuzzy
query.

4.3
An extension of the relevance feedback technique
proposed to adapt the retrieval threshold
In [9, 32], several experiments were made in FIRS relevance
feedback and inductive query by example environments
showing that better effectiveness could be obtained if not
only the fuzzy query but also the retrieval threshold r (see
Sect. 2.2.3), which is usually a difficult choice for the user,
is adapted by the query modification process.

To do so, this value is encoded in the individual (see
Fig. 4) and it is initialized to the value provided by the
user. Then, it is adapted during the algorithm run each
time the macromutation operator acts on the weight vector
by the following operation:

Fig. 3. Individual representing the fuzzy query 0:5 t1 AND ð0:7 t3

OR 0:25 t4Þ

algorithm SAP�RF

needs : MaxEval =�maximum number of evaluations�=; MaxNeighs =�maximum number of

neighbors generated per temperature�=; MaxSuccess =�maximum number of

neighbors accepted per temperature�=; c =�cooling factor�=; T 0

�initial temperature�=; p =�value string mutation probability�=;
K 1 =�value string mutation parameter�=

produces: Ibest

I¼Ibest¼random individual

T¼T 0

Eval¼1

while ðEval<¼MaxEvalÞ do
num neighs¼num success¼0

while ðnum neighs<MaxNeighsÞ ðnum success<MaxSuccessÞ
Icand¼macromutationðI; p; T; K 1Þ
num neighs¼num neighsþ1

delta¼FðIÞ � FðIcandÞ
Eval¼Evalþ 1

v¼random value with uniform distribution Uð0; 1Þ
if ðdelta<0Þ or ðv<expð�delta=TÞÞ then

I¼Icand

num success¼num successþ1

if ðI>IbestÞ then Ibest¼I end if

end if

end while

T ¼ c � T
end while
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thresholdðIÞ ¼ thresholdðIÞ � ðT=K1Þ
þ ð1 � ðT=K1ÞÞ � randthr

with randthr being a real value randomly generated in
(0,1].

5
Experiments developed and analysis of results
This section is devoted to test the performance of both
proposals of relevance feedback algorithms for FIRSs in-
troduced in this paper. To do so, we have worked with two
different document collections, a set of 359 documents
extracted from the the Library and Information Science
Abstracts (LISA) data base, and the well known Cranfield
collection composed of 1400 documents about
Aeronautics.

The next two subsections respectively report
the results obtained with each of them. They both
are divided into three parts: the first one describing
the experimental test bed, and the other two
analyzing the results obtained by both variants of our
algorithm.

5.1
Experiments with a collection extracted
from the LISA documentary base

5.1.1
Experimental test bed
In the first experimental study developed to test the
performance of the proposed algorithm, we have
followed a similar methodology as that in [22]. A
documentary base, in this case composed of 359
abstracts taken from the LISA base, has been auto-
matically indexed by first extracting the non-stop words,
thus obtaining a total number of 2609 different indexing
terms, and then using the normalized IDF scheme to
generate the term weights in the document representa-
tions. A user has selected a set of 82 relevant documents
that have been provided to Kraft et al.’s and both
variants of our system (noted by SAP-RF), which have
been run considering the second fitness function F2. In
order to make a fair comparison, the three algorithms
have been run three times with different initializations
during the same fixed number of fitness function
evaluations (100,000). The parameters considered for
them are showed in Table 1.

Since simple queries are desired, the expressional
part has been limited to 10 nodes in every case. For
the sake of simplicity, only the experiments not
considering the use of the NOT operator are reported
(as done in [22]). On the other hand, different values
for the value string mutation probability p have been
tested in order to study the robustness of our proposal.

