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Linguistic Modeling by Hierarchical Systems of
Linguistic Rules

Oscar Cordón, Francisco Herrera, and Igor Zwir

Abstract—In this paper, we are going to propose an approach to
design linguistic models which are accurate to a high degree and
may be suitably interpreted. This approach will be based on the
development of a Hierarchical System of Linguistic Rules learning
methodology. This methodology has been thought as a refinement
of simple linguistic models which, preserving their descriptive
power, introduces small changes to increase their accuracy. To
do so, we extend the structure of the Knowledge Base of Fuzzy
Rule Base Systems in a hierarchical way, in order to make it more
flexible. This flexibilization will allow us to have linguistic rules
defined over linguistic partitions with different granularity levels,
and thus to improve the modeling of those problem subspaces
where the former models have bad performance.

Index Terms—Genetic algorithms, hierarchical knowledge base,
hierarchical linguistic partitions, linguistic modeling, Mamdani-
type fuzzy rule-based systems, rule selection.

I. INTRODUCTION

NOWADAYS, one of the most important areas for the ap-
plication of Fuzzy Set Theory as developed by Zadeh [31]

are fuzzy rule-based systems (FRBSs). These kinds of systems
constitute an extension of classical rule-based systems, because
they deal with linguistic rules instead of classical logic rules.
Thanks to this, they have been successfully applied to a wide
range of problems from different areas presenting uncertainty
and vagueness in different ways [1], [13], [21], [19].

One of the most important applications of FRBSs isSystem
Modeling [1], [21]. It is possible to distinguish between two
types of modeling when we are working with FRBSs:linguistic
modeling[25] andfuzzy modeling[1], according to the fact that
the main requirement is the interpretability or the accuracy of
the model, respectively. In fact, we usually find these two con-
tradictory requirements, the accuracy and the interpretability
of the model obtained. The choice between how interpretable
and how accurate the model must be usually depends on the
user’s needs for a specific problem and will condition the kind
of FRBS selected to model it.

Linguistic modeling has a problem associated, which is its
lack of accuracy in some complex problems. In this paper, we
are going to propose a simple linguistic modeling refinement
approach—developed by means of linguistic FRBSs—which
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allows us to improve the accuracy of these kinds of models
without losing its interpretability to a high degree. This ap-
proach considers the development of a hierarchical system of
linguistic rules learning methodology (HSLR-LM), whose lin-
guistic variables are defined on linguistic partitions with dif-
ferent granularity levels.

We extend the knowledge base (KB) structure of linguistic
FRBSs by introducing the concept of “layers.” In this exten-
sion, which is also a generalization, the KB is composed of a
set of layers where each one contains linguistic partitions with
different granularity levels and linguistic rules whose linguistic
variables take values in these partitions. This KB is called hierar-
chical knowledge base (HKB), and it is formed by a hierarchical
database (HDB) and a hierarchical rule base (HRB), containing
linguistic partitions of the said type and linguistic rules defined
over them, respectively.

To do so, this paper is set up as follows. In Section II, the bal-
ance between accuracy and interpretability in linguistic mod-
eling is analyzed, as well as previous approaches to hierarchical
fuzzy systems are discussed. In Section III, a description of the
HKB and the relation between its components is regarded. In
Section IV, a methodology to automatically design an HSLR
from a generic linguistic rule generating method is introduced.
In Section V, a linguistic modeling process obtained from the
HSLR-LM and a well-known inductive linguistic rule genera-
tion process is applied to solve two different applications. In
Section VI, we discuss some features of our methodology. Fi-
nally, in Section VII, some concluding remarks are pointed out.

II. BACKGROUND AND FRAMEWORK

A. Balance Accuracy-Interpretability

As we have said, two types of modeling with FRBSs are dis-
tinguished according to the fact that the main requirement is the
interpretability or the accuracy of the model: linguistic mod-
eling and fuzzy modeling, respectively. These requirements are
always contradictory.

The KB structure usually employed in the field of linguistic
modeling has the drawback of its lack of accuracy when working
with very complex systems. This fact is due to some problems
related to the linguistic rule structure considered, which are a
consequence of the inflexibility of the concept of linguistic vari-
able [32]. A summary of these problems may be found in [2],
[4], and it is briefly enumerated as follows.

• There is a lack of flexibility in the FRBSs because of the
rigid partitioning of the input and output spaces.

• When the system input variables are dependent them-
selves, it is very hard to fuzzy partition the input spaces.
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• The homogenous partitioning of the input and output
spaces when the input-output mapping varies in com-
plexity within the space is inefficient and does not scale
to high-dimensional spaces.

• The size of the rule base (RB) directly depends on the
number of variables and linguistic terms in the system.
Obtaining an accurate FRBS requires a significant granu-
larity amount, i.e., it needs of the creation of new linguistic
terms. This granularity increase causes the number of rules
to rise significantly, which may take the system to lose the
capability of being interpretable for human beings.

At least two things could be done to solve many of these
problems and to improve the model accuracy. On the one hand,
we can use fuzzy modeling, with the consequence of losing the
model interpretability. On the other hand, we can refine a lin-
guistic model trying not to change too much the meaning of
the linguistic variables neither the descriptive power of the final
FRBS generated.

In this paper, we will focus our attention on the second
choice. Our methodology is proposed as an strategy to improve
simple linguistic models, preserving their structure and descrip-
tive power, and reinforcing only the modeling of those problem
subspaces with more difficulties by a hierarchical treatment of
the rules generated in these zones. In other words, we propose a
refinement of simple linguistic models which introduces small
changes to increase their accuracy.

The purpose of this extension is the flexibilization of the KB
to become an HKB. This is possible by the development of a
new KB structure, where the linguistic variables of the linguistic
rules could take values from fuzzy partitions with different gran-
ularity levels. To do so, we will use an HKB of two layers, i.e.,
starting with an initiallayer , we producelayer in order to
extract the final system of linguistic rules. This fact allows the
HSLR to perform a significantly more accurate modeling of the
problem space.

B. Previous Approaches to Hierarchical FRBSs

In this section, we will discuss the reach of our present
methodology, comparing it with other previous approaches
oriented to hierarchical processors, hierarchical fuzzy inference
and rule extraction from a global hierarchical KB.

One of the previous hierarchical approaches have been di-
rected to design a series of hierarchical fuzzy processors with
a small number of input variables distributed in each processor
[22]. While the computational efficiency of the distributed struc-
ture of the fuzzy processors is evident, the aggregation of those
intermediate variables will contribute to lose the initial meaning
of the model, diminishing its descriptive power.

Other works were also developed by Yager [28], [29], Gegov
et al. [10] and Ishibuchiet al. [14], [15] in order to aggregate
different priority levels of information in a hierarchical infer-
ence process.

As said, our approach is oriented to produce hierarchical
rules, i.e., FRBSs whose RB is composed of linguistic rules
defined on fuzzy partitions with different granularity levels. Our
purpose is to preserve the descriptive power of the system of
rules and to simplify the inference mechanism adopted by other

previous hierarchical approaches, activating independently
each rule as it is done in the conventional inference mechanism.
Besides, we use a genetic selection process to obtain a compact
set of rules that have good cooperation between them.

