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Analysis of the Best-Worst Ant System and itsVariants on the TSPOsar Cordón, Iñaki Fernández de Viana, Franiso HerreraDept. of Computer Siene and Arti�ial IntelligeneUniversity of Granada. 18071 - Granada. Spaine-mail: {oordon, herrera}�desai.ugr.es, ijfviana�teleline.esAbstratIn this ontribution, we will study the in�uene of the three main om-ponents of Best-Worst Ant System: the best-worst pheromone trail updaterule, the pheromone trail mutation and the restart. Both the importane ofeah of them and the fat whether all of them are neessary will be analyzed.The performane of di�erent variants of this algorithm will be tested whensolving di�erent instanes of the TSP.1 IntrodutionIn the last few years, Ant Colony Optimization (ACO) [10℄ has beome a popularmetaheuristi for solving omplex optimization problems like the lassial travelingsalesman problem or the routing in teleommuniation networks. ACO algorithmsmimi the behavior of natural ant olonies, being based on the ooperation amongmultiple agents, ants, every one generating a possible solution to the problem ineah algorithm iteration. To do so, eah ant travels a graph whih represents aspei� problem instane and makes use of two information types that are ommonto the whole olony and speify the preferene of the graph edges/nodes at everymoment:� Heuristi information, whih depends on the spei� problem instane, isomputed before running the algorithm and remains �xed at run time (instati optimization problems). The value assoiated to eah edge (r; s) isdenoted by �rs.� Pheromone trail information, whih is modi�ed during the algorithm run anddepends on the number of ants that traveled eah edge in the past and onthe quality of the solutions they generated. It is usually represented in theform of a pheromone matrix, � = [�rs℄, whih mimis the real pheromonethat natural ants deposit while moving.1



2 Osar Cordón, Iñaki Fernández de Viana, Franiso HerreraThere has been proposed a number of di�erent ACOmodels [10℄ like Ant System(AS) [8℄, Ant Colony System (ACS) [9℄, Rank-based Ant System (ASrank) [4℄, andMax-Min Ant System (MMAS) [15℄. In [5, 6℄, a new variant alled Best-WorstAnt System (BWAS) was introdued. BWAS is haraterized by integrating threeomponents from Evolutionary Computation [1℄: the best-worst pheromone trailupdate rule, the pheromone trail mutation and the restart.In this paper, we extend the preliminary study of the BWAS omponents thatwas developed in [7℄ by applying the BWAS algorithm and its variants to a largenumber of TSP instanes. Notie that when we use the term variants, we referto those algorithms obtained from the basi BWAS by removing one or two of itsthree distinguishing omponents. Hene, our aim is to demonstrate that BWAS isan algorithm as a whole, i.e., that a trade-o� exists among all its omponents, andto analyze the relative importane of eah of them.This paper is strutured as follows. In Setion 2, the basis of the BWAS al-gorithm are introdued. In Setion 3, the di�erent BWAS variants studied arepresented. In Setion 4, we will onsider the appliation of the ACO algorithms tothe TSP and we will present the results obtained by the BWAS family of algorithmsfor several instanes. We end by onluding remarks and proposals for future workin Setion 5. Moreover, an appendix with the individual result tables is inluded.2 Best-Worst Ant SystemAfter the large development of the ACO metaheuristi, several authors reognizedthe similarities existing between ACO algorithms and a spei� family of evolu-tionary algorithms guided by probability distribution adaption [13℄. This was thestarting point of our BWAS proposal when we saw that the synergy obtainingfrom the hybridization of omponents of these algorithms ould result in signi�-ant performane improvements. Hene, the BWAS model tries to improve ACOperformane using evolutionary algorithm onepts [5, 6℄.As ASrank and MMAS, BWAS onstitutes another extension of AS sine ituses the AS transition rule and pheromone evaporation mehanism [8℄.On the one hand, the transition rule is applied as follows:pk(r; s) = ( [�rs℄��[�rs℄�Pu2Jk(r) [�ru℄��[�ru℄� ; if s 2 Jk(r)0; otherwise ;with �rs being the pheromone trail of edge (r; s), �rs being the heuristi value,Jk(r) being the set of nodes that remain to be visited by ant k, and with � and� being parameters that weight the relative importane of pheromone trail andheuristi information.On the other hand, the evaporation mehanism operates by applying the for-mula: �rs  (1� �) � �rs; 8 r; swith � 2 [0; 1℄ being the pheromone evaporation rate.