5.1.2
Results obtained without adapting the
retrieval threshold
The results obtained by Kraft et al.’s and our method
(without considering the retrieval threshold adaptation)
are respectively showed in Tables 2 and 3, where
Run stands for the corresponding algorithm run (1 to
3), T for the run time (both algorithms have been run
in a 350 MHz. Pentium II computer with 64 MB of
memory, and the time is measured in minutes), Sz for

Fig. 4. Individual representing the fuzzy query 0:5 t1 AND
ð0:7 t3 OR 0:25 t4Þ and the retrieval threshold r ¼ 0:35

Table 1. Parameter values considered

Parameter Decision

Common parameters
Number of evaluations 100,000
Expression part limited to 10 nodes
Weighting coefficientes a; b in F2 1.2, 0.8
(Initial) retrieval threshold r 0.5

Kraft et al.’s algorithm
Population size 1600
Crossover and Mutation probabilities 0.8, 0.2

SAP-RF
Initial temperature computation parameters l ¼ 0:5;/ ¼ 0:5
Max. # neighbors generated per

temperature
500

Max. # neighbors accepted per temperature 50
Cooling parameter c 0.9
Value string mutation probability p f0:25; 0:5; 0:75g
Value string mutation parameter K1 5

Table 2. Results obtained by Kraft et al.’s method in our LISA
collection

Run T Sz Fit P R #rr=#rt

1 3:19 9 1.409214 0.962963 0.317073 26/27
2 3:24 7 1.395122 1.000000 0.243902 20/20
3 3:25 9 1.414634 1.000000 0.268293 22/22

Table 3. Results obtained by SAP-RF in LISA without adapting
the retrieval threshold

Run p T Sz Fit P R #rr=#rt

1 0.25 1:26 9 1.508130 0.972222 0.426829 35/36
2 0.25 1:22 7 1.424390 1.000000 0.280488 23/23
3 0.25 1:23 9 1.508130 0.972222 0.426829 35/36

1 0.5 1:25 9 1.453659 1.000000 0.317073 26/26
2 0.5 1:23 9 1.464939 0.968750 0.378049 31/32
3 0.5 1:28 9 1.497422 0.971429 0.414634 34/35

1 0.75 1:30 9 1.424390 1.000000 0.280488 23/23
2 0.75 1:29 9 1.497422 0.971429 0.414634 34/35
3 0.75 1:27 7 1.395122 1.000000 0.243902 20/20
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the generated query size, Fit for the fitness value, P and
R for the precision and recall values, respectively, #rt
for the number of documents retrieved by the query,
and #rr for the number of relevant documents
retrieved.

In view of these results, the performance of our
proposal is significant as it overcomes Kraft et al.’s
algorithm in the most of the cases. This improvement in
retrieval performance is probably due to the better
ability of our algorithm to learn the query weights, as
Kraft et al.’s suffers from the difficulty of GP to derive
the values of the constants in the evolved expresions
(see Sect. 2.4.1). Moreover, and which is more
important, our SAP-RF requires less than a half of the
run time of Kraft’s proposal, which is an important
point in this field.

5.1.3
Results obtained adapting the retrieval threshold
The results obtained by our SAP-FIR method when
adapting the retrieval threshold within the relevance
feedback process are collected in Table 4, which
considers the same equivalences than the previous two
tables. Only a new column has been included, that
labeled by Thr, containing the value of the learned
threshold.

In this case, a deeper analysis is needed. On the one
hand, it can be seen that the adaptation of the retrieval
threshold allows the SAP-RF algorithm to obtain the
best retrieval effectiveness when considering p ¼ 0:25
(i.e., the weight vector and the retrieval threshold are
adapted only in the twentyfive percent of the cases). The
proposal shows to be very robust as the best result is
obtained in the three runs developed. Moreover, it is
important to notice that this performance improvement
is obtained without increasing the computational time
required as the time needed to adapt the threshold is
not significant.

On the other hand, notice that when increasing the
value of p, i.e., when augmenting the number of
times where the weights and the threshold are
adapted, the algorithm performance reduces
significantly. This is due to the fact that a high number
of adaptations of the retrieval threshold makes the SA-P
algorithm converge excessively quickly, thus increasing
the chances to get stuck in local optima. This assump-
tion can be clearly corroborated in view of the result

obtained in the first run with p ¼ 0:75, which is the
only one where the algorithm stopped because none
of the 500 neighbors generated in an iteration were
accepted.