Finally, another approach generated in the same line have
been performed by Ishibuchi et al. in [16]. Although it is not
explicitly shown as an hierarchical methodology, because of its
use of different granularity partitions, it can be adapted as such
kinds of models by our present proposal. There, a genetic-algo-
rithm-based method for removing unnecessary rules from fuzzy
if–thenrule sets corresponding to several fuzzy partitions is pro-
posed. While this approach generates the whole set of fuzzy
rules from each different granularity level fuzzy partition and
then performs a genetic rule selection over all rules, we will
focus our attention on those rules which model a subspace of the
problem with significant error. That is, only these bad rules are
expanded in a hierarchical way and then joined with the good
ones, in order to perform a selection process which produces
a good cooperation among them. All of these is done with the
purpose of improving the system accuracy, preserving its de-
scription as far as possible.

III. H IERARCHICAL KNOWLEDGE BASE

Due the reasons described in Ssection II-A and to solve many
of these problems, we present a new more flexible KB struc-
ture that allows us to improve the accuracy of linguistic models
without losing their interpretability: the HKB, which is com-
posed of a set of layers. We define a layer by its components in
the following way:

DB RB (1)

with

• being the number of linguistic terms that compose the
partitions of layer ;

• DB being the Data Base (DB) which contains the
linguistic partitions with granularity level of layer ;

• RB being the RB formed by those linguistic rules
whose linguistic variables take values in the former parti-
tions.

At this point, we should note that, in this work, we are using
linguistic partitionswith the same number of linguistic terms
for all input–output variables, composed of triangular-shaped,
symmetrical and uniformly distributed membership functions.

From now on and for the sake of simplicity, we are going
to refer to the components of a DB and RB as
-linguistic partitionsand -linguistic rules, respectively.

This set of layers is organized as a hierarchy, where the order
is given by the granularity level of the linguistic partition defined
in each layer. That is, given two successive layersand
then the granularity level of the linguistic partitions of layer
is greater than the ones of layer. This causes a refinement of
the previous layer linguistic partitions.

As a consequence of the previous definitions, we could now
define the HKB as the union of every layer

HKB (2)



4 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 10, NO. 1, FEBRUARY 2002

In the remainder of this Section, we are going to study the lin-
guistic partitions and their extension to consider them as com-
ponent parts of the DB of the . Then, we
are going to describe the relation between DBs from different
layers (e.g., and ), and to develop a methodology to build
them under certain requirements. Finally, we will explain how
to relate these DBs with linguistic rules, i.e., to create RBs from
them.

A. Hierarchical Data Base

In this section, we are going to show how to build the HDB,
bearing in mind that it is organized in a hierarchy, where the
order is given by an increasing granularity level of the linguistic
partitions.

To extend the classical linguistic partition, let us consider a
partition of the domain of a linguistic variable in the
layer

(3)

with being linguistic terms which describe
the linguistic variable . These linguistic terms are mapped into
fuzzy sets by the semantic function , which gives them a
meaning: [32].

We extend this definition of allowing the existence of sev-
eral partitions, each one with a different number of linguistic
terms, i.e., with a different granularity level. To do so, we add
a parameter to the definition of the linguistic partition ,
which represents the granularity level of the partitions contained
in the layer where it is defined

(4)

where DB .
In order to build the HDB, we develop an strategy which sat-

isfies two main requirements

• to preserve all possible fuzzy set structures from one layer
to the next in the hierarchy;

• to make smooth transitions between successive layers.
On the one hand, we decided to preserve all the membership

function modal points, corresponding to each linguistic term,
through the higher layers of the hierarchy in order to fulfill
the first requirement. On the other hand, and with the aim of
building a new -linguistic partition, we just add a new lin-
guistic term between each two consecutive terms of the-lin-
guistic partition. To do so, we reduce the support of these lin-
guistic terms in order to keep place for the new one, which is lo-
cated in the middle of them. An example of the correspondence
between a 1-linguistic partitionand a 2-linguistic partition, with

and , respectively, is shown in Fig. 1.
As a result of the above considerations, Table I shows the

number of linguistic terms which is needed in each-linguistic
partition in DB to satisfy the previous requirements.
The values of parameter represent the-linguistic partition
granularity levels and depend on the initial value of defined
in the first layer (e.g., 2 or 4 in Table I).

Fig. 1. Transition from a partition in DB(1; 3) to another one in DB(2; 5).

TABLE I
HIERARCHY OF DBs STARTING FROM TWO OR FOUR INITIAL TERMS

Generically, we could say that a DB from a layer is
obtained from its predecessor as

DB DB (5)

which means that a-linguistic partition in DB with
linguistic terms becomes a -linguistic partition in

DB .
In order to satisfy the previous requirements, each linguistic

term -term of order from the -linguistic partition in
DB —is mapped into , preserving the former
modal points, and a set of new terms is created, each
one between and . This map-
ping is clearly shown in Table II and a graphical example is to
be found in Fig. 1.
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TABLE II
MAPPINGBETWEENLINGUISTIC TERMSFROM SUCCESSIVEDBs

In this view, we can generalize this two-level successive layer
definition for for all layers in the following way:

(6)

and:

i.e., the number of linguistic terms in the initial layer partitions.

B. Hierarchical Rule Base

In this section, we explain how to develop an RB from layer
based on RB DB and DB

, in order to create an HRB. Later, in the following section,
we are going to give a concrete method to perform this task for
a two-layer HKB.

First, let us define the -linguistic rules contained in
RB as those rules whose linguistic variables take
values from the-linguistic partitionscontained in DB .
The -linguistic rulestructure is formed by a collection of well-
known Mamdani-type linguistic rules

IF is and and is

THEN is

with and being the input linguistic variables and
the output one, respectively, and with
being linguistic terms from different-linguistic partitionsof
DB , with fuzzy sets associated defining their meaning.
In this contribution, we will use the Minimum-norm in the
role of conjunctive and implication operator and theCenter of
Gravity weighted by the matching degree[5] as defuzzification
strategy.

The main purpose of developing an HRB is to model the
problem space in a more accurate way. To do so, those-lin-
guistic rulesthat model a subspace with bad performance are
expanded into a set of -linguistic rules, which become
their image in RB . This set of rules models
the same subspace that the former one and replaces it.

We should note that not all-linguistic rulesare to be ex-
panded. Only those-linguistic ruleswhich model a subspace
of the problem with a significant error, become the ones that
are involved in this rule expansion process to build the RB

. The remaining rules preserve their location in
RB . An explanation for this behavior could be found in
the fact that it is not always true that a set of rules with a higher
granularity level, performs a better modeling of a problem than
another one, with a lower granularity level. Moreover, this is not
true for all kinds of problems, and what is more, it is also not
true for all linguistic rules that model a problem [8].

IV. SIMPLE LINGUISTIC MODELSREFINEMENT: A TWO-LEVEL

HSLR LEARNING METHODOLOGY

Our methodology is proposed as an strategy to improve
simple linguistic models preserving their structure and descrip-
tive power, reinforcing only the modeling of those problem
subspaces with more difficulties. Due to this reason, our HSLRs
will be based on two hierarchical levels, i.e., two layers.

In the following, the structure of the learning methodology
and its most important components are described in detail.

A. Structure of the Two-Level HSLR Learning Methodology

Our HSLR-LM is composed of three main processes which
will be described in depth in the following subsections.

• The first process generates the HKB following the descrip-
tions given in Section III. This process is presented in Sec-
tion IV-B.

• The second process performs a genetic rule selection task
that removes the redundant or unnecessary rules from the
HRB, in order to select a subset of rules cooperating better.
It is explained in Section IV-C.

