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Linguistic Modeling by Hierarchical Systems of
Linguistic Rules

Oscar Cordon, Francisco Herrera, and Igor Zwir

Abstract—in this paper, we are going to propose an approach to allows us to improve the accuracy of these kinds of models
design linguistic models which are accurate to a high degree and without losing its interpretability to a high degree. This ap-

may be suitably interpreted. This approach will be based on the 550 considers the development of a hierarchical system of
development of a Hierarchical System of Linguistic Rules learning

methodology. This methodology has been thought as a refinementlm(~_:]u!StIC rgles learning methOdc’Ing (HSLR'LM)’ Wh0§e “r_]'
of simple linguistic models which, preserving their descriptive guistic variables are defined on linguistic partitions with dif-
power, introduces small changes to increase their accuracy. To ferent granularity levels.

do so, we extend the structure of the Knowledge Base of Fuzzy e extend the knowledge base (KB) structure of linguistic
Rule Base Systems in a hierarchical way, in order to make itmore pppgg hy introducing the concept dyers” In this exten-
flexible. This flexibilization will allow us to have linguistic rules . T o .

defined over linguistic partitions with different granularity levels, sion, which is also a generallzatlon., the KB, 'S{ ComPQSed O‘f a
and thus to improve the modeling of those problem subspaces Set of layers where each one contains linguistic partitions with
where the former models have bad performance. different granularity levels and linguistic rules whose linguistic

Index Terms—Genetic algorithms, hierarchical knowledge base, va_riables take valuesinthese partiti_o_ns. ThisKBis cglled hie_rar-

hierarchical linguistic partitions, linguistic modeling, Mamdani-  chical knowledge base (HKB), and it is formed by a hierarchical
type fuzzy rule-based systems, rule selection. database (HDB) and a hierarchical rule base (HRB), containing
linguistic partitions of the said type and linguistic rules defined
over them, respectively.

To do so, this paper is set up as follows. In Section 11, the bal-
OWADAYS, one of the most important areas for the apance between accuracy and interpretability in linguistic mod-
plication of Fuzzy Set Theory as developed by Zadeh [3&)ing is analyzed, as well as previous approaches to hierarchical

are fuzzy rule-based systems (FRBSs). These kinds of systésy systems are discussed. In Section Ill, a description of the
constitute an extension of classical rule-based systems, becadig8 and the relation between its components is regarded. In
they deal with linguistic rules instead of classical logic rulessection IV, a methodology to automatically design an HSLR

Thanks to this, they have been successfully applied to a wiftem a generic linguistic rule generating method is introduced.

range of problems from different areas presenting uncertainty Section V, a linguistic modeling process obtained from the

and vagueness in different ways [1], [13], [21], [19]. HSLR-LM and a well-known inductive linguistic rule genera-

One of the most important applications of FRBSSistem tion process is applied to solve two different applications. In

Modeling [1], [21]. It is possible to distinguish between twoSection VI, we discuss some features of our methodology. Fi-
types of modeling when we are working with FRB&sguistic  nally, in Section VII, some concluding remarks are pointed out.
modeling[25] andfuzzy modelinfl], according to the fact that

the main requirement is the interpretability or the accuracy of Il. BACKGROUND AND FRAMEWORK

the model, respectively. In fact, we usually find these two co
tradictory requirements, the accuracy and the interpretabil
of the model obtained. The choice between how interpretableAs we have said, two types of modeling with FRBSs are dis-
and how accurate the model must be usually depends on tifguished according to the fact that the main requirement is the
user’s needs for a specific problem and will condition the kinighterpretability or the accuracy of the model: linguistic mod-
of FRBS selected to model it. eling and fuzzy modeling, respectively. These requirements are

Linguistic modeling has a problem associated, which is igdways contradictory.

lack of accuracy in some complex problems. In this paper, weThe KB structure usually employed in the field of linguistic

are going to propose a simple linguistic modeling refinememntodeling has the drawback of its lack of accuracy when working

approach—developed by means of linguistic FRBSs—whigtith very complex systems. This fact is due to some problems
related to the linguistic rule structure considered, which are a
consequence of the inflexibility of the concept of linguistic vari-
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» The homogenous partitioning of the input and outpyirevious hierarchical approaches, activating independently
spaces when the input-output mapping varies in coreach rule as itis done in the conventional inference mechanism.
plexity within the space is inefficient and does not scalBesides, we use a genetic selection process to obtain a compact
to high-dimensional spaces. set of rules that have good cooperation between them.

» The size of the rule base (RB) directly depends on theFinally, another approach generated in the same line have
number of variables and linguistic terms in the systerbeen performed by Ishibuchi et al. in [16]. Although it is not
Obtaining an accurate FRBS requires a significant granexplicitly shown as an hierarchical methodology, because of its
larity amount, i.e., it needs of the creation of new linguistiase of different granularity partitions, it can be adapted as such
terms. This granularity increase causes the number of rulésds of models by our present proposal. There, a genetic-algo-
to rise significantly, which may take the system to lose thi¢thm-based method for removing unnecessary rules from fuzzy
capability of being interpretable for human beings. if—thenrule sets corresponding to several fuzzy partitions is pro-

At least two things could be done to solve many of theg@wsed. While this approach generates the whole set of fuzzy
problems and to improve the model accuracy. On the one handges from each different granularity level fuzzy partition and
we can use fuzzy modeling, with the consequence of losing ttien performs a genetic rule selection over all rules, we will
model interpretability. On the other hand, we can refine a lifilecus our attention on those rules which model a subspace of the
guistic model trying not to change too much the meaning pfoblem with significant error. That is, only these bad rules are
the linguistic variables neither the descriptive power of the finakpanded in a hierarchical way and then joined with the good
FRBS generated. ones, in order to perform a selection process which produces

In this paper, we will focus our attention on the second good cooperation among them. All of these is done with the
choice. Our methodology is proposed as an strategy to impraugpose of improving the system accuracy, preserving its de-
simple linguistic models, preserving their structure and descrigeription as far as possible.
tive power, and reinforcing only the modeling of those problem
subspaces with more difficulties by a hierarchical treatment of I1l. HIERARCHICAL KNOWLEDGE BASE

the rules generated in these zones. In other words, Weproposeg th d ibed in Ssection Il-A and t |
refinement of simple linguistic models which introduces small ue the reasons described In Ssection 1i-A and o Solve many

changes to increase their accuracy. of these problems, we present a new more flexible KB struc-
The purpose of this extension is the flexibilization of the KI:_g)ure that allows us to improve the accuracy of linguistic models
V\éithout losing their interpretability: the HKB, which is com-

to become an HKB. This is possible by the development of d of £l We defi | by i .
new KB structure, where the linguistic variables of the Iinguisti%Ose ofaset of layers. We define & layer by its components in
he following way:

rules could take values from fuzzy partitions with different graﬁ

ularity levels. To do so, we will use an HKB of two layers, i.e.,

starting with an initialayer¢, we producéayert -+ 1 in order to layer(t,n(t)) = DB(%, n(t)) + RB(t, n(t)) 1)

extract the final system of linguistic rules. This fact allows the

HSLR to perform a significantly more accurate modeling of thwith

problem space. « n(t) being the number of linguistic terms that compose the
partitions of layer;

» DB(¢,n(t)) being the Data Base (DB) which contains the
linguistic partitions with granularity levei(¢) of layert;

In this section, we will discuss the reach of our present  RB(t, n(t)) being the RB formed by those linguistic rules
methodology, comparing it with other previous approaches whose linguistic variables take values in the former parti-
oriented to hierarchical processors, hierarchical fuzzy inference tions.
and rule extraction from a global hierarchical KB. At this point, we should note that, in this work, we are using

One of the previous hierarchical approaches have been Ighguistic partitionswith the same number of linguistic terms
rected to design a series of hierarchical fuzzy processors wiidh all input—output variables, composed of triangular-shaped,
a small number of input variables distributed in each processsyfmmetrical and uniformly distributed membership functions.
[22]. While the computational efficiency of the distributed struc- From now on and for the sake of simplicity, we are going
ture of the fuzzy processors is evident, the aggregation of thdsegefer to the components of a DBn(¢)) and RBt, n(t)) as
intermediate variables will contribute to lose the initial meaninglinguistic partitionsand¢-linguistic rules respectively.
of the model, diminishing its descriptive power. This set of layers is organized as a hierarchy, where the order

Other works were also developed by Yager [28], [29], Gegad$ given by the granularity level of the linguistic partition defined
et al.[10] and Ishibuchiet al. [14], [15] in order to aggregate in each layer. That is, given two successive layeasd?t + 1,
different priority levels of information in a hierarchical infer-then the granularity level of the linguistic partitions of layerl
ence process. is greater than the ones of layerThis causes a refinement of

As said, our approach is oriented to produce hierarchidfie previous layer linguistic partitions.
rules, i.e., FRBSs whose RB is composed of linguistic rulesAs a consequence of the previous definitions, we could now
defined on fuzzy partitions with different granularity levels. Ouélefine the HKB as the union of every layer
purpose is to preserve the descriptive power of the system of
rules and to simplify the inference mechanism adopted by other HKB = U,layer(¢, n(t)). (2)

B. Previous Approaches to Hierarchical FRBSs
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In the remainder of this Section, we are going to study the lin- DB(1,3)
guistic partitions and their extension to consider them as com-
ponent parts of the DB, n(t)) of thelayer(t, n(¢)). Then, we
are going to describe the relation between DBs from different
layers (e.g.t andt + 1), and to develop a methodology to build
them under certain requirements. Finally, we will explain how
to relate these DBs with linguistic rules, i.e., to create RBs from
them.