Finally, as regards the specific values generated for the
thresholds, we can see that they are very different from one
run to the others (ranging from 0.126 to 0.605). This is
because this value directly depends on the query
generated, which is different in each case.

5.2
Experiments with the Cranfield collection

5.2.1
Experimental test bed
The second experimental study has been developed using
the Cranfield collection. The 1400 documents composing
this documentary base has been automatically indexed in
the same way that our LISA collection considered in the
previous section (obtaining 3857 different indexing terms).
Among the 225 queries associated to the Cranfield
collection, we have selected those presenting 20 or more
relevant documents in order to have enough chances to
show the performance advantage of one algorithm over the
other. The resulting seven queries and the number of
relevant documents associated to them are showed in
Table 5.

Both of our proposals and Kraft et al.’s algorithm have
been run three times for each query as done in the
previous section. The same parameter values have been
considered but the following two changes:

� The query size has been increased to 20 nodes in order to
scale to a more complex problem presenting a higher
number of documents and indexing terms than the
previous one.

Table 4. Results obtained by
SAP-RF in LISA adapting the
retrieval threshold

Run p T Sz Thr Fit P R #rr=#rt

1 0.25 1:26 9 0.323620 1.577094 0.956522 0.536585 44/46
2 0.25 1:26 9 0.287751 1.577094 0.956522 0.536585 44/46
3 0.25 1:25 9 0.259209 1.577094 0.956522 0.536585 44/46

1 0.5 1:26 9 0.126364 1.420558 0.964286 0.329268 27/28
2 0.5 1:28 9 0.291257 1.577094 0.956522 0.536585 44/46
3 0.5 1:28 9 0.149957 1.482927 1.000000 0.353659 29/29

1 0.75 0:49 5 0.605357 1.297561 1.000000 0.121951 10/10
2 0.75 1:25 9 0.155147 1.409214 0.962963 0.317073 26/27
3 0.75 1:27 9 0.209458 1.356098 1.000000 0.195122 16/16

Table 5. Cranfield queries with 20 or more relevant documents

#query #relevant documents

1 29
2 25

23 33
73 21

157 40
220 20
225 25
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� The retrieval threshold has been decreased to
0.1 in order to retrieve a significant number of
documents as the query weights are lower in the
Cranfield documentary base than in our LISA
collection.

Finally, as regards the value string mutation probability p,
we have made use of the knowledge obtained in the
previous experimentation and has considered a single
value for each case: p ¼ 0:5 for the runs without learning
the retrieval threshold and p ¼ 0:25 for those where it is
learned.

5.2.2
Results obtained without adapting the retrieval threshold
The results obtained by Kraft et al.’s and our method
(without considering the retrieval threshold adaption) are
respectively showed in Tables 6 and 7, both of them having
the same nomenclature than in Sect. 5.1.2. The first col-
umn #q refers to the number of each of the seven Cran-
field queries selected. The algorithms have been run again
in the same 350 MHz. Pentium II computer with 64 MB of
memory.

The conclusion drawn from the results is even more
clear this time as our SAP-RF algorithm significantly

Table 6. Results obtained by
Kraft et al.’s method in the
Cranfield collection

#q Run T Sz Fit P R #rr=#rt

1 12:48 19 1.282759 1.000000 0.103448 3/3
1 2 13:01 19 1.282759 1.000000 0.103448 3/3

3 12:49 17 1.255172 1.000000 0.068966 2/2

1 12:58 17 1.328000 1.000000 0.160000 4/4
2 2 12:44 17 1.328000 1.000000 0.160000 4/4

3 12:51 13 1.296000 1.000000 0.120000 3/3

1 12:52 19 1.272727 1.000000 0.090909 3/3
23 2 12:49 17 1.272727 1.000000 0.090909 3/3

3 12:48 17 1.272727 1.000000 0.090909 3/3

1 12:36 19 1.466667 1.000000 0.333333 7/7
73 2 12:59 19 1.466667 1.000000 0.333333 7/7

3 12:49 17 1.504762 1.000000 0.380952 8/8

1 12:47 19 1.260000 1.000000 0.075000 3/3
157 2 12:45 19 1.260000 1.000000 0.075000 3/3