• In the third process, a user evaluation process extends this
approach to an iterative process, where he could adapt
some parameters and re-execute the processes to achieve
better results. It is described in Section IV-D.

It basically consists of the following steps which are listed in
Table III and may be also graphically seen in Fig. 2.

B. Hierarchical Knowledge Base Generation Process

In this section, we present our methodology to generate an
HKB. To do so, we use a linguistic rule generating (LRG)
method, which, as an inductive method, is based on the existence
of a set of input-output data and a previously defined
DB . The data set is com-
posed of input-output data pairs ,
which represent the behavior of the system being modeled.

Our HKB generation process has three main steps, that are
listed below.

1) generation process, where the rules of
the initial layer are generated from the present
DB .
An LRG-method is run with the terms defined in the
present partitions, that are inDB , denoted as:

RB DB (7)

with and the initial DB given by an
expert or by a normalization process considering a small
number of terms.
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Fig. 2. HSLR-LM.

2) generation process, where the lin-
guistic rules from layer 2 are generated taking into ac-
count RB DB and DB .

a) Bad performance 1-linguistic rule selection
process.This process performs the selection of
those1-linguistic rules from RB which
will be expanded in RB , based
on an error measure. This measure analyzes the
accuracy of the modeling performed by each1-lin-
guistic rule in its definition subspace with respect

to the global performance of the whole RB. These
bad performance1-linguistic rulesare going to be
replaced by subsets of2-linguistic rules, which are
going to be generated as their image. To do so, we
have to follow the next steps:

i) Calculate the error ofRB as a
whole.ComputeMSE RB .
The mean square error (MSE) calculated
over a training data set, , is the error
measure used in this work. Therefore, the
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TABLE III
HSLR LEARNING METHODOLOGY

MSE of the entire set of1-linguistic rulesis
represented by the following expression:

MSE RB

(8)

with being the output value obtained
from the RB when the input vari-
able values are and

is the known desired value.
ii) Calculate the error of each individual 1-lin-

guistic rule.Compute MSE . We
need to define a subset of , to be
used to calculate the error of the rule .
The set is a set of the examples matching
the antecedents of the ruleto a specific de-
gree

(9)

where . Then, we calculate the
MSE for a1-linguistic rule as

MSE (10)

with being the crisp output value
obtained when the consequent of is
defuzzified. We should note that any other
local error measure can be considered with
no change in our methodology, such as the
one shown in [30].

Remark 1: We should note that in this
paper we consider in order to em-
phasize the most influential examples re-
sponsability on the bad or good condition
of the rule. That is, the neighbor examples
which define the nearest decision surface in-
duced by the rule prototype [20].

iii) Select the 1-linguistic rules with bad per-
formance.Select those bad1-linguistic rules

which are going to be expanded, making the
difference from the good ones

RB MSE

MSE RB (11)

RB MSE

MSE RB (12)

with being a threshold that represents a
percentage of the error of the whole RB,
which determines the expansion of a rule.
It may be adapted in order to have more
or less expanded rules. It is noteworthy that
this adaptation is not linear and, as a con-
sequence,the expansion of more rules does
not ensure the decrease of the global error of
the modeled system. For example,
means that a1-linguistic rulewith an MSE
a 10% higher than the MSE of the entire
RB should be expanded.

Now, for each RB :
b) Obtain theDB . Create DB

for all input linguistic variables
and DB for the output

linguistic variable .

i) Select the 2-linguistic partition terms.Select
those terms from DB that are
going to be contained in the2-linguistic rules
considered as the image of the previous layer
bad rules.
Before describing this process and for the
sake of clearness, we are going to refer to
DB as DB

, meaning that it contains the1-linguistic
partition where the input linguistic variable

takes values, and as DB for the
output variable . Even if all1-linguistic par-
titions contained in a DB have the
same number of linguistic terms, they are de-
fined over different domains corresponding to
each linguistic variable.
For all linguistic terms considered in ,
i.e., defined in DB and as-
sociated to the linguistic variables , select
those terms in DB

which significantly intersect them. Conse-
quently, for defined in DB
and associated to the linguistic variable,
select those terms in DB

which significantly intersect them.
That is, perform the selection of those terms
of the2-linguistic partitionthat describe ap-
proximately the same subspace that the terms
included in , but with a higher granu-
larity level.
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In this work we are going to consider that
two linguistic terms have a “significant in-
tersection” between each other, if the max-
imum cross level between their fuzzy sets in
a linguistic partition overcomes a predefined
threshold . In other words, the set of terms
from the2-linguistic partitionsfor the expan-
sion of the1-linguistic rule , are se-
lected in the following way:

DB

(13)

DB

(14)

where .
ii) Combine the previously selected sets

and by the following
expression:

(15)

with DB .
c) Extract 2-linguistic rules from the combined se-

lected 2-linguistic partition terms. Produce a set of
2-linguistic rules, which are the expansion of the

bad1-linguistic rule . This task is performed
by an LRG-method, which takes and the
set of input–output data as its parameters

(16)

with being the image of the expanded
linguistic rule , i.e., the candidates to be in the
HRB from rule .

3) Summarization process. Obtain a joined set of candi-
date linguistic rules(JCLR), performing the union of the
group of the new generated2-linguistic rulesand the
former good performance1-linguistic rules

JCLR RB (17)

with RB .
In the following, we show an example of the whole expansion

process considering these linguistic partitions.
Let us consider

DB DB DB

DB DB DB

where
Small;
Medium;
Large;
Very.

Let us consider the following bad performance1-linguistic
rule to be expanded:

IF is and is THEN is

where the linguistic terms are

and the resulting setswith are

Therefore, it is possible to obtain at most four2-linguistic rules
generated by the LRG-method from the expanded rule

LRG

This example is graphically shown in Fig. 3. In the same way,
other bad performance neighbor rules could be expanded simul-
taneously.

Remark 2: We should note that in the latter example the value
used for the parameterwas 0.5. Each set that we con-
sider in the example is a consequence of the use of this value
in the expansion task of the rule . Thus, the problem sub-
space resulting from that bad 1-linguistic rule expansion is the
one represented by the small white square
in Fig. 3. On the other hand, if we consider , the set of
selected linguistic terms would be:

and the said subspace would be composed of the union of the
former small white square and the grey one.

C. Hierarchical Rule Base Selection Process

In the JCLR, where there are coexisting rules of two different
hierarchical layers, it may happen that a complete set of2-lin-
guistic rules, which replaces an expanded rule, does not produce
good results. This means that there will be higher errors, as it is
shown on the left hand side of Fig. 4. However, a subset of this
set of2-linguistic rulesmay work properly, with less rules that
have good cooperation between them, and with the good rules
from the previous layer. This is shown on the right-hand side
of Fig. 4. Thus, the JCLR set of rules generated may present re-
dundant or unnecessary rules making the model using this HKB
less accurate.

In order to avoid this fact, we will use a genetic linguistic
rule selection process with the aim of simplifying the initial lin-
guistic rule set by removing the unnecessary rules from it and
generating an HKB with good cooperation. In this paper, we
consider a genetic process [6], [12], [16] to put this task into ef-
fect, but any other technique could be considered

(18)
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Fig. 3. Example of the HRB Generation Process.

Remark 3: It should be noted that the set JCLR is a unified
set which contains all -linguistic rules obtained from the
simultaneous expansion of each bad-linguistic rules, as well as
the good ones from the same layer. Selection is performed once
on this set during each iteration.