A. Hierarchical Data Base

In this section, we are going to show how to build the HDB,
bearing in mind that it is organized in a hierarchy, where the
order is given by an increasing granularity level of the linguistic
partitions.

To extend the classical linguistic partition, let us consider a
partition P of the domainl/ of a linguistic variableA in the
layert:

DB(2)5)

Py ={51,.... 5w} )

s3 S;

with S (k = 1, ..., n(t)) being linguistic terms which describe 53
the linguistic variabled. These linguistic terms are mapped into
fuzzy sets by the semantic functia¥, which gives them a Fig. 1. Transition from a partition in DE, 3) to another one in DR, 5).
meaning:My : Si — ps, (u) [32].

We extend this definition oF” allowing the existence of sev- TABLE |
eral partitions, each one with a different number of linguiStic  ,crarcHY OF DBS STARTING FROM TWO OR FOUR INITIAL TERMS
terms, i.e., with a different granularity level. To do so, we add
a parameten(t) to the definition of the linguistic partitiod,

83 83

which represents the granularity level of the partitions contained DB(t,n(t)) DB(t:n(t))
in the layert where it is defined DB(1,2) DB(1,4)
DB(2.3) DB(2,7)
P = { MO SZ((:))} 4) DB(3.5) .. DBG3.13

DB(4,9) DB(4,25)

whereP%") ¢ DB(t, n(t)). : :
In order to build the HDB, we develop an strategy which sat- DB(6.33) DB(6.97)
isfies two main requirements : :

« to preserve all possible fuzzy set structures from one layer
to the next in the hierarchy;
« to make smooth transitions between successive layers.

On the one hand, we decided to preserve all the membership ) )
function modal points, corresponding to each linguistic term, Generically, we could say that a DB from a layet- 1 is
through the higher layers of the hierarchy in order to fuifiiPbtained from its predecessor as
the first requirement. On the other hand, and with the aim of
building a newt + 1-linguistic partition, we just add a new lin-
guistic term between each two consecutive terms oftifie- DB(t, n(t)) — DB(t + 1,2 n(t) — 1) (5)
guistic partition To do so, we reduce the support of these lin- o S )
guistic terms in order to keep place for the new one, which is [§hich means that a-linguistic partition in DB(#, n(t)) with
cated in the middle of them. An example of the correspondenfed) linguistic terms becomes (@ + 1)-linguistic partitionin
between a linguistic partitionand a 2linguistic partition with ~ DB(t + 1,2 - () — 1). _ _ o
n(1) = 3 andn(2) = 5, respectively, is shown in Fig. 1. In order to satisfy the previous requirements, each linguistic

As a result of the above considerations, Table | shows tH¥m Sy "”-term of orderk from the t-linguistic partition in
number of linguistic terms which is needed in eadiguistic DB(t, n(t))—is mapped intc5," !, preserving the former
partition in DB(¢,n(t)) to satisfy the previous requirementsmodal points, and a set ef(t) — 1 new terms is created, each
The values of parametext) represent thelinguistic partition one betweem?,’j(t) andSZJ(:I) (k=1,...,n(t) — 1). This map-
granularity levels and depend on the initial value.of) defined ping is clearly shown in Table Il and a graphical example is to
in the first layer (e.g., 2 or 4 in Table I). be found in Fig. 1.
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TABLE 1l

1,2 - n(t) — 1). The remaining rules preserve their location in
MAPPING BETWEEN LINGUISTIC TERMS FROM SUCCESSIVEDBS

RB(¢, n(t)). An explanation for this behavior could be found in
the fact that it is not always true that a set of rules with a higher

DB(t,n(t)) DB(t+1,2-n(t)-1) granularity Ievgl, performs a better modeling of a problgm than
o 21 another one, with a lower granularity level. Moreover, this is not
-1 — 2k=3 true for all kinds of problems, and what is more, it is also not
szt true for all linguistic rules that model a problem [8].
s = s
2 n(t)—1 IV. SIMPLE LINGUISTIC MODELS REFINEMENT: A TwO-LEVEL
St HSLR LEARNING METHODOLOGY
s e

Our methodology is proposed as an strategy to improve
simple linguistic models preserving their structure and descrip-
tive power, reinforcing only the modeling of those problem

L . . . subspaces with more difficulties. Due to this reason, our HSLRs
In this view, we can generalize this two-level successive Iayvevr

definition for n(), for all layerst in the following way: il be based on two hierarchical levels, i.e., two layers.
™Mb y g way: In the following, the structure of the learning methodology

and its most important components are described in detail.

n(t)=(N—-1)-2"t +1 (6)

and: A. Structure of the Two-Level HSLR Learning Methodology

n(l) =N Our HSLR-LM is composed of three main processes which

will be described in depth in the following subsections.
i.e., the number of linguistic terms in the initial layer partitions. , The first process generates the HKB following the descrip-
tions given in Section IIl. This process is presented in Sec-
tion IV-B.
The second process performs a genetic rule selection task
that removes the redundant or unnecessary rules from the

B. Hierarchical Rule Base

In this section, we explain how to develop an RB from layer *
t+1based on RB,n(t)), DB(¢,n(t)) and DBt +1,2 -n(t) —

1), in order to create an HRB. Later, in the following section,
we are going to give a concrete method to perform this task for
a two-layer HKB. *

First, let us define thet-linguistic rules contained in
RB(t,n(t)) as those rules whose linguistic variables take
values from the-linguistic partitionscontained in DBz, n(t)).
Thet-linguistic rulestructure is formed by a collection of well-
known Mamdani-type linguistic rules

R IF 21 is S2Y and . .. and,, is 57
THEN y is B

HRB, in order to select a subset of rules cooperating better.

It is explained in Section IV-C.

In the third process, a user evaluation process extends this
approach to an iterative process, where he could adapt
some parameters and re-execute the processes to achieve
better results. It is described in Section IV-D.

It basically consists of the following steps which are listed in
Table 11l and may be also graphically seen in Fig. 2.

B. Hierarchical Knowledge Base Generation Process
In this section, we present our methodology to generate an

HKB. To do so, we use a linguistic rule generating (LRG)
with 21, . ..,z andy being the input linguistic variables andmethod, which, as aninductive method, is based on the existence

the output one, respectively, and wigg,” ... s7" pr)

1 am g

being linguistic terms from different-linguistic partitionsof

DB(t, n(t)), with fuzzy sets associated defining their meaning0sed ofp input-output data pairs’

of a set of input-output dat&'rps and a previously defined
DB(1,n(1)). The datasebrps = {c!,..., ¢, ..., e} iscom-

= (ext, ... exp, ey'),

In this contribution, we will use the Minimum-norm in the which represent the behavior of the system being modeled.

role of conjunctive and implication operator and tBenter of

Our HKB generation process has three main steps, that are

Gravity weighted by the matching degi& as defuzzification listed below.

strategy.

The main purpose of developing an HRB is to model the
problem space in a more accurate way. To do so, thdse
guistic rulesthat model a subspace with bad performance are
expanded into a set @t + 1)-linguistic rules which become
theirimage in RBt 4+ 1,2 - n(¢) — 1). This set of rules models
the same subspace that the former one and replaces it.

We should note that not aitlinguistic rulesare to be ex-
panded. Only thoselinguistic ruleswhich model a subspace
of the problem with a significant error, become the ones that
are involved in this rule expansion process to build thé/RB

RB(1,7(1)) = LRG — method(DB(1,7(1)), ETps)

1) RB(1,n(1)) generation process where the rules of

the initial layer(t = 1) are generated from the present
DB(1,n(1)).

An LRG-method is run with the terms defined in the
present partitions, that are iBB(1,n(1)), denoted as:

()

with n(1) = N and the initial DR1, (1)), given by an
expert or by a normalization process considering a small
number of terms.
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Adapt Parameter p(1)
DB(In(1))
RB(1,n(1)) Generation Process
v
RB(1.,n(1))
\_/_—
\ 4
»| Adapt Parameter «
HKB Generation
Process
no
DB(2,2.n(1)-1)
RB(2,2.n(1)-1) Generation Process
v
Summarization Process
Y HRB Selecti
HRB Selection Process clection
Process
Y
no Acceptable UserPl;?ZZg:;ltion
Error ?
()
v
HKB
Fig. 2. HSLR-LM.

2) RB(2,2-n(1) — 1) generation processwhere the lin- to the global performance of the whole RB. These
guistic rules from layer 2 are generated taking into ac- bad performancé-linguistic rulesare going to be
count RE1,n(1)),DB(1,n(1)) and DB(2,2-n(1) — 1). replaced by subsets @flinguistic rules which are

a) Bad performance 1-linguistic rule selection going to be generated as their image. To do so, we
process.This process performs the selection of have to follow the next steps:
those 1-linguistic rulesfrom RB(1,n(1)) which i) Calculate the error ofRB(1,n(1)) as a
will be expanded in RB2,2 - n(1) — 1), based whole Compute MSEEThs, RB(1,2(1))).
on an error measure. This measure analyzes the The mean square error (MSE) calculated
accuracy of the modeling performed by edelin- over a training data sek'rps, is the error

guistic rulein its definition subspace with respect measure used in this work. Therefore, the
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TABLE Il

HSLR LEARNING METHODOLOGY

1. Hierarchical Knowledge Base Generation

Process

(a) RB(1,n(1)) Generation Process

(b) RB(2,2-n(1)-1) Generation Process

(c) Summarization Process

2. Hierarchical Rule Base Genetic Selection

Process

3. User Evaluation Process

MSE of the entire set df-linguistic rulesis
represented by the following expression:

MSE(Erps, RB(1,n(1)))

 Stcpy (o = s(eat)?
2. |Erps|

(8)

with s(ez!) being the output value obtained
from the RE1, n(1)), when the input vari-
able values arez! = (ex!,...,cz!,), and
eyt is the known desired value.