Analysis of the Best-Worst Ant System and its Variants on the TSP 3Besides, BWAS always onsiders the systemati exploitation of loal optimizersto improve the ants' solutions.Together with the previous elements, BWAS onsiders the three following dae-mon ations:Best-worst pheromone trail update ruleThis rule is based on the Population-Based Inremental Learning (PBIL) [2℄ prob-ability array update rule. The global best solution is onsidered to perform a pos-itive update of trails, while the pheromone trails assoiated to the worst solutiongenerated in the urrent iteration are penalized to redue their desirability.To reinfore the edges ontained in good solutions, the daemon in BWAS �rsto�ine updates the pheromone trail by only onsidering the global best solution:�rs  �rs +��rs; where ��rs = � f(C(Sglobal�best)); if (r; s) 2 Sglobal�best0; otherwisewith f(C(Sglobal�best)) being the amount of pheromone to be deposited by theglobal-best ant, whih depends on the quality of its solution, C(Sglobal�best).Then, all the edges existing in the urrent worst solution, Surrent�worst, thatare not present in the global best one, are penalized by another deay of thepheromone trail assoiated �an additional evaporation� performed as follows:8(r; s) 2 Surrent�worst and (r; s) 62 Sglobal�best ; �rs  (1� �) � �rsPheromone trail mutationThe pheromone trails su�er mutations to introdue diversity in the searh pro-ess, as done in PBIL with the memoristi struture. To do so, eah row of thepheromone matrix is mutated �with probability Pm� by adding or subtratingthe same amount of pheromone to the seleted trail (a value whih depends on theurrent iteration) as follows:� 0rs = � �rs +mut(it; �threshold); if a = 0�rs �mut(it; �threshold); if a = 1with a being a random value in f0; 1g, it being the urrent iteration, �thresholdbeing the average of the pheromone trail on the edges omposing the global-bestsolution and with mut(�) being:mut(it; �threshold) = it� itrNit� itr � � � �thresholdwhere Nit is the maximum number of iterations of the algorithm and itr is the lastiteration where a restart was performed.Notie that the mutation range omes bak to its initial value eah time a restartis applied and the parameters � and �threshold speify the maximum power of themutation.We should mention that the mut(�) funtion does not prevent pheromone valuesto be negative. Hene, there is a need to hek that they are orret after eahappliation of this omponent.



4 Osar Cordón, Iñaki Fernández de Viana, Franiso HerreraRestart of the searh proess when it gets stukThis is a key harateristi of the CHC evolutionary algorithm [11℄ and is alsoommon in ACO, where it happens when the pheromone matrix has reahed thestagnation phase.Other ACO models �suh usMMAS [15℄� have previously onsidered it as adaemon ation with di�erent approahes. In our ase, we will perform the restartby setting all the pheromone matrix omponents to �0, the initial pheromone value,when the global-best solution is not improved during a �xed number of iterations.A simpli�ed struture of a generi BWAS algorithm is shown as follows:1. Give an initial pheromone value, �0, to eah edge.2. For k=1 to m do (in parallel)� Plae ant k on an initial node r.� Inlude r in Lk (tabu list of ant k keeping a reord of the visited nodes).� While (ant k not in a target node) do� Selet the next node to visit, s =2 Lk, aording to the AS transitionrule.� Inlude s in Lk.3. Pheromone evaporation.4. For k=1 to m do� Evaluate the solution generated by ant k, Sk.� Loal searh improvement.5. Sglobal�best  global best ant tour. Surrent�worst  urrent worst ant tour.6. Best-Worst pheromone update.7. Pheromone trail mutation.8. Restart if ondition is satis�ed.9. If (Termination Condition is satis�ed)Then give the global-best solution found as output and StopElse go to step 2.For more information on BWAS, we refer to [6℄.