The genetic rule selection process [6], [12] is based on a bi-
nary coded genetic algorithm (GA), in which the selection of the
individuals is performed using the stochastic universal sampling
procedure together with an elitist selection scheme, and the gen-
eration of the offspring population is put into effect by using the
classical binary multipoint crossover (performed at two points)
and uniform mutation operators.

The coding scheme generates fixed-length chromosomes.
Considering the rules contained in JCLR counted from 1 to,
an -bit string represents a subset of rules for
the HRB, such that

IF THEN (19)

The initial population is generated by introducing a chromo-
some representing the complete previously obtained rule set,

i.e., with all . The remaining chromosomes are selected
at random.

As regards the fitness function , it is based on a global
error measure that determines the accuracy of the FRBS en-
coded in the chromosome, which depends on the cooperation
level of the rules existing in the HRB

MSE

(20)

with being the output value obtained from RB encoded
in the chromosome, when the input variable values are

, and is the known desired value.
We usually work with the MSE over a training data set, as it

was defined in Section IV.B, although other measures may be
used.

D. User Evaluation Process

It should be kept in mind that the level of precision which is
obtained by applying the HSLR-LM is not fixed. However, this
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Fig. 4. Rule selection process.

methodology allows the user toadapt the level of precision to per-
centages of error suggested by an expert. This process depends
on user’s decisions, based on an error measure of the obtained
model, and on the kind of problem to be modeled, to reach to a
suitablesetof ruleswhichcouldperformthemodeling task.From
this point of view, the application of our methodology could also
beconsideredasanusercontrolled iterativeprocess. In thissense,
the user could adapt the granularity of the initial linguistic parti-
tionsand/or the thresholdwhichdetermines ifan1-linguistic rule
will be expanded into a set of2-linguistic rules, and apply again
the methodology in order to obtain a better model.

This process works in this way: if the error measure of the
obtained model (i.e., global error) does not satisfy the user re-
quirements, then he can adapt the parameter, item 2 in the
HKB generation process, and/or reinitialize the process with a
different granularity for the initial layer linguistic partition.

Finally, we want to point out that our methodology performs
smooth refinements with small changes in order to improve the
model. In the following, we will show an example of a difficult
modeling real-world problem, in which the use of high granu-
larity initial linguistic partitions does not improve the general
error of the sample and what is more, gets it worse.

V. EXAMPLES OFAPPLICATION: EXPERIMENTS ANDANALYSIS

OF RESULTS

With the aim of analyzing the behavior of the proposed
methodology, two real-world electrical engineering distribution
problems in Spain have been selected [7], [23], [24].

The LRG-method considered for the previous experimenta-
tion is the one proposed by Wang and Mendel in [27], that we
call as WM-method in the following. This method is briefly de-
scribed in Appendix I.

As we have said, this methodology has been thought as a re-
finement of simple linguistic models, which uses an HKB of two
layers, i.e., starting with an initial , a

is created in order to extract the final system of lin-
guistic rules.

For the sake of simplicity, in the following applications we are
going to refer to those experiments produced by the HSLR-LM
by the following notation:

LRG-

where , and are the initial and final granularity
levels of the HKB, respectively, e.g., .

In addition, a reference to an application of WM is repre-
sented by the following expression:

with being the granularity level of the linguistic partitions used
in the method.

The results obtained in the experiments developed are col-
lected in tables where 1 stands for the number of rules of
the corresponding HRB, MSE and MSE for the values ob-
tained in the MSE measure computed over the training and test
data sets, respectively. % indicates the relative error between
two algorithms [3], e.g., the percentage
in which the WM-based model is improved by the HSLR. In
the following experiments, we are going to compare the model
generated by HSLR-LM, i.e., ,
with the ones generated by and .

A. The Electrical Engineering Distribution Problems

Two problems will be tackled: to relate some characteristics
of certain village with the actual length of low voltage line con-
tained in it, and to relate the maintenance cost of the network

1We should note the appearance of repeated rules—generated by the HKB
generation process as a consequence of the overlapping produced in the selec-
tion of the (t + 1)-linguistic partition terms—does not increase the compu-
tational cost of the process, because the rules are processed only once in the
inference process and the result is multiplied by the number of times that it is
repeated in the set of rules. As a consequence, those rules which are repeated
are considered as a single one in the calculus of the complexity.
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TABLE IV
NOTATION CONSIDERED FOR THEPROBLEM VARIABLES

installed in certain towns with some of their characteristics [7].
In both cases, it would be preferable that the solutions obtained
verify another requirement: they have not only to be numerically
accurate in the problem solving, but must be able to explain how
a specific value is computed for a certain village or town. That is,
it is interesting that these solutions are interpretable by human
beings to some degree.

1) Computing the Length of Low Voltage Lines:Sometimes,
there is a need to measure the amount of electricity lines that
an electric company owns. This measurement may be useful
for several aspects such us the estimation of the maintenance
costs of the network, which was the main goal of the problem
presented in Spain [7], [24]. High and medium voltage lines can
be easily measured, but low voltage line is contained in cities
and villages, and it would be very expensive to measure it. This
kind of line used to be very convoluted and, in some cases, one
company may serve more than 10 000 small nuclei. An indirect
method for determining the length of line is needed.

Therefore, a relationship must be found between some char-
acteristics of the population and the length of line installed on it,
making use of some known data, that may be employed to pre-
dict the real length of line in any other village. We will try to
solve this problem by generating different kinds of models deter-
mining the unknown relationship: linguistic, classical regression
andneuralmodels.Todoso,wewereprovidedwith themeasured
line length, the numberof inhabitantsand the meandistance from
the center of the town to the three furthest clients, considered as
the radius of populationin the sample, in a sample of 495 rural
nuclei [23], [24]. Our variables are named as shown in Table IV.

To compare regression techniques, neural modeling, and lin-
guistic modeling, we have randomly divided the sample into two
sets comprising 396 and 99 samples, labeled training and test,
respectively.

The initial DB used for the HSLR-LM is constituted by three
primary linguistic partitions formed bythree, four, andfive lin-
guistic termswith triangular-shaped fuzzy sets giving meaning
to them, i.e., DB DB , and DB , respectively.

The initial linguistic term sets for the mentioned DBs are
shown in the following:

DB

DB

DB

where

TABLE V
PARAMETERS

TABLE VI
RESULTS OBTAINED IN THE LOW VOLTAGE ELECTRICAL APPLICATION

CONSIDERINGHSLR(WM; 3; 5)

TABLE VII
RESULTS OBTAINED IN THE LOW VOLTAGE ELECTRICAL APPLICATION

CONSIDERINGHSLR(WM; 4; 7)

TABLE VIII
RESULTS OBTAINED IN THE LOW VOLTAGE ELECTRICAL APPLICATION

CONSIDERINGHSLR(WM; 5; 9)

The parameters used in all of these experiments are listed in
Table V.

The results obtained with our HSLR-LM starting from dif-
ferent granularities in the first layer DB partitions are shown in
Tables VI, VII and VIII.