Calculate the error of each individual 1-lin-
guistic rule.Compute MSEF;, R?(l)). We
need to define a subset é&frps, E;, to be
used to calculate the error of the rLﬂ?é‘(l).
The setF; is a set of the examples matching
the antecedents of the rul¢o a specific de-
greer:

Ei:{eleETDs/Min (’“‘SZ"J” (ea:ll) reees Hign) (ea:in)) ZT}

MSE (E R$<1>) -

ii)

9)

wherer € [0,1]. Then, we calculate the
MSE for al-linguistic rule B} as

Yeiep, (cyt — siext))?
2By

(10)

with s;(ez') being the crisp output value
obtained when the consequentﬁf(l) is
defuzzified. We should note that any other
local error measure can be considered with
no change in our methodology, such as the
one shown in [30].

Remark 1: We should note that in this
paper we consider = 0.5 in order to em-
phasize the most influential examples re-
sponsability on the bad or good condition
of the rule. That is, the neighbor examples
which define the nearest decision surface in-
duced by the rule prototype [20].

Select the 1-linguistic rules with bad per-
formanceSelect those batHlinguistic rules

which are going to be expanded, making the
difference from the good ones

RBuaa(1,n(1)) = {R;‘“) /MSE (Ei,R;‘(l)) >

- MSE(Erps, RB(L, n(1)) } (11)

)
RBgooa(1, (1)) = {R?(l) /MSE (Ei,R?(l)) <a
)

- MSE(Erps, RB(L, n(1)) } 12)

with « being a threshold that represents a
percentage of the error of the whole RB,
which determines the expansion of a rule.
It may be adapted in order to have more
or less expanded rules. It is noteworthy that
this adaptation is not linear and, as a con-
sequencethe expansion of more rules does
not ensure the decrease of the global error of
the modeled systeror exampleg = 1.1
means that 4-linguistic rulewith an MSE

a 10% higher than the MSE of the entire
RB(1,7(1)) should be expanded.

Now, for eachR!"™ € RBy,qa(1,n(1)):

b) Obtain theDB(2,2-n(1) —1). Create DB, (2,2 -
n(1) — 1) for all input linguistic variables:; (j =
1,...,m)and DB, (2,2-n(1) — 1) for the output
linguistic variabley.

i) Select the 2-linguistic partition termSelect

those terms from DB, 2- n(1) — 1) that are
going to be contained in t&linguistic rules
considered as the image of the previous layer
bad rules.

Before describing this process and for the
sake of clearness, we are going to refer to
DB(1,n(1)) as DB, (1,n(1)) ( = 1,...,
m), meaning that it contains thkelinguistic
partition where the input linguistic variable
x; takes values, and as B, n(1)) for the
output variabley. Even if all1-linguistic par-
titions contained in a DBL, (1)) have the
same number of linguistic terms, they are de-
fined over different domains corresponding to
each linguistic variable.

For all linguistic terms considered iR;”(l),
ie., S;’Jl(l) defined in DB,,(1,7(1)) and as-
sociated to the linguistic variablas, select
those termss; "~ in DB.,(2,2 - n(1) —

1) which significantly intersect them. Conse-
quently, for B defined in DB,(1,n(1))
and associated to the linguistic variahje
select those term&> ")~ in DB, (2,2 -
n(1) — 1) which significantly intersect them.
That is, perform the selection of those terms
of the 2-linguistic partitionthat describe ap-
proximately the same subspace that the terms
included in &™), but with a higher granu-
larity level.
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In this work we are going to consider thatwhere
two linguistic terms have asignificant in- S Small;
tersectiori between each other, if the max- M  Medium;
imum cross level between their fuzzy sets in L Large;
a linguistic partition overcomes a predefined vV Very.
thresholdé. In other words, the set of terms  Let us consider the following bad performantdinguistic
from the2-linguistic partitionsfor the expan- rule to be expanded:

sion of the1-linguistic rule R?(l), are se- 3 o3 o3 3
lected in the following way: R IF x1is 57 andxs is S;; THEN y is B;

1 2m(1)—1 where the linguistic terms are
1(sp®) = {si"@ " epBy, (2.2 0(1) - 1)/

S =52 S‘?’Q =5 B=g5
MaXuch Min {usn(m (u), HSZ-71(1)—1(U)} > (5} ‘ ‘
ig h

T

and the resulting setswith 6 = 0.5 are

(13)
3) 5 Qb 3) 5 Qb
. I(BY) = F() € Dy(2,5)
Maxycy Mm{uB;<1>(v),uB]zL~n<1>—1(v)} > 6} I(R}) =1(S3)x1(S%) x1I(BY).
(14)

Therefore, it is possible to obtain at most f@ilinguistic rules
wheres € [0, 1]. generated by the LRG-method from the expanded Rjle

i) Combine the previously selected sets LRG (I (R?), E;) = {R2, R%, B3, RS,

1(s;Vy and 1(B;"Y) by the following
expression This example is graphically shown in Fig. 3. In the same way,
other bad performance neighbor rules could be expanded simul-
I (R?(l)) =1 (Sil(l)) Xex I (ngll)) x I (Bf(l)) (15) taneously.
Remark 2: We should note that in the latter example the value
with ](R?(U) C DB(2,2-n(1) — 1). u;ed for the parametérwas 0.5. Each sm(S;f”j) that we con-
¢) Extract 2-linguistic rules from the combined se?'der in the e>§ample is a consequence of the use of this value
lected 2-linguistic partition termsProduce a set of N the expansion task of the rulg?. Thus, the problem sub-
L 2-linguistic rules which are the expansion of theSPace resulting from that bad 1—I|r_19wst|c rule expansion is the
bad1-linguistic rule R This task is performed ON€ represented by the small white squade) 5 U C'U D)
by an LRG-method, Which take[e{R;‘(l)) andthe M Fig. 3. On the other hand, if we considee 0.1, the set of

set of input—output dat&; as its parameters selected linguistic terms would be:
I(8%)=1{Vs3,85, M%), I(S})={vs® s M
CLR (R} = LRG — method (1 (£ . E,) (52) =1 Yoo I1(8%) ={ }
2. (1)-1 (1)1 and the said subspace would be composed of the union of the
_ {Ri{n( U } (16) former small white square and the grey one.

with CLR(RT") being the image of the expanded~- Hierarchical Rule Base Selection Process

linguistic ruIeR?(l), i.e., the candidates to beinthe Inthe JCLR, where there are coexisting rules of two different
HRB from rulei. hierarchical layers, it may happen that a complete s@tlof-

3) Summarization process Obtain a joined set of candi- guistic rules which replaces an expanded rule, does not produce
date linguistic ruleJCLR), performing the union of the good results. This means that there will be higher errors, as itis
group of the new generate2tlinguistic rulesand the shown on the left hand side of Fig. 4. However, a subset of this
former good performance-linguistic rules set of 2-linguistic rulesmay work properly, with less rules that

have good cooperation between them, and with the good rules

n(l from the previous layer. This is shown on the right-hand side
JCLR = RByooa(1,n(1)) U <U CLR (Ri ( ))> (17) of Fig. 4. Thus, the JCLR set of rules generated may present re-
! dundant or unnecessary rules making the model using this HKB

with R?(l) € RByaa(1,n(1)). less accurate. . . _ S
In the following, we show an example of the whole expansion !N order to avoid this fact, we will use a genetic linguistic
process considering these linguistic partitions. rulg ;electlon process W|t_h the aim of simplifying the |n|t|al.l|n-
Let us considen(1) = 3, guistic rule set by removing the unnecessary rules from it and
generating an HKB with good cooperation. In this paper, we
DB, (1,3) = DB,,(1,3) = DB,(1,3) = {S®, M?, L?}; consider a genetic process [6], [12], [16] to put this task into ef-
DB,,(2,5) = DB, (2,5) = DB, (2,5) fect, but any other technique could be considered

={VS§° 85 M° L7 VL®} HRB = Selection Process(JCLR). (18)
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o iF o ir 5 AND & ir 5 THEN vir 5
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s s VST AN 5, s 57 THEN Fdy FlA B
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LAY FiAV ] FiAL),
Flavb o el e £ (23]

Fig. 3. Example of the HRB Generation Process.

Remark 3: It should be noted that the set JCLR is a unifiede., with all¢; = 1. The remaining chromosomes are selected
set which contains allt + 1)-linguistic rules obtained from the at random.
simultaneous expansion of each dihguistic rules, aswellas  As regards the fitness functidri(C}), it is based on a global
the good ones from the same layer. Selection is performed omeeor measure that determines the accuracy of the FRBS en-
on this set during each iteration. coded in the chromosome, which depends on the cooperation
The genetic rule selection process [6], [12] is based on a bével of the rules existing in the HRB
nary coded genetic algorithm (GA), in which the selection of the

individuals is performed using the stochastic universal sampling F(C;) = MSE(Erps, chromosome)

procedure together with an elitist selection scheme, and the gen- Dt eyt — slext))? 20

eratiqn of the offsprin_g population is put into effect by using_ the - 2 - |Erps| (20)

classical binary multipoint crossover (performed at two points) . ]

and uniform mutation operators. with s(ez!) being the output value obtained from RB encoded
The coding scheme generates fixed-length chromosom@s?t‘e chrorr;osome, vyhen the input variable valuescafe=

Considering the rules contained in JCLR counted from ,to (¢21; -, ¢;,), @ndey” is the known desired value. _

anz-bit stringC = (cy, . .., c.) represents a subset of rules for We usually work with the MSE over a training data set, as it

the HRB, such that was defined in Section IV.B, although other measures may be

used.