Analysis of the Best-Worst Ant System and its Variants on the TSP 53 Analysis of the BWAS ComponentsAs we said, the main objetive of this paper is to study the in�uene of the threeomponents of BWAS on its appliation to the TSP. With this study, we want toknow if all of them are really important or some of them an be removed withoutnegatively a�eting the performane of the BWAS algorithm. Additionaly, we alsotry to establish a ranking of importane among omponents.This analysis will be made from a double perspetive:� Individualized analysis of omponents, i.e., we will run the BWAS algorithmusing only one of its omponents.� Cooperative analysis among pairs of omponents. In this ase, we will runvariants of the BWAS algorithm inluding two of its omponents.It seems that a ertain interrelation exists among the three basi elements of BWAS.The update of pheromone trails by the worst ant allows the algorithm to quiklydisard areas of the searh spae while the mutation and the restart avoid a stagna-tion of the algorithm. It may seem that the latter two omponents an be redundantsine they both have the same aim but we will see that a high ooperation arisesbetween both.In Table 1, all the algorithmi variants used in the study are summarized. Asan be seen, there are three di�erent groups of algorithms. The �rst one inludesthe basi models: our proposal, BWAS, and the lassial AS and ACS, whih areonsidered for omparison purposes. The seond group omprises variants inludinga single omponent: restart, mutation or worst-update. The models AS+R andACS+R are inluded in this group by adding the BWAS restart to AS and ACS,respetively. Finally, the third group omprises the variants inluding a pair of theomponents. The di�erent variants are denoted by BWAS�� where * stands forthe removed omponent (R, M or W)1.4 Experimental ResultsIn this setion, we will review the TSP and how we an apply an ACO model tosolve this problem. Then, we will present the experimental results.4.1 The Traveling Salesman ProblemThe traveling salesman problem [3℄, or TSP for short, an be desribed as: given a�nite number of �ities� along with the ost of traveling between eah pair of them,�nd the heapest way of visiting all the ities and returning to the starting point.More formally, it an be represented by a omplete weighted graph, G = (N;A),with N being the set of ities and A the set of edges fully onneting the nodes N .1 Although the BWAS�M�W one-omponent variant an seem to be the same algorithm thanACS with restart (ACS+R), they both are di�erent as: i) BWAS�M�W applies pheromoneevaporation to all edges, while ACS+R only evaporates the pheromone trails of the edges travelledby the global-best ant, and ii) both algorithms onsider di�erent transition rules.



6 Osar Cordón, Iñaki Fernández de Viana, Franiso HerreraTable 1: ACO models studied.Parameter MeaningAS Ant SystemACS Ant Colony SystemBWAS Best-Worst Ant SystemAS+R Ant System with BWAS restartACS+R Ant Colony System with BWAS restartBWAS�R�W BWAS without restart and worst ant pheromone updateBWAS�M�W BWAS without mutation and worst ant pheromone updateBWAS�R�M BWAS without restart and mutationBWAS�R BWAS without restartBWAS�W BWAS without worst ant pheromone updateBWAS�M BWAS without mutationTable 2: TSP instanes used.TSP instanesEil51 Lin318Berlin52 Pb442Brazil58 Att532Kroa100 Rat783Gr120 U1060D198 Fl1577Eah edge is assigned a value drs, whih is the length of edge (r; s) 2 A. The TSPis the problem of �nding a minimal length Hamiltonian iruit of the graph, wherea Hamiltonian iruit is a losed tour visiting exatly one eah of the n = jN jities of G.All the TSP instanes used in our experimentation have been obtained fromTSPLIB [14℄. As shown in Table 2, we have hosen 12 instanes of di�erent sizesin order to perform a fair omparative study.4.2 Appliation of the ACO Algorithms Considered to theTSPInitially, all the pheromone trails are set to �0 = 1C(SGreedy)�n , with C(SGreedy)being the ost of the solution obtained by a greedy algorithm for the TSP, andeah of the m ants is plaed on a randomly hosen ity. An ant onstruts atour as follows. At a ity r, the ant hooses a unvisited ity s probabilistially,biased by the pheromone trail strength �rs on the edge between ities r and s andon the heuristi information of that edge (whih is a funtion of the edge length,�rs = 1drs ). This way, ants prefer to move to a ity whih is lose to the urrent