The structure of the simple model obtained from
can be seen in Fig. 5, where the rules

are numbered from left to right, and from up to down. The
explanation of this figure can be found in Table IX (each
learning process (P), rule condition (RC), hierarchy level (HL),
rule number (RN) and corresponding mark (M) of Fig. 5 are
explicit, is the rule of layer 2, which is the image

of the expanded rule of layer 1.
Once we have shown the behavior of the linguistic models de-

signed individually, we are going to compare their accuracy with
the remaining techniques considered. Table X shows the results
obtained by them and the best ones obtained by our HSLR-LM
as well. To apply classical regression, the parameters of the
polynomial models were fit by Levenberg–Marquardt, while ex-
ponential and linear models were fit by linear least squares. The
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Fig. 5. HSLR(WM; 3; 5).

TABLE IX
ACTIONSPERFORMED BYHSLR-LM ON THE RULE STRUCTURE

TABLE X
RESULTS OBTAINED IN THE LOW VOLTAGE ELECTRICAL APPLICATION

COMPARED WITH OTHER TECHNIQUES

multilayer perceptron was trained with the QuickPropagation
algorithm. The number of neurons in the hidden layer was
chosen to minimize the test error [7], [24].

2) Computing the Maintenance Costs of Medium Voltage
Line: We were provided with data concerning four different
characteristics of the towns (see Table XI) and their minimum
maintenance cost in a sample of 1059 simulated towns. In this
case, our objective was to relate the last variable (maintenance
costs) with the other four ones by applying the same modeling

TABLE XI
NOTATION CONSIDERED FOR THEPROBLEM VARIABLES

TABLE XII
RESULTSOBTAINED IN THE MEDIUM VOLTAGE ELECTRICAL APPLICATION

CONSIDERINGHSLR(WM; 3; 5)

TABLE XIII
RESULTSOBTAINED IN THE MEDIUM VOLTAGE ELECTRICAL APPLICATION

CONSIDERINGHSLR(WM; 5; 9)

TABLE XIV
RESULTSOBTAINED IN THE MEDIUM VOLTAGE ELECTRICAL APPLICATION

COMPARED WITH OTHER TECHNIQUES

techniques considered for the previous problem. Numerical
results will be compared next.

The sample have been randomly divided into two sets com-
prising 847 and 212 samples, 80 and 20 percent of the whole
data set, labeled training and test, respectively. Our variables are
named as shown in Table XI.

The initial DB used for the design methods is initialized as
in the former problem for DB , and DB , as well as
the other parameters which are listed in Table V. The different
results obtained are shown in Tables XII, XIII, and XIV.

In view of the results obtained in the above experiments, we
should remark some important conclusions.From the accuracy
point of view, the different models generated from our process
clearly outperform the WM-method ones in all granularity level
linguistic partitions and in both electrical problems. They also
outperform classical regression in the approximation of both
data sets, training and test.

In the first problem, the linguistic model generated from
is less accurate than the neural one in the

approximation of the training set, but we should note that
they have almost the same value for the resulting test error.
Therefore, this model approximates well the real system mod-
eled and, moreover, it has the advantage of being much more
interpretable than the neural model. In the second problem,
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TABLE XV
RESULTS OBTAINED IN THE LOW VOLTAGE ELECTRICAL APPLICATION

CONSIDERINGHSLR(THR; 3; 5)

both training and test errors of the neural model are clearly
outperformed by the HSLR model.

VI. K EY POINTS OF THETWO-LEVEL HSLR LEARNING

METHODOLOGY

In this section, we will point out the most important fea-
tures of HSLR-LM, highlighting its independence from the
LRG-method to be used, the use of theparameter to set
the desired balance between accuracy and description of the
generated HSLR, the importance of the selection process
performed and some other aspects related to the methodology
performance. Finally, its local treatment of the problem sub-
spaces is linked with the accuracy and description paradigm.

A. Independence From the LRG-Method

As said, our methodology was thought as an strategy to im-
prove simple linguistic models. In Section V, we have chosen the
WM-method as an example of those kinds of simple methods.
However, we could select any other inductive method, based on
the existence of a set of input–output data and a previously
defined DB . In order to illustrate this situation, we are
going to show an experiment where an HSLR is obtained from
another LRG-method. For the present application, we have se-
lected the LRG-method proposed by Thrift [26], that we call as

, with being the granularity of the linguistic partitions
considered. This method is briefly described in Appendix II.

The results obtained by the application of our methodology
to the first electrical problem using the THR-method is shown
in Table XV and % indicates the percentage in which the THR-
based model is improved by the HSLR.

We can observe again that the HSLR-LM has outperformed
the basic LRG-method, the THR-method in this case. This most
accurate model was obtained by just adding one more rule to the
model obtained by THR(5), with a significant improvement of
the twenty percent both in MSE and MSE .

In this view, we confirm the qualities of the HSLR-LM as a
good strategy to obtain a refinement of simple models, based on
performing few changes to the system structure.

B. Setting the Balance Between Accuracy and Description

In previous experiments, we have compared the accuracy
and complexity of those linguistic models generated from
our HSLR-LM based on an expansion factorequal to 1.1.
This means that those rules which overcomes the MSE of the
whole RB in a 10% are considered as bad ones, and
should be expanded. In this section, we are going to analyze
the influence of other possible values for this factor and how it
works as a regulator between the accuracy and the description
of the system.

TABLE XVI
RESULTSOBTAINED IN THE LOW VOLTAGE ELECTRICAL APPLICATION BY

HSLR(WM; 3; 5) USING DIFFERENTVALUES FOR�

TABLE XVII
RESULTSOBTAINED IN THE MEDIUM VOLTAGE ELECTRICAL APPLICATION BY

HSLR(WM; 3; 5) USING DIFFERENTVALUES FOR�

TABLE XVIII
RESULTSOBTAINED IN THE MEDIUM VOLTAGE ELECTRICAL APPLICATION BY

HSLR(WM; 5; 9) USING DIFFERENTVALUES FOR�

In Tables XVI, XVII and XVIII, we analyze different values
for 2 in both electrical problems.

As can be seen in the above results, the algorithm seems to
be robust for any value of, in the sense that good results are
obtained considering many different values for this parameter.

Anyway, some special features could be remarked as regards
the setting. As a general rule, whengrows up, the system
complexity decreases, i.e., less rules are finally obtained.

However, an increase on the number of rules does not always
ensure a decrease on the model error, MSE. This fact is clearly
seen in the results obtained in Tables XVI and XVIII.

As said in [8], it is not always true that a linguistic model
with a high number of rules performs better than another with
a lesser number of them, since the accuracy of the FRBS does
not only depend on the number of rules in the RB but also on
the cooperation among them.

From this point of view, parameter can be considered to
design models with different balance between accuracy and de-
scription (of course, the lower the number of rules, the more
descriptive the system). For example, we find a good balance
in Table XVI, where the most accurate model is obtained for
the low voltage problem by means of the HSLR-LM, which is

2In Tables XVII and XVIII, we have not performed experiments with values
of � lower than 1.1 because of the complexity of the problem.
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Fig. 6. Hierarchical clustering view of the HRB.

composed of only 12 rules. Notice that our model has one less
rule than WM(5) while having a performance improvement of
approximately a 40% both in MSE and in MSE .

This idea can also be observed in the results shown in
Table XVII as regards the medium voltage electrical appli-
cation. Here, the user can decide between two models with a
different treatment of the description-accuracy tradeoff. The
model obtained when considering is the most accurate
one, being more or less a 68% more accurate than the one
obtained with WM(5). This would be the best choice when the
accuracy is preferred to the description. However, HSLR-LM
model is less interpretable than WM-method one since it has
33 more rules.