IFc¢; =1 THEN (R, € HRB)ELSE (R; ¢ HRB). (19) )
D. User Evaluation Process

The initial population is generated by introducing a chromo- It should be kept in mind that the level of precision which is
some representing the complete previously obtained rule swttained by applying the HSLR-LM is not fixed. However, this
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Fig. 4. Rule selection process.

methodology allows the userto adapt the level of precisionto pes-1) — 1) is created in order to extract the final system of lin-
centages of error suggested by an expert. This process depenlstic rules.
on user’s decisions, based on an error measure of the obtainelor the sake of simplicity, in the following applications we are
model, and on the kind of problem to be modeled, to reach t@aing to refer to those experiments produced by the HSLR-LM
suitable set of rules which could perform the modeling task. Frony the following notation:
this poiqt of view, the application of our mgthodology coulc_i also HSLR(LRG-method, n(1),2 - n(1) — 1)
be considered as anuser controlled iterative process. Inthis sense,
the user could adapt the granularity of the initial linguistic partwheren(1), and2 - n(1) — 1 are the initial and final granularity
tions and/or the threshold which determinesitdinguisticrule levels of the HKB, respectively, e. dSLR(WM, 3, 5).
will be expanded into a set @tlinguistic rules and apply again ~ In addition, a reference to an application of WM is repre-
the methodology in order to obtain a better model. sented by the following expression:

This process works in this way: if the error measure of the WM(r)
obtained model (i.e., global error) does not satisfy the user re-
quirements, then he can adapt the paramte’tem 2 in the with being the granularitylevel ofthe Iinguistic partitions used
HKB generation process, and/or reinitialize the process witHrathe method.
different granularity for the initial layer linguistic partition. The results obtained in the experiments developed are col-

Finally, we want to point out that our methodology performigcted in tables whergt Rt stands for the number of rules of
smooth refinements with small changes in order to improve tHe corresponding HRB, MSE and MSE;; for the values ob-
model. In the following, we will show an example of a difficulttained in the MSE measure computed over the training and test
modeling real-world problem, in which the use of high granulata sets, respectively. % indicates the relative error between
larity initial linguistic partitions does not improve the generawo algorithms((e4 — ep/e.) - 100)) [3], e.g., the percentage
error of the Samp|e and what is more, gets it worse. in which the WM-based model is imprOVEd by the HSLR. In
the following experiments, we are going to compare the model
generated by HSLR-LM, i.eHSLR(WM, n(1),2 - n(1) — 1),

V. EXAMPLES OF APPLICATION: EXPERIMENTS AND ANALYSIS with the ones generated WM(”(D) andWM(2 . 71(1) . 1)'

OF RESULTS

With the aim of analyzing the behavior of the proposeﬁ' The Electrical Engineering Distribution Problems
methodology, two real-world electrical engineering distribution Two problems will be tackled: to relate some characteristics
problems in Spain have been selected [7], [23], [24]. of certain village with the actual length of low voltage line con-

The LRG-method considered for the previous experimentined in it, and to relate the maintenance cost of the network
tion is the one proposed by Wang and Mendel in [27], that we,

Il as WM-method in the followina. This method is briefly de- We should note the appearance of repeated rules—generated by the HKB
ca ] k - g. y generation process as a consequence of the overlapping produced in the selec-
scribed in Appendix I. tion of the (¢ 4 1)-linguistic partition terms—does not increase the compu-

As we have said. this methodology has been thought as alpdional cost of the process, because the rules are processed only once in the
fi fsi | l’. .. del hich HKB of inference process and the result is multiplied by the number of times that it is
inement of simple linguistic models, which uses an Of tWspeated in the set of rules. As a consequence, those rules which are repeated
layers, i.e., starting with an initidhyer(1,n(1)), alayer(2,2 - are considered as a single one in the calculus of the complexity.
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TABLE IV TABLE V
NOTATION CONSIDERED FOR THEPROBLEM V ARIABLES PARAMETERS
Symbol Meaning Parameter | Decision
1 Number of clients in population Generation
T2 Radius of ¢ population in the sample 8 -(2-n-1)-linguistic partition terms selector- 0.1
Y Line length, population ¢ 7 -used to calculate Ey 0.5
« -used to decide the expansion of rule- 1.1
GA Selection
installed in certain towns with some of their characteristics [7].  Number of generations 500
In both cases, it would be preferable that the solutions obtained Population size 61
verify another requirement: they have not only to be numerically ~Mutation probability 0.1
accurate in the problem solving, but must be able to explain how Crossover probability 0.6
a specific value is computed for a certain village or town. Thatis,
it is interesting that these solutions are interpretable by human TABLE VI
beings to some degree. RESULTS OBTAINED IN THE LOW VOLTAGE ELECTRICAL APPLICATION
1) Computing the Length of Low Voltage LineSometimes, CONSIDERING HSLR(WM, 3, 5)
there is a need to measure the_ amount of electricity lines that Method MSE T M3E [ Tone T % TZR
an electric company owns. This me_asu_rement may l_)e useful Ve 504276 | 696566 | 69.88 | 73.99 | 7
for several aspects such us the estimation of the maintenance 508446 | 282058 | 40.03 | 40.67 | 13
costs of the network, which was the main goal of the problem gsir(wwss) | 178950 | 167318 12

presented in Spain [7], [24]. High and medium voltage lines can
be easily measured, but low voltage line is contained in cities

a_nd Vi”ages’ and it would be Very expensive_to measure it. This RESULTS OBTAINED IN THE JQV?IK/EOL'\I'/AILE ELECTRICAL APPLICATION

kind of line used to be very convoluted and, in some cases, one CONSIDERING HSLR(WM, 4, 7)

company may serve more than 10 000 small nuclei. An indirect

method for determining the length of line is needed. Method MSEo | MSEist | Yotra | Pora | #R
Therefore, a relationship must be found between some char- WM{) 301732 | 270747 | 43.72 | 28.82 | 10

acteristics of the population and the length of line installed on it, WM(7) 222622 | 240018 | 23.72 | 19.70 | 23

making use of some known data, that may be employed to pre- HSLR(WM.47) | 169799 | 192714 25

dict the real length of line in any other village. We will try to

solve this problem by generating different kinds of models deter- TABLE VIII

mining the unknown relationship: linguistic, classical regression ResuLTS OBTAINED IN THE LOW VOLTAGE ELECTRICAL APPLICATION

and neural models. To do so, we were provided with the measured CONSIDERING HSLR(WM. 5, 9)

line length, the number ofinhabitants andthe_mean d|sta_nce from Nethod SBT3 5Ew e | T | #E

the cen_ter of the towp tp_ the three furthest clients, considered as W) 993446 | 282058 | 47.14 | 36.01 | 13

the radius of populatiofin the sample, in a sample of 495 rural <7, 197613 | 283645 | 20.16 | 36.36 | 29

nuclei[23], [24]. Our variables are named as shownin Table IV.  5rrwhisg) | 158420 | 180488 30

To compare regression techniques, neural modeling, and lin-
guistic modeling, we have randomly divided the sample into two
sets comprising 396 and 99 samples, labeled training and tesiThe parameters used in all of these experiments are listed in
respectively. Table V.

The initial DB used for the HSLR-LM is constituted by three The results obtained with our HSLR-LM starting from dif-
primary linguistic partitions formed bthree, four andfive lin-  ferent granularities in the first layer DB partitions are shown in
guistic termswith triangular-shaped fuzzy sets giving meaningables VI, VIl and VIII.

to them, i.e., DR1, 3),DB(1,4), and DE1, 5), respectively. The structure of the simple model obtained from
The initial linguistic term sets for the mentioned DBs aréISLR(WM, 3,5) can be seen in Fig. 5, where the rules
shown in the following: are numbered from left to right, and from up to down. The

a3 g3 r3 explanation of this figure can be found in Table IX (each
DB(1,3) =15 ’4M4’L 4} . learning process (P), rule condition (RC), hierarchy level (HL),
DB(1,4) = {VS", 5% L, VL} rule number (RN) and corresponding mark (M) of Fig. 5 are
DB(1,5) = {VS®, §5, M? L° VL’} explicit, B, """ is the rulej of layer 2, which is the image

of the expanded ruIB?(l) of layer 1.

here ; L
W Once we have shown the behavior of the linguistic models de-
S = Small signed individually, we are going to compare their accuracy with
M = Medium the remaining techniques considered. Table X shows the results

obtained by them and the best ones obtained by our HSLR-LM
as well. To apply classical regression, the parameters of the
ViS5 = Very Small polynomial models were fit by Levenberg—Marquardt, while ex-

VL = Very Large. ponential and linear models were fit by linear least squares. The

L = Large
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TABLE Xl
NOTATION CONSIDERED FOR THEPROBLEM VARIABLES
Symbol Meaning

2 Sum of the lengths of all streets in the town

o Total area of the town

T3 Area that is occupied by buildings

Ty Energy supply to the town

y Maintenance costs of medium voltage line
TABLE XII

RESULTS OBTAINED IN THE MEDIUM VOLTAGE ELECTRICAL APPLICATION
CONSIDERINGHSLR(WM, 3, 5)