Analysis of the Best-Worst Ant System and its Variants on the TSP 7one and whih is onneted by an edge of a high pheromone trail.After all ants have built their solutions, a loal searh tehnique is used [12℄. Inthis paper we will use the 2-opt algorithm. This tehnique proeeds by systemati-ally testing if the urrent tour an be improved by replaing two edges. To reduethe run-time of 2-opt, we apply three di�erent tehniques:� Restriting the set of movements whih are examined to those ontained inthe andidate list of the nearest neighbors ordered by distanes.� Considering a �xed radius nearest neighbor searh: at least one newly intro-dued edge has to be shorter that any of the two removed edges.� Using don't look bits assoiated with eah node. Initially, all don't look bitsare turned o�. If for a node no improving movement an be found, the don'tlook bit is turned on. In ase an edge inident to a node is hanged by amovement, the node don't look bit is turned o�.Finally, the pheromone trails are updated.4.3 Parameter SettingsThe ACO models shown in Table 1 have been used to solve the twelve TSP in-stanes seleted. The parameter values onsidered are shown in Table 3, wherethe parameters of AS and ACS are taken from [9℄. For the BWAS model, param-eters Pm and � are taken from [6℄. The values of the latter two parameters andof the perentage of iterations without improvement in the restart ondition havenot been obtained from any previous study, and a deep analysis of the in�uene ofappropriate values for the BWAS parameters is to be done in future work.Eah model has been run 10 times on a 1400 MHz. AMD Athlon proessor.The maximum run time depends on the TSP instane size. If n <500 then themaximum run time is 600 seonds. If 500 � n < 1000 then the maximum runtime is 1200 seonds. Finally, if n> 1000 the maximum run time is 3600 seonds.It is noteworthy that the time intervals shown, 600�3600 seonds, are a maximumthreshold, sine the algorithm will stop if the optimal solution is found before themaximum time wastes.4.4 Analysis of ResultsTables 4 and 5 ollet a summary of the obtained results, while the omplete tablesof results an be onsulted in the Appendix.Table 4 ompares the algorithms two by two. Eah ell aij shows the perentageof ases in whih algorithm i has outperformed algorithm j. We will say thatalgorithm i is better than algorithm j for a problem instane p if the error2 obtainedby i for p is smaller than the error obtained by j. Notie that the values in Table4 are symmetri (aij = 100� aji) in all ases but in those where there have been2 Error stands for the perentage di�erene between the average ost obtained in the performedruns and the ost of the best solution known for the instane.



8 Osar Cordón, Iñaki Fernández de Viana, Franiso HerreraTable 3: Parameter values onsidered for the ACO models.Model MeaningNumber of ants m = 15Maximum run time Ntime = 600 to 3600 seondsNumber of runs of eah algorithm 10Pheromone update rules parameter � = 0:2AS o�ine pheromone rule update f(C(Sk)) = 1C(Sk)ACS o�ine pheromone rule update f(C(Sglobal�best)) = 1C(Sglobal�best)Transition rule parameters � = 1, � = 2ACS transition rule parameter q0 =0.98Initial pheromone amount �0 = 1C(SGreedy)�nCandidate list size l = 20BWAS parametersPheromone matrix mutation probability Pm = 0:3Mutation operator parameter � = 4Restart ondition Nit � 0:2Loal searh proedure parametersLoal searh algorithm 2-optNumber of neighbors generated per iteration 40Neighbor hoie rule �rst improvementdraws between the two algorithms (i.e., both algorithms have obtained the sameerror in any of the twelve instanes).A general lassi�ation of the models is shown in Table 5 whih summarizesthe values of Table 4. While the �rst olumn ontains the name of the model,the seond and third olumns ollet the number of algorithms ompared to whihthat model has obtained better or worse results, respetively. Notie that both themaximum possible value for eah olumn and the sum of eah row is 10, sine thereare eleven di�erent algorithms in our experimental omparison. To ompute theprevious values, we onsider that an algorithm presents better results than anotherwhen the former has outperformed the latter a higher perentage of the times andvieversa.Let us �rst analyze the results of the BWAS variants. When we apply those vari-ants only inluding one omponent (BWAS�W�R, BWAS�M�R and BWAS�M�W ),a very bad performane is obtained in almost all the instanes. We an explainthis bad behavior as follows. One of the BWAS design goals is to ahieve anappropriate balane between exploration and exploitation. Mutation and restartare exploration omponents, while worst ant update rule is learly an exploitationomponent. Using only one of these omponents, we obtain an algorithm that onlyenourages either the exploration or the exploitation of the searh spae, thus nothaving a good balane between these two main aspets. This bad trade-o� is the



Analysis of the Best-Worst Ant System and its Variants on the TSP 9Table 4: Pair omparisons between ACO models.