When a compromise solution between accuracy and descrip-
tion is preferred, the models obtained from HSLR-LM with

and would be two very good solutions. They
both are simpler than the model generated by WM(5) (59 and
58 rules, respectively, against 64) and outperform it by more or
less a 60% and a 52%, respectively.

On the other hand, Table XVIII shows a different way to deal
with the accuracy-description tradeoff. Signicantly more accu-
rate models are obtained for the latter problem using higher
granularity level initial partitions like five. Of course, the models
generated by HSLR-LM starting from these partitions are very
complex (from 121 to 524 rules) and thus very difficult to be in-
terpreted. This would be the choice if the accuracy was defini-
tively the only model requirement.

Finally, coming back to the discussion about the inter-
pretability of the generated models, we should note that, when
dealing with HSLRs, the system description level can not only
be measured by the number of rules but also by the way they
are represented. The HKB gives an order which can be used
in the sense of interpretability. That is, human beings can not
understand a hundred of different rules, but can associate a
group of them with an specific task and deal with more general
and subsumed rule sets. This basically suggests a hierarchical
clustering point of view of the FRBSs, which gives a more
interpretable view of HSLRs as it is ilustrated in Fig. 6 where
the RB of the HSLR finally obtained from
(see Fig. 5) is represented in the bottom level.

What is more, the order proposed in the HDB can be used
to obtain an hierarchical extensionality measure of similarity to
be used in grouping most undistinguishable fuzzy rules [17],
[18], providing a theoretical background to the interpretability
of HSLRs.

C. Influence of the Methodology Components

As was said by Goldberg [11], subtle integration of the ab-
straction power of fuzzy systems and the innovating power of
genetic systems requires a design sophistication that goes fur-
ther than putting everything together. That is, hybridizing in hi-
erarchical models does not only involves putting rules with dif-
ferent granularities in the same bag. In this section, we will ex-
plore different aspects of the HSLR-LM which allow us to know
why does it works and which are its future perspectives.

In the first section, we will consider the importance of the
rule selection process in HSLR-LM, and in the second one, we
will mine into HSLR-LM in order to discover what other things
make it a successful methodology.

1) The Influence of the Rule Selection Process in the HSLR
Summarization:One of most interesting features of an FRBS
is the interpolative reasoning it develops, which is a conse-
quence of the cooperation among the linguistic rules composing
the KB. As said in Section IV-C, the set of rules generated
by an LRG-method may present redundant or unnecessary
rules which make the fuzzy model using this KB less accurate.
This fact becomes more serious in an HSLR, where there are
coexisting rules with different granularity levels. To deal with
this problem, we have introduced an RB selection process in
order to choose a subset of linguistic rules that properly work,
i.e., with less rules that have good cooperation between them.
This process organizes the incoming results from the rule gen-
eration tasks based on some “interestingness” criteria in order
to provide a more understandable and compact representation.

To perform the said summarization, we have considered a GA
although we could have chosen any other optimization method.
The summarization criteria is represented in the fitness function

, which is based on a measure of the global performance
of the FRBSs. Basically, this measure shows the cooperation
level of the candidate rules of the RB, which was the MSE on
the training set in this work. Even so, any other proper measure
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TABLE XIX
RESULTSOBTAINED BY HSLR-LM IN THE LOW VOLTAGE ELECTRICAL

APPLICATION CONSIDERING� = 1:1. WITH AND WITHOUT RULE

SELECTION PROCESS

TABLE XX
RESULTS OBTAINED BY HSLR-LM IN THE MEDIUM VOLTAGE

ELECTRICAL APPLICATION CONSIDERING� = 1:1. WITH AND WITHOUT

RULE SELECTION PROCESS

TABLE XXI
RESULTSOBTAINED IN THE MEDIUM VOLTAGE ELECTRICAL APPLICATION BY

HSLR(WM; 3; 5) USING DIFFERENTNUMBER OFGA GENERATIONS

based on different interesting criteria could be used. The impor-
tance of this process is shown in Tables XIX and XX.

From the accuracy point of view, the hierarchical models with
rule selection clearly outperform the ones without it in the ap-
proximation of both data sets. Considering the complexity of
the models generated, the models which perform a rule selec-
tion task become the simpler ones.

Unfortunately, although GAs are a robust technique, some-
times they can not avoid to fall in local minima in strongly mul-
timodal search surfaces like the one corresponding to multiple
granularity fuzzy rules. On the one hand, this problem could be
solved by relaxing some parameters of the algorithm, like the
population size or the number of generations, as can be seen in
Table XXI.

In fact, the latter table does not only shows a reduction in
the MSE but also an interesting decrease in the complexity of
the learned model which reveals that, sometimes, the GA does
not select the minimum number of rules and that it could be
improved. To do so, we introduce a modification of the fitness
function of the GA which is a trade-off solution between com-
plexity and accuracy of the system modeled [16].

Let consider the following function which penalizes
those RBs with a high number of rules in the following way:

(21)

with being the fitness function—based on the MSE—
used in Subsection IV.C, being the number of rules of
that RB, and with and being the weights of the terms
of the function. In the present experiments, these constants are
initialized in the following way [8]:

MSE

TABLE XXII
RESULTS OBTAINED IN THE LOW VOLTAGE ELECTRICAL APPLICATION

USING AN IMPROVED FITNESSFUNCTION

TABLE XXIII
RESULTSOBTAINED IN THE MEDIUM VOLTAGE ELECTRICAL APPLICATION

USING DIFFERENTVALUES FOR� AND AN IMPROVEDFITNESSFUNCTION

TABLE XXIV
RESULTSOBTAINED IN THE MEDIUM VOLTAGE ELECTRICAL APPLICATION

USING DIFFERENTVALUES FOR� AND DISTINGUISHING REPEATEDRULES

with MSE and being the error and the amount
of rules of the original RB to be summarized, respectively.

Tables XXII and XXIII show some results obtained using the
modified fitness function in the rule selection process with both
examples considered in this paper. To do so, we introduce a new
notation in order to make the difference between the former and
these new experiments. It consists of adding the symbolto
the former notation, e.g., .

As we expected, the new fitness function allows us to generate
less complex models and performs a tradeoff between com-
plexity and accuracy. Moreover, sometimes it also works as a
prunning strategy that could prevent the system overfitting (see
the HSLR obtained in Table XXII).

2) Learning More Features by Mining Into HSLRs:In the
last section we corroborated that selection plays a fundamental
role in systems with multiple granularity partitions. We have
also seen that not all the rules were discarded by the GA process,
and we showed at least two ways to improve its performance. In
this section, we will analyze which are the rules that the GA
discards and why some of them are still preserved.

Let us first consider what we noted at the begining of Sec-
tion V about repeated rules. There, we said that some repeated
rules generated by the rule generation process, specifically by
the “significant intersection” criteria of terms selection, also be-
longed to the JCLR set of rule candidates. Surprisingly, some of
them were not eliminated by the GA algorithm, even by the use
of techniques like the one introduced in the last section. Con-
sider Table XXIV as an example of that, where represents
the extracted rules from the selection process andthe corre-
sponding number of different rules.

This fact drives us to analyze what other factors, different
from granularity, make influence in the development of hierar-
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chical models. To do so, we mined into HSLRs and discovered
some other interesting features of their components as the ones
that we list in the following.