L VE [
T B ’
| ' ] ! i 1
Y 4] k- ] Ll W | M
! ",
|_|: L] LT [ il W x"-!\_ i 1 %, F
LY i et et [ w
o vt ae
Fig. 5. HSLR(WM, 3,5).
TABLE IX
ACTIONS PERFORMED BY HSLR-LM ON THE RULE STRUCTURE
P RC HL RN M
HKB { not gene- white
Gen. | rated s
Proc. | selected L1 Rg Ri dark
to be grey
expanded sqr.
HRB | sclected to | L1 R‘f, R‘g light
Sel. belong to L2/ R%)l, RS’Q, Rg’fﬁ grey
Proc. | the final R.2 Rg,S: jo, Rg’g sqr
HRB L2/ | Riqy Rz Ria1
R4 | Rijs
HRB | discarded L1 Rj. Rgt R‘; Cross
Sel. L2/ RQ‘:;, RSA: RS’S, sqr.
Proc. R 2 5’10
L2/ | R}, Ri.. Ry
/ 41 a0 e
R.4 ngs, ngﬁ, R458;
Rio: - Ri10:B11p
TABLE X

RESULTS OBTAINED IN THE LOW VOLTAGE ELECTRICAL APPLICATION

COMPARED WITH OTHER TECHNIQUES

Method MSFEyq | MSEyy | Complexity
Linear 287775 209656 7 n., 2 par.
Exponential 232743 197004 7 n., 2 par
2th order pol. 235948 203232 | 25 n., 2 par.
3rd order pol. 235934 202991 49 n., 2 par.
Percep. (2-25-1) | 169399 | 167092 102 par.

HSLR(WM,3,5) 178950 167318 12 rules

Method MSFEuo | MSEist | %otra | %orst #R

WM(3) 150545 125807 | 84.95 | 81.06 | 27

WM(5) 70908 77058 | 68.05 | 69.09 { 64

HSLR(WM,3,5) 22653 23817 97
TABLE XIlI

RESULTS OBTAINED IN THE MEDIUM VOLTAGE ELECTRICAL APPLICATION

CONsIDERINGHSLR(WM, 5, 9)

Method MSEiq | MSEs | Yotra | Youst #R

WM 70908 77058 | 82.95 | 82.10 | 64

WM 32191 33200 | 62.44 | 58.46 | 130

HSLR(WM5.0) | 12089 | 13791 590
TABLE XIV

RESULTS OBTAINED IN THE MEDIUM VOLTAGE ELECTRICAL APPLICATION
COMPARED WITH OTHER TECHNIQUES

Method MSE« | MSE;st | Complezity
Linear 164662 36819 17 n., 5 par.
2th order pol. 103032 45332 | 77 n.. 15 par.
Percep. (4-5-1) 86469 33105 35 par.
HSLR(WM,3,5) 22653 23817 97 rules

techniques considered for the previous problem. Numerical
results will be compared next.

The sample have been randomly divided into two sets com-
prising 847 and 212 samples, 80 and 20 percent of the whole
data set, labeled training and test, respectively. Our variables are
named as shown in Table XI.

The initial DB used for the design methods is initialized as
in the former problem for DBL, 3), and DE1, 5), as well as
the other parameters which are listed in Table V. The different
results obtained are shown in Tables XIlI, XIII, and XIV.

In view of the results obtained in the above experiments, we
should remark some important conclusiofgm the accuracy
point of view the different models generated from our process
clearly outperform the WM-method ones in all granularity level
linguistic partitions and in both electrical problems. They also

multilayer perceptron was trained with the QuickPropagatiautperform classical regression in the approximation of both
algorithm. The number of
chosen to minimize the test error [7], [24].
2) Computing the Maintenance Costs of Medium VoltagéSLR(WM, 3, 5) is less accurate than the neural one in the
Line: We were provided with data concerning four differenapproximation of the training set, but we should note that
characteristics of the towns (see Table XI) and their minimuthey have almost the same value for the resulting test error.
maintenance cost in a sample of 1059 simulated towns. In thikerefore, this model approximates well the real system mod-
case, our objective was to relate the last variable (maintenamted and, moreover, it has the advantage of being much more
costs) with the other four ones by applying the same modelingerpretable than the neural model. In the second problem,

neurons in the hidden layer watata sets, training and test.

In the first problem, the linguistic model generated from
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TABLE XV TABLE XVI
RESULTS OBTAINED IN THE LOW VOLTAGE ELECTRICAL APPLICATION RESULTS OBTAINED IN THE LOW VOLTAGE ELECTRICAL APPLICATION BY
CONsSIDERINGHSLR(THR, 3,5) HSLR(WM, 3, 5) USING DIFFERENTVALUES FOR«
Method MSFEio | MSEws | Yotra | Yorst | #R Method o MSFEq | MSE ;| #R
THR(3) 266369 248257 | 34.66 | 29.73 7 WM(3) 594276 626566 7
THR(5) 218857 217847 | 2048 | 19.93 | 25 WAI(5) 208446 282058 { 13
HSLR(THR3.5) | 174020 | 174428 26 HSLR(WM3,5) | 0.05 | 205120 | 187772 | 30

0.5 204977 | 204467 | 22
0.9 | 178081 | 170816 [ 20
1.1 178950 | 167318 | 12

both training and test errors of the neural model are clearly

outperformed by the HSLR model. 1.9 | 178950 | 167318 | 12

VI. KEY POINTS OF THETWO-LEVEL HSLR LEARNING

METHODOLOGY TABLE XVII
RESULTSOBTAINED IN THE MEDIUM VOLTAGE ELECTRICAL APPLICATION BY

In this section, we will point out the most important fea- HSLR(WM, 3, 5) USING DIFFERENTVALUES FOR
tur%s of Ir-:SdLR—LbM, h|gr(1jl|grr1]t|ng its Td;pendence from the Nothod o THSE.. [ MSEL | #R
LRG-method to be used, the use of theparameter to set WNE) 150545 | 195807 | 27
the desired balance between accuracy and description of the WM(5) 70908 77058 | 64
generated HSLR, the importance of the selection process HSLR(WM35) | 11| 22653 | 23817 | 97
performed and some other aspects related to the methodology 15 20336 20657 | 59
performance. Finally, its local treatment of the problem sub- 1.9 29336 20657 | 59
spaces is linked with the accuracy and description paradigm. 3.5 | 33117 | 37290 | 58

A. Independence From the LRG-Method TABLE XVIII

As Said our methodology was thOUght as an Strategy to inﬁQ_ESULTSOBTAINED IN THE MEDIUM VOLTAGE ELECTRICAL APPLICATION BY
o . .. . HSLR(WM, 5,9) USING DIFFERENT VALUES FOR«
prove simple linguistic models. In Section V, we have chosen the ( >9)

WM-method as an example of those kinds of simple methods. Method o« | MSEy, | MSEw: | #R
However, we could select any other inductive method, based on WM(5) 70908 77058 | 64
the existence of a set of input—output dAtays and a previously TWM(9) 32191 33200 | 130
defined DR 1, n(1)). In order to illustrate this situation, we are HSLR(WM,5,9) | 1.1 12089 | 13791 | 524
going to show an experiment where an HSLR is obtained from 18 111%‘?; 111%%‘; ‘égg
another LRG-method. For the present application, we have se- = 55599 31501

lected the LRG-method proposed by Thrift [26], that we call as
THR(r), with » being the granularity of the linguistic partitions
considered. This method is briefly described in Appendix Il.  In Tables XVI, XVII and XVIII, we analyze different values
The results obtained by the application of our methodolodgr «2 in both electrical problems.
to the first electrical problem using the THR-method is shown As can be seen in the above results, the algorithm seems to
in Table XV and % indicates the percentage in which the THRe robust for any value at, in the sense that good results are
based model is improved by the HSLR. obtained considering many different values for this parameter.
We can observe again that the HSLR-LM has outperformedAnyway, some special features could be remarked as regards
the basic LRG-method, the THR-method in this case. This mdbe « setting. As a general rule, whengrows up, the system
accurate model was obtained by just adding one more rule to tlemplexity decreases, i.e., less rules are finally obtained.
model obtained by THR(5), with a significant improvement of However, an increase on the number of rules does not always
the twenty percent both in MSE and MSEg;. ensure a decrease on the model error, MSE. This fact is clearly
In this view, we confirm the qualities of the HSLR-LM as aseen in the results obtained in Tables XVI and XVIII.
good strategy to obtain a refinement of simple models, based o\s said in [8], it is not always true that a linguistic model
performing few changes to the system structure. with a high number of rules performs better than another with
a lesser number of them, since the accuracy of the FRBS does
B. Setting the Balance Between Accuracy and Description not only depend on the number of rules in the RB but also on
In previous experiments, we have compared the accurdff cooperation among them.
and complexity of those linguistic models generated from From this point of view, parameter can be considered to
our HSLR-LM based on an expansion facterequal to 1.1. design models with different balance between accuracy and de-
This means that those rules which overcomes the MSE of #gfiption (of course, the lower the number of rules, the more
whole RB(1,n(1)) in a 10% are considered as bad ones, ar_cp@scrlptlve the system). For example, we find a good balance
should be expanded. In this section, we are going to analyfelable XVI, where the most accurate model is obtained for
the influence of other possible values for this factor and howtlt€ low voltage problem by means of the HSLR-LM, which is

works as a regulator between the accuracy and the deSCI’IptIOIﬂ.l Tables XVII and XVIII, we have not performed experiments with values
of the system. of o lower than 1.1 because of the complexity of the problem.
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lR; = IF x,is S*and xyisM*THEN yix M '] lR,‘ =IF x isM " and x,isM ' THEN \'i.\'L'l