Model AS ACS BWAS AS +R ACS +R BWAS �R�W BWAS �M�W BWAS �R�M BWAS �R BWAS �M BWAS �WAS � 8 0 8 8 66 66 66 0 58 0ACS 66 � 0 50 33 75 83 75 8 58 8BWAS 75 75 � 75 75 83 83 91 41 83 50AS+R 66 25 0 � 25 66 66 66 0 58 0ACS+R 66 41 0 50 � 75 75 75 8 58 8BWAS�R�W 25 16 0 25 16 � 16 33 8 25 8BWAS�M�W 25 8 0 25 16 58 � 75 8 50 8BWAS�R�M 25 16 0 25 16 50 16 � 16 16 16BWAS�R 75 58 0 75 66 75 75 75 � 66 16BWAS�M 25 25 0 25 25 66 41 66 16 � 8BWAS�W 75 66 0 75 66 75 75 75 33 66 �reason of the poor performane. Anyway, among all one-omponent BWAS vari-ants, BWAS�M�W , based on the use of the restart omponent, obtains the bestperformane in eight of the twelve ases. It is outperformed by BWAS�R�W in justtwo of them and by BWAS�R�M in another one, while the results are the samein the remaining instane. However, it is important to note that the three aseswhere BWAS�M�W does not get the best result orrespond to three of the fourlarger instanes (att532, u1060 and �1577).On the other hand, it an be seen that ombining two omponents is enoughto ahieve a good performane. The results obtained are better than those ofthe AS and ACS algorithms for all the BWAS two-omponent variants in nine ofthe twelve instanes, and the same performane is obtained in the remaining three.Analyzing the three two-omponent variants, it an be found two di�erent behaviorsTable 5: ACO models standing.Model Better performane Worse performaneBWAS 10 0BWAS�W 9 1BWAS�R 8 2ACS+R 7 3ACS 6 4AS+R 5 5AS 4 6BWAS�M�W 3 7BWAS�M 2 8BWAS�R�W 1 9BWAS�R�W 0 10



10 Osar Cordón, Iñaki Fernández de Viana, Franiso Herreraon them. On the one hand, BWAS�R and BWAS�W outperform AS and ACS ineight instanes and only obtain worse results in one of them, the largest instane�1577. On the other hand, the remaining variant BWAS�M presents the oppositebehavior, as it only outperforms the lassi ACO algorithms in three ases (with oneof them being the �1577 instane) and looses in other seven ases. This an be dueto the fat that the latter variant does not have a good balane between explorationand exploitation beause it does not use the strongest exploration omponent: thepheromone trail mutation. This way, it presents a poor performane similar toone-omponent BWAS variants. Besides, notie that the inlusion of mutation ina two-omponent variant make it more robust, what an be drawn in view of thesmaller standard deviations assoiated to the two algorithms of this kind.As said, the most signi�ant exeption to the previous generi behavior is thelargest instane, �1577, where it is better to remove the mutation omponent thanthe restart or the worst ant update. We think that this is a onsequene of the largeand spei� searh spae assoiated to this instane, whih requires of a strong ande�etive exploitation in order to ahieve good performane.On the other hand, the best overall results have been obtained using the BWASalgorithm with its three omponents. Thus, BWAS always ahieves better or thesame performane than all its variants. Notie that for every problem instane,BWAS gets the best error. However, for the two largest ones, u1060 and �1577,the best individual solution is obtained by another BWAS variant, BWAS�M , andby ACS+R, respetively. This ould be solved by a better hoie of the BWASparameter values (we should remind that no previous experimental study was de-veloped to selet appropriate values for them). This task will be part of the furtherwork to be done in the future.In view of these results, we an onlude that:� BWAS an improve the performane of lassial ACO algorithms like ACSand AS.� There exists an appropriate trade-o� among the three omponents of BWAS,i.e., the algorithm has a good balane between exploration and exploitation.If we remove one or more omponents, the performane worsens.� The order of importane among the omponents seems to be lear. Themutation is the omponent with the highest in�uene on the behavior of thealgorithm. Between the restart and the worst update, the di�erenes aresmaller, and none of them is preferred to the other.5 Conluding Remarks and Future WorksIn this ontribution, a study of all the omponents of BWAS has been done. Theperformane of the resulting algorithms and the importane of their omponentshas been analyzed when solving twelve TSP instanes of di�erent sizes. It hasbeen shown that the best performane is obtained when using the full version ofthe BWAS algorithm.