• Weighted reinforced linguistic rules
As said, repeated rules appear because of the overlapping
of the expanded rule images, which is produced by low
values of the parameter. Considering an HRB and our
present methodology, this rule repetition is produced by
the generation of more than one copy of a rule in the same
layer, as shown in Fig. 5 with the-linguistic rule

IF is and is THEN is

which is both derived from the expansion of and .
Once those repeated rules are generated, they are given

to the selection process. This process has the chance to
eliminate all those redundant rules but it has been seen
that sometimes it preserves some of them. Although in
the previous case the repeated rules were discarded, some
other times this kind of rules are preserved reinforcing
their importance in those subspaces where they take place
(see Table XXIV).

• Double-consequent linguistic rules
As a result of the use of our approach, we can observe
that some of the learned rules have multiple consequents
(Fig. 5). As was introduced in [9], this phenomenon is an
extension of the usual linguistic model structure which
allows the KB to present rules where each combination
of antecedents may have two or more consequents as-
sociated. We should note that this operation mode does
not constitute an inconsistency from the interpolative rea-
soning point of view but only a shift of the main labels
making that the final output of the rule lie in an interme-
diate zone between them both. Hence, it may have the fol-
lowing linguistic interpretation. Let us consider that the
specific combination of antecedents of Fig. 5, “is
and is ”, has two different consequents associated,

and . From a linguistic modeling point of view,
the resulting double-consequent rule may be interpreted
as follows:

IF is and is THEN is between and

These approaches enrich the representational power of fuzzy
rules allowing different kinds of rules to belong to the HRB.
Moreover, they postpone the selecting rule decisions until the
sumarization process is performed, considering the best coop-
eration between them.

As seen, not only the different granularity rules make influ-
ence in the model performance. There are many other com-
plementary improvements that should be taken into account in
order to obtain more accurate models. In the next section, we
will complement the current features by considering a new re-
inforcement strategy. There, we will evaluate these models and
analyze the future extensions of the methodology.

D. Local Processing in HSLRs

Finally, in this section, we will explore the locality of
HSLR-LM in the expansion of the linguistic rules, comparing

its operation mode with the global approach introduced by
Ishibuchiet al. in [16]. To do so, this section is divided in two
parts. First, HSLR-LM in its current form is directly compared
with the other approach, in order to analyze the influence of
the local or global processing. Then, a new capability that is
present in Ishibuchiet al.’s process and not in HSLR-LM will
be introduced in the latter in order to improve its performance.

1) Local Versus Global Rule Expansion:As was pointed out
in Section II-B, there is another method which also performs a
multigranular treatment of linguistic rules. This method, intro-
duced by Ishibuchi et al. in [16], obtains a set of fuzzy rules
by creating several linguistic partitions with different granu-
larity levels, generating the complete set of linguistic rules in
each of these partitions, taking the union of all of these sets,
and finally performing a genetic rule selection process on the
whole rule set. For the sake of simplicity, even if it was not pre-
sented as a hierarchical process, in this section we will adapt
it and refer to this method as a global HSLR learning method-
ology (G-HSLR-LM), in order to distinguish it from our local
approach (HSLR-LM).

Although G-HSLR-LM was designed to construct a fuzzy
classification system, and the main purpose of the HSLR-LM
proposed in this paper is to perform linguistic modeling, some
interesting coincidences and differences have been found be-
tween them. Let us first consider Table XXV which shows a
common notation for both hierarchical methodologies in order
to clarify their similarities and differences. We should remember
that stands for the image of the expanded bad lin-
guistic rule , which joined to the former good performance
1-linguistic rulesconstitute the set of candidate linguistic rules
to be in the final HRB.

In the following, we will consider both methodologies in
order to study their features and evaluate their performance.

• While HSLR-LM locally expands those rules which per-
form a bad modeling in some subspaces of the problem,
G-HSLR-LM performs the same task in a global way, i.e.,
it expands all rules in all granularity levels.

• Both methods perform a genetic rule selection to extract
the set of rules which best cooperates between them, i.e.,
the HRB, but on a different rule set. We should note that, in
order to allow the comparison between both hierarchical
methods, the fitness defined in Section IV-C was used in
the GA for both approaches.

Tables XXVI and XXVII show results obtained by the global
method with and without the rule selection process, in order
to evaluate its influence. % indicates the percentage in which
G-HSLR-LM is improved by HSLR-LM.

In view of the results obtained, it can be seen than our hierar-
chical methodology, HSLR-LM, which is based on a local rule
expansions, obtains better results than G-HSLR-LM in terms of
accuracy in both applications.

As regards the complexity of the models obtained, and thus,
its interpretability, HSLR-LM generates the simplest model for
the low voltage application, with three less rules than G-HSLR
model (12 against 15), while the model obtained from the latter
methodology is seven rules simpler (51 against 58) than ours
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TABLE XXV
LOCAL AND GLOBAL SELECTION PROCESSES

TABLE XXVI
RESULTS OBTAINED IN THE LOW VOLTAGE ELECTRICAL APPLICATION

CONSIDERING� = 1:1

TABLE XXVII
RESULTSOBTAINED IN THE MEDIUM VOLTAGE ELECTRICAL APPLICATION

CONSIDERING� = 1:9

in the medium voltage one. However, this low complexity in-
crease is justified by a very significant modeling error decrease:
our model is approximately a 14% better in MSEand a 17%
better in MSE .

Moreover, we must have in mind another advantage of our
methodology versus G-HSLR-LM: the fact that in HSLR-LM
there is a parameter available,, that allows the user to estab-
lish the desired balance between accuracy and description in the
generated model.

2) Introducing Ishibuchi et al.’s Rule Reinforcement in
HSLR-LM: Analyzing more deeply the operation mode of
Ishibuchi et al.’s method, we can observe that G-HSLR-LM
allows the HSLR derived from it to present both the expanded
rule and some of the rules composing its image in the next
layer RB. This is a consequence of the global expansion it
performs and results in a reinforcement of the expanded rule. A
rule reinforcement is a refinement of the action of a rule in the
subspace where it is defined, allowing the maintenance of the
rule itself, which produces a more flexible HRB structure.

Since HSLR-LM directly substitutes the expanded rule by
its image, there is no possibility for the previous kind of re-
inforcement. As introduced in Section VI-C–2, we found two
different reinforcements in HSLR-LM:weighted reinforced lin-
guistic rulesanddouble-consequent linguistic rules. These re-
inforcements were applied on the whole subspace of the rule
and produced a global refinement action. This suggests that only
the same layer linguistic rules participate on the reinforcement
process, i.e., same layer rules could model a specific subspace
of the problem.

However, a different kind of reinforcement, as a consequence
of combining the global and local approaches, can be obtained
by performing a local refinement in a specific part of the rule
subspace. That is,hierarchical reinforced linguistic rulesare
obtained where the reinforcement is produced by allowing not
only the image of the expanded rule but also the expanded
rule itself to be considered in the selection process (as done in

TABLE XXVIII
RESULTS OBTAINED IN THE LOW VOLTAGE ELECTRICAL APPLICATION

CONSIDERING� = 1:1

TABLE XXIX
RESULTSOBTAINED IN THE MEDIUM VOLTAGE ELECTRICAL APPLICATION

CONSIDERING� = 1:1.

TABLE XXX
RESULTSOBTAINED IN THE MEDIUM VOLTAGE ELECTRICAL APPLICATION

CONSIDERING� = 1:9

G-HSLR-LM). Thus, it gives the selection process the chance
to perform a more accurate search in the solution space in
order to obtain the most accurate HRB. This approach does not
eliminate the concept of “replacement” of the expanded rule,
but extends it allowing the selection process to eliminate that
rule when it cooperates bad with the rest of the rules.