3 12:49 17 1.240000 1.000000 0.050000 2/2

1 12:40 17 1.400000 1.000000 0.250000 5/5
220 2 12:47 17 1.400000 1.000000 0.250000 5/5

3 12:43 7 1.360000 1.000000 0.200000 4/4

1 12:41 19 1.328000 1.000000 0.160000 4/4
225 2 12:51 17 1.328000 1.000000 0.160000 4/4

3 12:45 17 1.328000 1.000000 0.160000 4/4

Table 7. Results obtained by
SAP-RF in Cranfield without
adapting the retrieval thresh-
old

#q Run T Sz Fit P R #rr=#rt

1 13:38 17 1.365517 1.000000 0.206897 6/6
1 2 13:04 19 1.393103 1.000000 0.241379 7/7

3 13:23 19 1.393103 1.000000 0.241379 7/7

1 13:09 17 1.424000 1.000000 0.280000 7/7
2 2 12:39 17 1.488000 1.000000 0.360000 9/9

3 12:53 19 1.488000 1.000000 0.360000 9/9

1 13:29 19 1.369697 1.000000 0.212121 7/7
23 2 13:02 19 1.369697 1.000000 0.212121 7/7

3 13:02 19 1.321212 1.000000 0.151515 5/5

1 12:38 19 1.619048 1.000000 0.523810 11/11
73 2 13:06 19 1.619048 1.000000 0.523810 11/11

3 13:05 19 1.619048 1.000000 0.523810 11/11

1 13:43 19 1.380000 1.000000 0.225000 9/9
157 2 13:43 19 1.320000 1.000000 0.150000 6/6

3 13:28 19 1.380000 1.000000 0.225000 9/9

1 13:05 17 1.520000 1.000000 0.400000 8/8
220 2 13:22 19 1.560000 1.000000 0.450000 9/9

3 13:40 19 1.640000 1.000000 0.550000 11/11

1 13:18 19 1.520000 1.000000 0.400000 10/10
225 2 13:22 19 1.488000 1.000000 0.360000 9/9

3 13:21 17 1.488000 1.000000 0.360000 9/9
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outperforms Kraft et al.’s proposal in all the cases. The
minimum individual retrieval performance improvement
is obtained in the third run of query 23 with a 67% in
the recall value (0.151515 against 0.090909), whilst the
maximum one is got in the third run of query 157 with a
350% (0.225 against 0.05). As regards the global results for
each query, the lower improvement corresponds to query
73 with only a 37:5% of improvement (a recall value of
0.523810 obtained in the three runs of SAP-RF against to
0.380952 resulting from the third run of Kraft et al.’s al-
gorithm), and the highest one to query 157 with a 300% (a
recall value of 0.225 generated in the first and third runs of
SAP-RF against another of 0.075 got from the first and
second runs of Kraft et al.’s method).

However, in this case we can not find a reduction in
the computational time needed to generate the queries by
means of the SAP-RF technique. This time, our method
requires approximately the same time than Kraft et al.’s
proposal and usually a little bit more. We think that this
is a consequence of the inclusion of a selection criterion
to get simpler queries in the latter method (see Sect. 3).
This criterion makes the population being composed of
simpler queries while the EA is converging, thus making
their evaluation – the more time consuming procedure in
both algorithms – less demanding. As the SAP-RF
process lacks of this characteristic due to its nature of
neighborhood search technique allowing solutions wor-
sening the current one to be accepted, this time it has
had to evaluate more complex queries during its learning
process – thus consuming more computational time –
and finally has generated more complex (although sig-
nificantly more accurate) queries. Notice that this fact has
not happened in the previous experimentation with the
LISA collection as the maximum query size considered
(10) was so small to affect the time required to evaluate
the encoded queries.

5.2.3
Results obtained adapting the retrieval threshold
The results obtained by our SAP-FIR method when
adapting the retrieval threshold in the Cranfield collection
are collected in Table 8. Column names stand for the same
equivalences than in Table 4 (Sect. 5.1.3).