Analysis of the Best-Worst Ant System and its Variants on the TSP 11Two main ideas for future developments arise: (i) study the in�uene of pa-rameter settings on BWAS behavior, and (ii) analyze the onsideration of otherEvolutionary Computation aspets suh us the use of a number of the best andworst ants to positively and negatively update the pheromone trails �as done inPBIL [2℄� or the weighting of the pheromone amount eah ant deposits dependingon the ranked quality of its solution �as done in ASrank [4℄�.Appendix: Tables of ResultsThe overall results obtained are shown in Tables 6 to 9, where eah olumn namestands for the following: Best means the ost of the best solution found in the 10runs, Average ollets the average of the osts of the 10 solutions generated, Dev:shows the standard deviations, Error stands for the perentage di�erene betweenthe average and the ost of the best solution known (whih is shown in braketsafter the instane name). Finally, the last olumn named #R ontains the averagenumber of restarts performed by the algorithm in the 10 runs developed.Referenes[1℄ T. Bäk, D. Fogel, Z. Mihalewiz (Eds.). Handbook of Evolutionary Compu-tation, Institute of Physis Publishing, Bristol, 1997.[2℄ S. Baluja, R. Caruana. Removing the Genetis from the Standard GenetiAlgorithm. In A. Prieditis, S. Rusell (Eds.), Mahine Learning: Proeedingsof the Twelfth International Conferene, Morgan Kaufmann Publishers, pp.38-46, 1995.[3℄ J.L. Bentley. Fast Algorithms for Geometri Travelling Salesman Problem.ORSA Journal on Computing, 4(4), pp. 387-411, 1992.[4℄ B. Bullnheimer, R.F. Hartl, C. Strauss. A New Rank Based Version of the AntSystem: A Computational Study. Central European Journal for OpperationsResearh and Eonomis, 7(1), pp. 25-38, 1999.[5℄ O. Cordón, F. Herrera, L. Moreno. Integraión de Coneptos de ComputaiónEvolutiva en un Nuevo Modelo de Colonias de Hormigas (in Spanish). A-tas de la CAEPIA'99. Seminario Espeializado sobre Computaión Evolutiva,Muria, Spain, Vol. II, pp. 98-105, 1999.[6℄ O. Cordón, F. Herrera, I. Fernández de Viana, L. Moreno. A New ACO ModelIntegrating Evolutionary Computation Conepts: The Best-Worst Ant Sys-tem. Pro. of ANTS'2000. From Ant Colonies to Arti�ial Ants: Seond In-ternational Workshop on Ant Algorithms, Brussels, Belgium, September 7-9,pp. 22-29, 2000.[7℄ O. Cordón, I. Fernández de Viana, F. Herrera. Análisis de las tres ompo-nentes que distinguen al Sistema de la Mejor-Peor Hormiga (in Spanish). Atas