[ T 1 | ] [ T 11
R =IF v isS and v, isS ' THEN vis$' ' R}, = IF x,isVS  and x, isVS* THEN yisVS*| R}, = IF x,is $* and x,is S*THEN yis M*| |R} = IF x isM “and x,is U THEN visM '
R3, = IF x,isVS* and x,is S* THEN yisVS* ||Ri; = IF x is M and xyis S*THEN vis M*
R =1IFx,ixS*and x,is SSTHEN yis $*||Rix = IF xiis L and x,is S'THEN yis M*
R}, =1IF x,ixS and x,is M *THEN visS* ||R, = IF x.isVL and x,isVS*THEN yisM*

RS, = IF x,isM *and x,isVS* THEN visS*
RS, =1IF x,isM*and x;is M ¥ THEN yisVL'

Fig. 6. Hierarchical clustering view of the HRB.

composed of only 12 rules. Notice that our model has one lessNVhat is more, the order proposed in the HDB can be used
rule than WM(5) while having a performance improvement db obtain an hierarchical extensionality measure of similarity to
approximately a 40% both in MSE and in MSEg;. be used in grouping most undistinguishable fuzzy rules [17],
This idea can also be observed in the results shown L8] providing a theoretical background to the interpretability
Table XVII as regards the medium voltage electrical applP—‘c HSLRs.
cation. Here, the user can decide between two models witfba
different treatment of the description-accuracy tradeoff. The
model obtained when considering= 1.1 is the most accurate As was said by Goldberg [11], subtle integration of the ab-
one, being more or less a 68% more accurate than the &t@ction power of fuzzy systems and the innovating power of
obtained with WM(5). This would be the best choice when thgenetic systems requires a design sophistication that goes fur-
accuracy is preferred to the description. However, HSLR-LREner than putting everything together. That is, hybridizing in hi-
model is less interpretable than WM-method one since it h@garchical models does not only involves putting rules with dif-
33 more rules. ferent granularities in the same bag. In this section, we will ex-

When a compromise solution between accuracy and desciigre different aspects of the HSLR-LM which allow us to know

tion is preferred, the models obtained from HSLR-LM with” Iy ?ﬁesf.'t \t/vork?. and Wh|cqlare |t§cjl‘utlirhe p_erspetctlves. f th
o = 1.9 anda = 3.5 would be two very good solutions. They n e first section, we will consider the importance of the

both are simpler than the model generated by WM(5) (59 al[]Lae selection process in HSLR-LM, and in the second one, we

58 rules, respectively, against 64) and outperform it by more\ﬁlll" mine into HSLR-LM in order to discover what other things

. make it a successful methodology.
less a 60% and a 52%, respectively. . .
° ° pectively 1) The Influence of the Rule Selection Process in the HSLR

On the other hand, Table XVIlI shows a different way to de&mmarization: One of most interesting features of an FRBS
with the accuracy-des_cription tradeoff. Signicantly more acCik the interpolative reasoning it develops, which is a conse-
rate models are obtained for the latter problem using highgfence of the cooperation among the linguistic rules composing
granularity level initial partitions like five. Of course, the modelgne kKB, As said in Section IV-C, the set of rules generated
generated by HSLR-LM starting from these partitions are Vel an LRG-method may present redundant or unnecessary
complex (from 121 to 524 rules) and thus very difficult to be ingjes which make the fuzzy model using this KB less accurate.
terpreted. This would be the choice if the accuracy was defifiys fact becomes more serious in an HSLR, where there are
tively the only model requirement. coexisting rules with different granularity levels. To deal with

Finally, coming back to the discussion about the intethis problem, we have introduced an RB selection process in
pretability of the generated models, we should note that, wherder to choose a subset of linguistic rules that properly work,
dealing with HSLRs, the system description level can not oniye., with less rules that have good cooperation between them.
be measured by the number of rules but also by the way thElis process organizes the incoming results from the rule gen-
are represented. The HKB gives an order which can be usmdtion tasks based on some “interestingness” criteria in order
in the sense of interpretability. That is, human beings can rtotprovide a more understandable and compact representation.
understand a hundred of different rules, but can associate &o perform the said summarization, we have considered a GA
group of them with an specific task and deal with more generalthough we could have chosen any other optimization method.
and subsumed rule sets. This basically suggests a hierarchide summarization criteria is represented in the fithess function
clustering point of view of the FRBSs, which gives a moré'(C;), which is based on a measure of the global performance
interpretable view of HSLRs as it is ilustrated in Fig. 6 wheref the FRBSs. Basically, this measure shows the cooperation
the RB of the HSLR finally obtained frorllSLR(WM, 3,5) level of the candidate rules of the RB, which was the MSE on
(see Fig. 5) is represented in the bottom level. the training set in this work. Even so, any other proper measure

Influence of the Methodology Components
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TABLE XIX TABLE XXII
RESULTS OBTAINED BY HSLR-LM IN THE LOW VOLTAGE ELECTRICAL RESULTS OBTAINED IN THE LOW VOLTAGE ELECTRICAL APPLICATION
APPLICATION CONSIDERING v = 1.1. WITH AND WITHOUT RULE USING AN IMPROVED FITNESS FUNCTION
SELECTION PROCESS )
Method « MSEyq | MSE:s: | #R
Method MSEiq | M5B | #R HSLO(WM35) ] 1.1 | 178950 | 167318 | 12
HSLR(WM,3,5)/Seclection 82422 68713 166 (I)HSLR(WM,3,5) 1.1 180111 166210 11
HSLR(WM,3,5) 22653 23817 | 97
TABLE XXIlI
TABLE XX RESULTS OBTAINED IN THE MEDIUM VOLTAGE ELECTRICAL APPLICATION
RESULTS OBTAINED BY HSLR-LM IN THE MEDIUM VOLTAGE USING DIFFERENTVALUES FORa AND AN IMPROVED FITNESS FUNCTION
ELECTRICAL APPLICATION CONSIDERING« = 1.1. WITH AND WITHOUT
RULE SELECTION PROCESS Method o | MSEye | MSEw | #R
HSLR(WN,3,5) 1.1 22358 23755 | 84
Method MSFEyo | MSEw | #R (JISLR(WM,3.5) | 1.1 22557 24679 | 69
HSLR(WM,3,5)/Selection | 501052 | 468037 | 26 HSLR(WM.3,5) 10| 293361 29604 | 58
HSLR{WM,3,5) 178950 | 167318 | 12 (DHSLR(WM.3.5) | 1.9 32223 | 34504 | 51
TABLE XXI TABLE XXIV
RESULTSOBTAINED IN THE MEDIUM VOLTAGE ELECTRICAL APPLICATION BY RESULTS OBTAINED IN THE MEDIUM VOLTAGE ELECTRICAL APPLICATION
HSLR(WM, 3, 5) USING DIFFERENTNUMBER OF GA GENERATIONS USING DIFFERENTVALUES FOR« AND DISTINGUISHING REPEATED RULES
I MSPFEyq | MSEs | #R | ITterations Method « MSFEq | MSE:s: | Complexity
1.1 22653 23817 | 97 1000 #r | #d
1.1 22358 23755 | 84 2000 HSLR(WM,3,5) 1.1 22358 23755 | 172 84
1.9 20336 20657 | 59 1000 ()HSLR(WM,3,5) | 1.1 22557 24679 | 148 69
1.9 29336 29604 | 58 2000 HSLR(WM,3,5) 1.9 29336 29604 | 106 58
(DHSLR(WM,3,5) | 1.9 32795 33842 | 4 49

based on different interesting criteria could be used. The impor- )
tance of this process is shown in Tables XIX and XX. With MSEintia1 nd Ninitial rules beINg the error and the amount
From the accuracy point of view, the hierarchical models witf rules of the original RB to be summarized, respectively.
rule selection clearly outperform the ones without it in the ap- Tables XXIl and XXIIl show some results obtained using the
proximation of both data sets. Considering the complexity Grodified fitness function in the rule selection process with both
the models generated, the models which perform a rule selgamples considered in this paper. To do so, we introduce a new
tion task become the simpler ones. notation in order to make the difference between the former and
Unfortunately, although GAs are a robust technique, sonf@€S€ new experiments. It consists of adding the syrabjolo
times they can not avoid to fall in local minima in strongly multhe former notation, e.g(/) HSLR(WM, 3, 5).
timodal search surfaces like the one corresponding to multipleAS We expected, the new fitness function allows us to generate
granularity fuzzy rules. On the one hand, this problem could #SS complex models and performs a tradeoff between com-
solved by relaxing some parameters of the algorithm, like tiéexity and accuracy. Moreover, sometimes it also works as a
population size or the number of generations, as can be seeRf#Nning strategy that could prevent the system overfitting (see
Table XXI. the HSLR obtained in Table XXII).
In fact, the latter table does not only shows a reduction in2) Learning More Features by Mining Into HSLR#n the
the MSE but also an interesting decrease in the complexity'éFt section we corroborated that selection plays a fundamental
the learned model which reveals that, sometimes, the GA dd@! in systems with multiple granularity partitions. We have
not select the minimum number of rules and that it could iSO seen that not all the rules were discarded by the GA process,
improved. To do so, we introduce a maodification of the fitnes%’?d we S_hOWGd at I_east two ways to improve its performance. In
function of the GA which is a trade-off solution between comilis section, we will analyze which are the rules that the GA
plexity and accuracy of the system modeled [16]. discards a_nd why some of them are still preserveq._
Let consider the following functiod”(C;) which penalizes L&t us first consider what we noted at the begining of Sec-
those RBs with a high number of rules in the following way: ton vV about repeated rules. There, we said that some repeated
rules generated by the rule generation process, specifically by
F'(C;)=w - F(C}) + wo - Nyules (21) the “significant intersection” criteria of terms selection, also be-

i i i , longed to the JCLR set of rule candidates. Surprisingly, some of
with I°(C;) being the fitness function—based on the MSE~om \ere not eliminated by the GA algorithm, even by the use
used in Subsection IV.Q¥:u.s being the number of rules of ¢ 1o pniques like the one introduced in the last section. Con-
that RB, an_d withw, andw, being the weights of the termsgiqer Taple XXIV as an example of that, whe#e represents
.Of. t.he_ funcpon. In the present experiments, these constants M€ extracted rules from the selection process#ddhe corre-
initialized in the following way [8]: sponding number of different rules.