The extension proposed to adapt the retrieval threshold
shows again very satisfactory results. In five of the seven
queries – numbers 1, 2, 23, 73 and 220 – the best absolute
retrieval result is improved when automatically learning
the threshold, with the following respective percentages of
improvement in the recall measure: 42.9 (0.344828 against
0.241379), 11.1 (0.4 against 0.36), 85.7 (0.393939 against
0.212121), 9.1 (0.571429 against 0.52381), and 9.1 (0.6
against 0.55). In the remaining two queries – numbers 157
and 225 – there is a recall loss of a 11.1 (0.2 against 0.225)
and a 10% (0.36 against 0.4), respectively. However, the
obtained values are still much more better than those
generated from Kraft et al.’s method.

Moreover, in 10 of the 21 individual runs performed, the
SAP-RF algorithm adapting the threshold outperforms the
basic version that does not adapt this parameter, whilst in
other 6 cases the same result is provided. Only in the
remaining five cases (the third run of query 73, the first and
third runs of query 157, the second run of query 220 and
the first run of query 225), the joint adaption of query and
retrieval threshold leads to a local optimum, thus resulting
in a worser retrieval performance than in the previous case.

In this experimentation, the threshold values generated
present a lower deviation than in that performed with our
LISA collection, ranging from 0:004 to 0:297. This corro-
borates the fact that the weights of the indexing terms are
lower in this collection and hence smaller values for the
retrieval threshold are needed in this case.

Finally, notice that the performance improvements ob-
tained does not again need of a increase of the computa-

Table 8. Results obtained by
SAP-RF in Cranfield adapting
the retrieval threshold

#q Run T Sz Thr Fit P R #rr=#rt

1 12:45 19 0.297264 1.475862 1.000000 0.344828 10/10
1 2 12:43 19 0.294263 1.448276 1.000000 0.310345 9/9

3 13:20 19 0.044080 1.420690 1.000000 0.275862 8/8

1 13:09 19 0.046401 1.520000 1.000000 0.400000 10/10
2 2 12:36 17 0.166046 1.488000 1.000000 0.360000 9/9

3 13:20 19 0.163329 1.520000 1.000000 0.400000 10/10

1 13:20 19 0.094884 1.515152 1.000000 0.393939 13/13
23 2 13:09 19 0.038554 1.369697 1.000000 0.212121 7/7

3 12:09 15 0.169519 1.345455 1.000000 0.181818 6/6

1 12:58 19 0.093121 1.657143 1.000000 0.571429 12/12
73 2 13:18 19 0.098302 1.619048 1.000000 0.523810 11/11

3 13:13 19 0.102439 1.542857 1.000000 0.428571 9/9

1 13:12 19 0.172545 1.360000 1.000000 0.200000 8/8
157 2 12:45 19 0.115925 1.340000 1.000000 0.175000 7/7

3 13:12 19 0.004288 1.320000 1.000000 0.150000 6/6

1 13:45 19 0.049878 1.520000 1.000000 0.400000 8/8
220 2 13:19 19 0.076543 1.520000 1.000000 0.400000 8/8

3 12:41 19 0.128209 1.680000 1.000000 0.600000 12/12

1 12:52 17 0.036680 1.456000 1.000000 0.320000 8/8
225 2 13:10 19 0.112805 1.488000 1.000000 0.360000 9/9

3 13:05 19 0.099069 1.488000 1.000000 0.360000 9/9
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tional time, showing similar values in this aspect to the
basic algorithm.

6
Concluding remarks
A relevance feedback technique for FIRSs based on a
hybrid SA-GP algorithm has been proposed. It has per-
formed appropriately in two different documentary bases
– a collection of 359 documents extracted from the LISA
database and the well known 1400 document Cranfield
collection –, outperforming the previous proposal by Kraft
et al. both in terms of retrieval performance in both cases,
and of the required computation time in the former.

Moreover, the proposed method has been extended by
allowing it to adapt the retrieval threshold, which is
usually a fixed value provided by the user. This new
variant has increased even more the system effectiveness
without augmenting the algorithm run time.
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