12 Osar Cordón, Iñaki Fernández de Viana, Franiso Herrera
Table 6: Results obtained in the di�erent instanes (I).Eil51 (426)Model Best Average Dev: Error #RAS 427 427,5 0,53 0,53 0ACS 426 426,7 0,48 0,48 0BWAS 426 426 0 0 1AS+R 426 426,2 0,42 0,05 3,9ACS+R 426 426,5 0,53 0,12 2,4BWAS�R�W 429 436,5 4,27 2,40 0BWAS�M�W 426 429,3 2,75 0,76 5,5BWAS�R�M 428 433,8 4,15 1,79 0BWAS�R 426 426 0 0 0BWAS�M 426 429,9 2,37 0,90 5,4BWAS�W 426 426 0 0 1Berlin52 (7542)Model Best Average Dev: Error #RAS 7542 7542 0 0 0ACS 7542 7542 0 0 0BWAS 7542 7542 0 0 0AS+R 7542 7542 0 0 0ACS+R 7542 7542 0 0 0BWAS�R�W 7542 7684,3 87,34 1,85 0BWAS�M�W 7542 7560,9 44,18 0,24 2,8BWAS�R�M 7542 7668,4 98,80 1,64 0BWAS�R 7542 7542 0 0 0BWAS�M 7542 7542 0 0 2,4BWAS�W 7542 7542 0 0 0Brazil58 (25395)Model Best Average Dev: Error #RAS 25395 25395 0 0 0ACS 25395 25395 0 0 0BWAS 25395 25395 0 0 0AS+R 25395 25395 0 0 0ACS+R 25395 25395 0 0 0BWAS�R�W 25395 25395 0 0 0BWAS�M�W 25395 25395 0 0 0BWAS�R�M 25395 25395 0 0 0BWAS�R 25395 25395 0 0 0BWAS�M 25395 25395 0 0 0BWAS�W 25395 25395 0 0 0
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Table 7: Results obtained in the di�erent instanes (II).Kroa100 (21282)Model Best Average Dev: Error #RAS 21282 21282 0 0 0ACS 21282 21282 0 0 0BWAS 21282 21282 0 0 0AS+R 21282 21282 0 0 0ACS+R 21282 21282 0 0 0BWAS�R�W 21282 21617,1 212,50 1,55 0BWAS�M�W 21282 21395,8 134,73 0,53 4,5BWAS�R�M 21282 21667,1 256,84 1,77 0BWAS�R 21282 21282 0 0 0BWAS�M 21282 21426,2 139,67 0,67 5,1BWAS�W 21282 21282 0 0 0Gr120 (6942)Model Best Average Dev: Error #RAS 6944 6954,1 6,06 0,17 0ACS 6942 6946,1 5,49 0,06 0BWAS 6942 6942 0 0 0,7AS+R 6944 6948,9 3,75 0,1 6,9ACS+R 6942 6943,8 3,79 0,03 1,1BWAS�R�W 6942 7143,1 164,93 2,81 0BWAS�M�W 6942 7030,3 106,50 1,25 5,9BWAS�R�M 6957 7126,2 128,38 2,58 0,4BWAS�R 6942 6942 0 0 0BWAS�M 6942 6997,1 46,17 0,78 4,8BWAS�W 6942 6942 0 0 0,5D198 (15780)Model Best Average Dev: Error #RAS 15796 15811,9 9,50 0,2 0ACS 15780 15784,9 5,67 0,03 0BWAS 15780 15780,4 0,51 0 3,3AS+R 15796 15806,2 8,73 0,17 3,5ACS+R 15780 15782,9 4,31 0,02 2,3BWAS�R�W 15780 15781,1 1,10 0 0BWAS�M�W 15780 15781,2 1,03 0 5,1BWAS�R�M 15780 15781,7 2,31 0,01 0BWAS�R 15780 15780,4 0,51 0 0BWAS�M 15780 15782,2 4,87 0,01 6,2BWAS�W 15780 15780,3 0,48 0 3