MSEipitial This fact drives us to analyze what other factors, different

wp =10; wp=01- from granularity, make influence in the development of hierar-

Ninitial rules
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chical models. To do so, we mined into HSLRs and discoveréd operation mode with the global approach introduced by
some other interesting features of their components as the ofssbuchiet al. in [16]. To do so, this section is divided in two
that we list in the following. parts. First, HSLR-LM in its current form is directly compared
« Weighted reinforced linguistic rules with the other approach, in order to analyze the influence of
As said, repeated rules appear because of the overlapping local or global processing. Then, a new capability that is
of the expanded rule images, which is produced by lopresent in Ishibuchet al’s process and not in HSLR-LM will
values of the parametér Considering an HRB and our be introduced in the latter in order to improve its performance.
present methodology, this rule repetition is produced by 1) Local Versus Global Rule Expansiors was pointed out
the generation of more than one copy of a rule in the sarimeSection II-B, there is another method which also performs a
layer, as shown in Fig. 5 with thelinguistic rule multigranular treatment of linguistic rules. This method, intro-
. . , . ) . duced by Ishibuchi et al. in [16], obtains a set of fuzzy rules
IF 1 is M” andzs is VL® THEN y is M® by creating several linguistic partitions with different granu-
which is both derived from the expansion®f and k3. larity levels, generg?ing the gomplete ;et of linguistic rules in
Once those repeated rules are generated, they are giggﬁh_of these partl_tlons, takm_g the union Qf all of these sets,
to the selection process. This process has the chancé®d finally performing a genetic rule selection process on the
eliminate all those redundant rules but it has been se@hole rule set. For the sake of simplicity, even if it was not pre-
that sometimes it preserves some of them. Although f¢nted as a hierarchical process, in this section we will adapt
the previous case the repeated rules were discarded, séhd@d refer to this method as a global HSLR learning method-
other times this kind of rules are preserved reinforcin@09y (G-HSLR-LM), in order to distinguish it from our local
their importance in those subspaces where they take plagProach (HSLR-LM).
(see Table XXIV). Although G-HSLR-LM was designed to construct a fuzzy
» Double-consequent linguistic rules classification system, and the main purpose of the HSLR-LM
As a result of the use of our approach, we can obserpeoposed in this paper is to perform linguistic modeling, some
that some of the learned rules have multiple consequeiriteresting coincidences and differences have been found be-
(Fig. 5). As was introduced in [9], this phenomenon is atween them. Let us first consider Table XXV which shows a
extension of the usual linguistic model structure whichommon notation for both hierarchical methodologies in order
allows the KB to present rules where each combinatiao clarify their similarities and differences. We should remember
of antecedents may have two or more consequents @satCLR(R;™) stands for the image of the expanded bad lin-
sociated. We should note that this operation mode dogsistic ruleR™, which joined to the former good performance

not constitute an inconsistency from the interpolative rea-|inguistic rulesconstitute the set of candidate linguistic rules
soning point of view but only a shift of the main labelsg pe in the final HRB.

making that the final output of the rule lie in an interme- In the following, we will consider both methodologies in

dlat.e zone bgh{\/egn them b‘.)th' Hence, it may have the f8[r'der to study their features and evaluate their performance.
lowing linguistic interpretation. Let us consider that the

specific combination of antecedents of Fig. 5; ‘is 5° * While HSLR-LM locally expands those rules which per-
andz, is M?”, has two different consequents associated, ~ form a bad modeling in some subspaces of the problem,
S5 and M?®. From a linguistic modeling point of view, G-HSLR-LM performs the same task in a global way, i.e.,
the resulting double-consequent rule may be interpreted it expands all rules in all granularity levels.

as follows: » Both methods perform a genetic rule selection to extract
the set of rules which best cooperates between them, i.e.,
the HRB, but on a different rule set. We should note that, in
order to allow the comparison between both hierarchical
methods, the fitness defined in Section 1V-C was used in

IF 21 is S° andz, is M® THEN y is betweenS® and M.

These approaches enrich the representational power of fuzzy
rules allowing different kinds of rules to belong to the HRB.
Moreover, they postpone the selecting rule decisions until the the GA for both approaches.
sumarization process is performed, considering the best cooplables XXVI and XXVII show results obtained by the global
eration between them. method with and without the rule selection process, in order

As seen, not only the different granularity rules make infltio evaluate its influence. % indicates the percentage in which
ence in the model performance. There are many other coff=HSLR-LM is improved by HSLR-LM.
plementary improvements that should be taken into account inin view of the results obtained, it can be seen than our hierar-
order to obtain more accurate models. In the next section, wleical methodology, HSLR-LM, which is based on a local rule
will complement the current features by considering a new rexpansions, obtains better results than G-HSLR-LM in terms of
inforcement strategy. There, we will evaluate these models aacturacy in both applications.
analyze the future extensions of the methodology. As regards the complexity of the models obtained, and thus,
its interpretability, HSLR-LM generates the simplest model for
the low voltage application, with three less rules than G-HSLR

Finally, in this section, we will explore the locality of model (12 against 15), while the model obtained from the latter
HSLR-LM in the expansion of the linguistic rules, comparingnethodology is seven rules simpler (51 against 58) than ours

D. Local Processing in HSLRs
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TABLE XXV TABLE XXVIII
LOCAL AND GLOBAL SELECTION PROCESSES RESULTS OBTAINED IN THE LOW VOLTAGE ELECTRICAL APPLICATION
CONSIDERINGx = 1.1

HSLR-LM HRB = Selection Process
(RBgooalt. n(t)) U (UiCLR(R;"(l)))) Method MSEyq | MSEy | #R
G-HSLR-LM | HRB = Selection Process HSLR(WM,3,5) 178950 | 167318 | 12
(RB(t,n(t)) URB(t + 1.n{t 4+ 1)))) HSLR-HR(WM,3,5) 175619 | 162873 | 12
G-HSLR(WM,3,5) 177735 | 180721 | 15
TABLE XXVI (I)HSLR(WM,3,5) 180111 166210 | 11
RESULTS OBTAINED IN THE LOW VOLTAGE ELECTRICAL APPLICATION (DHSLR-HR(WM 3,5) | 176781 | 161764 | 10
CONSIDERING v = 1.1 (I)G-HSLR(WM,3,5) 179016 | 185805 | 12
Method MSFEira | MSEsst | Totra | Tossr | #R
G-HSLR(WM,3,5) | 177735 | 180721 [ -0.68 | 741 [ 15 RESULTSO MTABLE VXOXIXG L ECTRICAL APPLICATIO
Tan ESULTS OBTAINED IN THE MEDIUM VOLTAGE ELECTRICAL APPLICATION
HSLR(WM,3,5) 178950 | 167318 12 CONSIDERING @ = 1.1.
TABLE XXVII Method MSFEy.q | MSE: | #R
RESULTS OBTAINED IN THE MEDIUM VOLTAGE ELECTRICAL APPLICATION HSLR (WM 3,5) 22358 | 23755 | 84
CONSIDERINGa = 1.9 HSLR-BR(WM,3,5) 20588 22583 | 86
G-HSLR(WM,3,5) 34197 35827 | 51
Method MSBwe | MSPisi | ora | Fousi | #R (DHSLR(WM,3,5) 22557 | 24679 | 69
G-HSLR(WM,3,5) 34197 35827 | 14.21 | 17.36 | 51 (DHSLR-HR (WM 3.5) 50752 51005 1 67
HSLR (WM 3,5) 29336 | 29604 58 ()G-HSLR(WM,3,5) 32976 | 32508 | 40
in the medium voltage one. However, this low complexity in- TABLE XXX

crease is justified by a very significant modeling error decreaseRESULTS OBTAINED IN THCE MEDIUM VOLTAGIE gLECTR'CAL APPLICATION
. . . ONSIDERING«x = 1.
our model is approximately a 14% better in MSEand a 17% ¢

better in MSE.;. Method MSEpn, | MSEw | #R
Moreover, we must have in mind another advantage of our HSLR(WM,3,5) 20336 | 29604 | 58
methodology versus G-HSLR-LM: the fact that in HSLR-LM HSLR-HR{WM,3,5) 29119 3194? 66
there is a parameter available, that allows the user to estab- G-HSLR(WM35) 34197 | 35827 | 51
lish the desired balance between accuracy and descriptioninthe ~ (DHSLR(WA.3.5) 32795 | 33842 | 49
(DHSLR-HR(WM.3,5) | 29923 | 31681 | 19

generated model. (DG-HSLR(WM,3,5) 32976 32508 | 40

2) Introducing Ishibuchi et al.’s Rule Reinforcement in
HSLR-LM: Analyzing more deeply the operation mode of
Ishibuchi et al.’s method, we can observe that G-HSLR-LM-HSLR-LM). Thus, it gives the selection process the chance
allows the HSLR derived from it to present both the expandé@ perform a more accurate search in the solution space in
rule and some of the rules composing its image in the neXtder to obtain the most accurate HRB. This approach does not
layer RB. This is a consequence of the global expansionéfiminate the concept of “replacement” of the expanded rule,
performs and results in a reinforcement of the expanded rulebat extends it allowing the selection process to eliminate that
rule reinforcement is a refinement of the action of a rule in tHelle when it cooperates bad with the rest of the rules.
subspace where it is defined, allowing the maintenance of thel his approach, resulting from incorporating a capability of
rule itself, which produces a more flexible HRB structure. ~ G-HSLR-LM that was not previously presentin HSLR-LM, ex-