This approach, resulting from incorporating a capability of
G-HSLR-LM that was not previously present in HSLR-LM, ex-
tends the former reinforcements allowing different granularity
rules to model specific subspaces of the problem, i.e., it allows
the system to perform local refinement actions.

To evaluate the different alternatives described in the last and
the present subsections, Tables XXVIII, XXIX and XXX show
results for the two applications considered comparing both local
(including the new capability) and global methodologies. To do
so, the following notation is considered to refer to the use of
hierarchically reinforced rules

.
Some conclusions related to the features of the HSLR-LM

can be drawn from the obtained results.

• As may be seenfrom the accuracy point of view, the lin-
guistic models generated from
and are clearly outperformed by
the the local hierarchical linguistic models in the approx-
imation of the test sets in every case and in most of the
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training sets. On the one hand, we can observe that the
global approach overfits in the complex low voltage appli-
cation. On the other hand, the same global approach can
not improve the accuracy of the results once it achieves
a specific level. In contrast, HSLR have achieved signifi-
cantly much accurate error levels.
It can be seen that the accuracy obtained by HSLR-LM
does not only depend on the granularity level of the lin-
guistic partitions and on the corresponding rules but there
are many other interesting features that can be also ex-
ploited. As an example, consider the use of hierarchically
reinforced rules, which shows a great improvement over
the aproximation of both training and test sets.

• From the complexity point of view, the models generated
by the HSLR-LM for the low voltage problem approxi-
mate properly the real system modeled and, what is more,
they have the advantage of being simpler than the global
ones. Moreover, the HSLR-HR models show great im-
provements with least complexity. The simplest model
composed of only 10 rules is obtained using this capa-
bility.
The models obtained by G-HSLR for the second electrical
problem are simpler than the local ones, but the latter are
almost a 35% more accurate. On the one hand, HSLR-LM
can deal with these kinds of problems by making use of
its capability of performing a tradeoff between accuracy
and description, i.e., setting the factor of expansion in a
more proper way. As an example, see the results shown in
Table XXX considering , where the global models
are also seven rules simpler, when considering Ishibuchi’s
fitness function, and nine, when using ours.

In view of the former results, we can conclude that the
HSLR-LM it is not a closed and static methodology. As said, it
is open and the detected features suggest us that it could still
be improved. Moreover, HSLR-LM is not based on simply
grouping together different granularity level linguistic rules
but it composes a methodology supported by many interesting
features which, in different ways, allow us to generate more
accurate models with an appropriate description level.

VII. CONCLUDING REMARKS

In this paper, an HSLR-LM has been proposed, which is a
new approach to design linguistic models accurate to a high
degree and suitably interpretable by human beings. An HKB
learning process capable of automatically generating linguistic
models following the said approach has been introduced as well,
and its behavior has been compared to other modeling tech-
niques in solving two different problems. The proposed process
has obtained very good results.

On the one hand, a new approach to understand linguistic par-
titions has been shown, the HDB. This concept does not change
the meaning of the linguistic variables neither their descriptive
power, it just allows us to represent the information in a more
accurate way with more granularity. As was said, the HKB struc-
ture, allowing each rule to be expanded and replaced by its hier-
archical image, has demostrated to improve the model accuracy

in some specific space zones presenting a higher complexity.
We have shown that although more accurate systems can be ob-
tained from a bigger number of rules, a small proper increase can
still produce accurate results. Moreover, HSLR-LM provides a
way to perform a tradeoff regulation between the accuracy and
interpretability of the systems modeled.

As well as that, HSLR-LM can still be improved by: finding
the best and more proper weight of each rule and/or of its
multiple consequents, introducing more layers and an iterative
process to deal with them, studying the effects of considering
hierarchical reinforced rules as a partially revocable extension
of the methodology search algorithm and evaluating different
criteria to expand rules. On the other hand, we can also consider
it as an iterative design method, from the user point of view. It
is possible to develop an automatic method which iteratively
search through different levels of the HKB (i.e., more than two
levels). All of these things will be treated as extensions of the
methodology in a future work.

Finally, as was said by Goldberg [11], if the future of compu-
tational inteligence “lies in the careful integration of the best
constituent technologies,” hierarchical and hybrid fuzzy sys-
tems and GAs require more than simple combinations derived
from putting everything together, but a more sofisticated anal-
ysis and design of the system components and their features.
This paper present progresses in a program of research devoted
to find the most proper integration forms and to explore the
HSLRs capabilities. As said, we have shown an open method-
ology and the obtained results encourage us to continue working
in future extensions and validations for the HSLR-LM.

APPENDIX I
WM RULE GENERATION METHOD

The inductive RB generation process proposed by Wang and
Mendel in [27] is widely known because of its simplicity and
good performance. It is based on working with an input-output
training data set, , representing the behavior of the
problem being solved and with previous definition of the DB
composed of the input and output primary linguistic partitions
used. The linguistic rule structure considered is the usual
Mamdani-type rule with input variables and one output
variable presented in Section III.

The generation of the linguistic rules of this kind is performed
by putting into effect the following three steps.

1) To generate a preliminary linguistic rule set: This set
will be composed of the linguistic rule best covering
each example (input-output data pair) existing in the
input–output data set . The structure of these
rules is obtained by taking a specific example, i.e., an

-dimensional real array ( input and 1 output
values) and setting each one of the rule variables to the
linguistic label associated to the fuzzy set best covering
every array component.

2) To give a degree of importance to each rule: Let
IF is and and is THEN is

be the linguistic rule generated from the example
. The degree of
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importance associated to it will be obtained as follows:
.

3) To obtain a final RB from the preliminary linguistic rule
set: If all rules presenting the same antecedent values have
associated the same consequent one in the preliminary set,
this linguistic rule is automatically put (only once) into
the final RB. On the other hand, if there are conflictive
rules, i.e., rules with the same antecedent and different
consequent values, the rule considered for the final RB
will be the one with higher importance degree.

APPENDIX II
THR RULE GENERATION METHOD

This method is based on encoding all the cells of the com-
plete decision table in the chromosomes. In this way, Thrift [26]
establishes a mapping between the label set associated to the
system output variable and an ordered integer set (containing
one more element and taking 0 as its first element) representing
the allele set. An example is shown to clarify the concept. Let

be the term set associated to the output
variable, and let us note the absence of value for the output vari-
able by the symbol “–.” The complete set formed joining this
symbol to the term set is mapped into the set .
Hence the label NB is associated with the value 0, NS with

with 4 and the blank symbol “–” with 5.
Therefore, the GA employs an integer coding. Each one of the

chromosomes is constituted by joining the partial coding asso-
ciated to each one of the linguistic labels contained in the deci-
sion table cells. A gene presenting the allele “–” will represent
the absence of the fuzzy rule contained in the corresponding cell
in the RB.

The GA proposed considers an elitist selection scheme and
the genetic operators used are of different nature. While the
crossover operator is the standard two-point crossover, the mu-
tation operator is specifically designed for the process. When
it is applied over an allele different from the blank symbol, it
changes its value one level either up or down or to the blank
code. When the previous gene value is the blank symbol, it se-
lects a new value at random.

Finally, the fitness function is based on an application specific
measure. The fitness of an individual is determined by com-
puting the use of the FRBS considering the RB coded in its
genotype.
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