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Table 8: Results obtained in the di�erent instanes (III).Lin318 (42029)Model Best Average Dev: Error #RAS 42205 42348,4 122,43 0,75 0ACS 42029 42230 148,48 0,48 0BWAS 42029 42090,2 57,79 0,14 5AS+R 42189 42238,4 45,45 0,50 6,5ACS+R 42029 42182,4 118,12 0,36 5BWAS�R�W 42072 42545,2 408,30 1,21 0BWAS�M�W 42143 42421,1 181,99 0,92 8,6BWAS�R�M 42143 42525,1 176,18 1,16 0BWAS�R 42029 42138,7 81,73 0,26 0BWAS�M 42155 42583,2 277,80 1,30 8,1BWAS�W 42029 42129,2 44,84 0,23 7,4Pb442 (50778)Model Best Average Dev: Error #RAS 51213 51284,1 53,04 0,99 0ACS 50919 51048 75,29 0,53 0BWAS 50785 50889,5 79,32 0,21 7,9AS+R 51148 51209,5 41,16 0,84 5,6ACS+R 50860 51147,5 173,11 0,72 8BWAS�R�W 51069 51604 379,20 1,60 0BWAS�M�W 51065 51293,8 176,12 1,00 9,4BWAS�R�M 51069 51604 379,20 1,60 0BWAS�R 50795 51017 107,80 0,46 0BWAS�M 51024 51545,1 366,20 1,48 10,1BWAS�W 50809 50943,1 88,39 0,32 7,3Att532 (27686)Model Best Average Dev: Error #RAS 27796 27843,5 23,83 0,87 0ACS 27705 27810,3 64,44 0,45 0BWAS 27686 27713 16 0,09 8,2AS+R 27755 27786 14,78 0,36 8,7ACS+R 27745 27835 57,56 0,54 7BWAS�R�W 27830 27953 88 0,95 0BWAS�M�W 27860 28010 87 1,15 8BWAS�R�M 27879 28093 118 1,44 0BWAS�R 27703 27734 27 0,17 0BWAS�M 27854 27982 73 1,05 10,9BWAS�W 27698 27744 26 0,20 8,1
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Table 9: Results obtained in the di�erent instanes (IV).Rat783 (8806)Model Best Average Dev: Error #RAS 8873 8886 13,11 0,90 0ACS 8857 8892,7 20,93 0,97 0BWAS 8816 8837,9 19,23 0,36 9,1AS+R 8850 8863,1 8,33 0,64 7,1ACS+R 8875 8899,5 22,33 1,05 7,6BWAS�R�W 8922 9185,6 253,42 4,13 0BWAS�M�W 8942 8986,3 38,80 2,10 13,1BWAS�R�M 8958 9063,1 170,44 2,83 0BWAS�R 8817 8838 12,46 0,36 0BWAS�M 8922 9042,4 159,62 2,61 10,7BWAS�W 8816 8844,4 17,90 0,43 8,9U1060 (224094)Model Best Average Dev: Error #RAS 227413 228732 789,05 2,03 0ACS 225675 226387,8 668,90 1,01 0BWAS 225219 225713 337 0,71 7,2AS+R 228422 229032,2 381,06 2,16 4ACS+R 225243 226501 1059,57 1,06 2BWAS�R�W 225767 226415 481 1,02 0BWAS�M�W 226045 226426 285 1,02 7,75BWAS�R�M 225826 226223 428 0,94 0BWAS�R 225533 226394 507 1,01 0BWAS�M 225202 226321 833 0,98 7,9BWAS�W 225275 226315 619 0,98 7,5Fl1577 (22249)Model Best Average Dev: Error #RAS 22732 23213,9 221,09 4,16 0ACS 22313 22480,8 129,78 1,03 0BWAS 22290 22389,9 81,43 0,62 9,1AS+R 22722 23107,75 191,53 3,72 7,63ACS+R 22282 22454,4 147,85 0,91 4,8BWAS�R�W 22375 22480,2 71,96 1,02 0BWAS�M�W 22354 22546,2 86,33 1,31 8,8BWAS�R�M 22356 22505,1 91,35 1,13 0BWAS�R 22516 22775,1 143,62 2,31 0BWAS�M 22291 22442,2 104,67 0,86 9,1BWAS�W 22452 22613,2 93,73 1,61 9,1
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