Since HSLR-LM directly substitutes the expanded rule bignds the former reinforcements allowing different granularity
its image, there is no possibility for the previous kind of retules to model specific subspaces of the problem, i.e., it allows
inforcement. As introduced in Section VI-C—2, we found twéhe system to perform local refinement actions.
different reinforcements in HSLR-LMwveighted reinforced lin- ~ To evaluate the different alternatives described in the last and
guistic rulesanddouble-consequent linguistic rulBhese re- the present subsections, Tables XXVIII, XXIX and XXX show
inforcements were applied on the whole subspace of the rti@sults for the two applications considered comparing both local
and produced a global refinement action. This suggests that ofiijeluding the new capability) and global methodologies. To do
the same layer linguistic rules participate on the reinforcemesft, the following notation is considered to refer to the use of
process, i.e., same layer rules could model a specific subspBtgsarchically reinforced ruleESLR — HR(LRG — method,
of the problem. n(1),2-n(1) —1).

However, a different kind of reinforcement, as a consequenceSome conclusions related to the features of the HSLR-LM
of combining the global and local approaches, can be obtairgn be drawn from the obtained results.
by performing a local refinement in a specific part of the rule « As may be seefrom the accuracy point of viewhe lin-
subspace. That idjierarchical reinforced linguistic rulesre guistic models generated froff)G — HSLR(WM, 3, 5)
obtained where the reinforcement is produced by allowing not and G — HSLR(WM, 3, 5) are clearly outperformed by
only the image of the expanded rule but also the expanded the the local hierarchical linguistic models in the approx-
rule itself to be considered in the selection process (as done in imation of the test sets in every case and in most of the
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training sets. On the one hand, we can observe that fthesome specific space zones presenting a higher complexity.
global approach overfits in the complex low voltage applMe have shown that although more accurate systems can be ob-
cation. On the other hand, the same global approach dained from a bigger number of rules, a small proper increase can
not improve the accuracy of the results once it achievetill produce accurate results. Moreover, HSLR-LM provides a
a specific level. In contrast, HSLR have achieved signifivay to perform a tradeoff regulation between the accuracy and
cantly much accurate error levels. interpretability of the systems modeled.
It can be seen that the accuracy obtained by HSLR-LM As well as that, HSLR-LM can still be improved by: finding
does not only depend on the granularity level of the lithe best and more proper weight of each rule and/or of its
guistic partitions and on the corresponding rules but thesgultiple consequents, introducing more layers and an iterative
are many other interesting features that can be also @focess to deal with them, studying the effects of considering
ploited. As an example, consider the use of hierarchicalijerarchical reinforced rules as a partially revocable extension
reinforced rules, which shows a great improvement ovef the methodology search algorithm and evaluating different
the aproximation of both training and test sets. criteria to expand rules. On the other hand, we can also consider
« From the complexity point of viewhe models generatedit g5 an iterative design method, from the user point of view. It
by the HSLR-LM for the low voltage problem approxi-is possible to develop an automatic method which iteratively
mate properly the real system modeled and, what is MO&arch through different levels of the HKB (i.e., more than two
they have the advantage of being simpler than the glohgle|s). All of these things will be treated as extensions of the
ones. Moreovgr, the HSLR-HR.modeIs s.how great in?ﬁethodology in a future work.
provements with least complexity. The simplest model ginaly, as was said by Goldberg [11], if the future of compu-
composed of only 10 rules is obtained using this capgsiional inteligence “lies in the careful integration of the best
bility. _ _ constituent technologies,” hierarchical and hybrid fuzzy sys-
The models obtained by G-HSLR for the second electricgl,s ang GAs require more than simple combinations derived
problem are simpler than the local ones, but the latter Hom putting everything together, but a more sofisticated anal-
almosta 35% more accurate. On the one hand'_HSLR'Lg?is and design of the system components and their features.
can deal with these kinds of problems by making use his paper present progresses in a program of research devoted

its capability of performing a tradeoff between accuracy, find the most proper integration forms and to explore the

and description, i.€., setting the factor of expansion inI-aJSLRs capabilities. As said, we have shown an open method-

more proper way. As an example, see the results shown in . ' . .
o ology and the obtained results encourage us to continue workin

Table XXX consideringy = 1.9, where the global models 9y g 9

; N . in future extensions and validations for the HSLR-LM.
are also seven rules simpler, when considering Ishibuchr’'s

fitness function, and nine, when using ours.

In view of the former results, we can conclude that the APPENDIX |
HSLR-LM it is not a closed and static methodology. As said, it WM RULE GENERATION METHOD

is open and the detected features suggest us that it could stifne inductive RB generation process proposed by Wang and
be improved. Moreover, HSLR-LM is not based on simpliendel in [27] is widely known because of its simplicity and
grouping together different granularity level linguistic rulegood performance. It is based on working with an input-output
but it composes a methodology supported by many interestifigiining data set,Erps, representing the behavior of the
features which, in different ways, allow us to generate mofgoblem being solved and with previous definition of the DB

accurate models with an appropriate description level. composed of the input and output primary linguistic partitions
used. The linguistic rule structure considered is the usual
VIl. CONCLUDING REMARKS Mamdani-type rule withv input variables and one output

) __ variable presented in Section Ill.
In this paper, an HSLR-LM has been proposed, which is aThe generation of the linguistic rules of this kind is performed
new approach to design linguistic models accurate to a high putting into effect the following three steps.
degree and suitably interpretable by human beings. An HKB

learning process capable of automatically generating linguistic
modgls foIIowmgthe said approach has beenmtroduceq aswell, o5ch example (input-output data pair) existing in the
and its behavior has been compared to other modeling tech- input—output data seferns. The structure of these

niques in solving two different problems. The proposed process [ jes is obtained by taking a specific example, i.e., an

has obtained very good results. S m + 1-dimensional real arrayn{ input and 1 output
~ Onthe one hand, a new approach to understand linguistic par- - values) and setting each one of the rule variables to the
titions has been shown, the HDB. This concept does not change  inguistic label associated to the fuzzy set best covering

the meaning of the linguistic variables neither their descriptive every array component.

power, it just allows us to represent the information in a more 2) To give a degree of importance to each ruleet
accurate way with more granularity. Aswas said, the HKBstruc- R = IF ¢ is S, and... andx,, iS S,, THENyis B
ture, allowing each rule to be expanded and replaced by its hier-  be the linguistic rule generated from the example
archical image, has demostrated to improve the model accuracy ¢; = (!, ...,z ,4"),l =1,...,|Erps|. The degree of

1) To generate a preliminary linguistic rule sethis set
will be composed of the linguistic rule best covering
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importance associated to it will be obtained as follows: [3]
G(R) = ps, (21) ... ps,, (1) - np(y)-

To obtain a final RB from the preliminary linguistic rule (4
set Ifall rules presenting the same antecedent values have
associated the same consequent one in the preliminary sets
this linguistic rule is automatically put (only once) into 5]
the final RB. On the other hand, if there are conflictive
rules, i.e., rules with the same antecedent and different®]
consequent values, the rule considered for the final RB
will be the one with higher importance degree.

3)

(7]
APPENDIX Il

THR RULE GENERATION METHOD 8]

This method is based on encoding all the cells of the com-
plete decision table in the chromosomes. In this way, Thrift [26]
establishes a mapping between the label set associated to tH¥
system output variable and an ordered integer set (containing
one more element and taking 0 as its first element) representingo]
the allele set. An example is shown to clarify the concept. Let
{NB, NS, ZR, PS, PB} be the term set associated to the outpulml
variable, and let us note the absence of value for the output vari-
able by the symbol “~.” The complete set formed joining this[12]
symbol to the term set is mapped into the §&tl, 2,3, 4, 5}.
Hence the label NB is associated with the value 0, NS with13]
1, ..., PB with 4 and the blank symbol “~" with 5.

Therefore, the GA employs an integer coding. Each one of the4!
chromosomes is constituted by joining the partial coding asso-
ciated to each one of the linguistic labels contained in the decii5]
sion table cells. A gene presenting the allele “—" will represen& 6]
the absence of the fuzzy rule contained in the corresponding cefl
in the RB.

The GA proposed considers an elitist selection scheme ardl’]
the genetic operators used are of different nature. While thgg;
crossover operator is the standard two-point crossover, the mu-
tation operator is specifically designed for the process. WheH?!
it is applied over an allele different from the blank symbol, it g
changes its value one level either up or down or to the blanke1]
code. When the previous gene value is the blank symbol, it 5?52]
lects a new value at random.

Finally, the fitness function is based on an application specifi¢23]
measure. The fitness of an individual is determined by com-
puting the use of the FRBS considering the RB coded in its,;
genotype.

[25]
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