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Abstract

In this paper we present an application of rule-based expert systems to a farming problem. Concretely the prediction of the breeding
value in Manchego ewes is studied for the early stage of their life in which the standard (BLUP) methodology cannot be applied. In this
case the pedigree index (arithmetical mean between parents’ breeding value) is used to make the estimation. An alternative to this method
is presented here, which is based on the use of two different types of rule-based systems: regression rules and linguistic fuzzy rules. The
approach proposed is data-driven in the sense that the rules are learnt from data. The results obtained show that the learnt systems
are more accurate than the pedigree index, especially for the regression rules case. On the other hand, the linguistic fuzzy rules systems
are more easier to understand for human experts, and this is a point to be take into account because of the nature of the problem we are
dealing with.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Manchego sheep (Gallego, Torres, & Caja, 1994) are the
native breed in Castilla-La Mancha (Spain), and the two
main products obtained from them (Manchego cheese
(CRDOQM, 2004) and Manchego lamb (CRDECM,
2004)) represent more than 50% of animal production in
the region. Because of these economical implications and
with the aim of enhancing Manchego sheep production, a
selection scheme (called ESROM) based on the animal’s
genetic merit was started by the authorities fifteen years
ago. The ESROM Selection Scheme (SS), which is similar
to other selection schemes developed for other breeds,
includes a series of activities whose joint purpose is
the genetic improvement of the breed with respect to the
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production of milk, and is run by several public organizations
including AGRAMA, the National Association of Manch-
ego sheep breeders. Evidence of the success of the ESROM
is the 25 extra litres produced at each lactation by the ewes
obtained by artificial insemination within the ESROM
program.

One of the major points in the ESROM scheme is the
estimation1 of the animal’s genetic merit or breeding value
(BV), and its use in flock replacements. In the ESROM
scheme the BV is estimated by using BLUP (Best Linear

Unbiased Prediction) animal model (Jurado, 1994), which
is a complex method based on relating different traits by
equations and solving them by simultaneously considering
all the available information. The estimated BV is then
used by the main ESROM tools, allowing us to place ani-
mals in the genealogical ranking and to take decisions
about which animals will improve the flock genetic trend,
1 We should use Estimated Breeding Value (EBV), but for the sake of
simplicity we maintain the notation of BV, although it is clear that we are
dealing with estimations.
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2 This will be our case.
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which animals can be entered (or not) in the stud catalogue
or market, which ewes are candidates to be used as good
mothers by artificial insemination, etc. Moreover, ESROM
encourages stock breeders to select their flock replacements
on the basis of the animal’s BV.

The BV of an animal is a numerical value that in the
ESROM represents the deviation of the animal with
respect to the mean BV of the Manchego ewes born in
1990 (the base year). The estimation of the BV by BLUP
is a complex process that in the ESROM scheme is carried
out every six months in a specialized center. Furthermore,
the BV of an animal is a dynamic value, because it can
change from one measurement to the next due to changes
in the animal’s own production data, changes in its rela-
tives, changes in its flock, etc.

In this work, we focus on a concrete case of BV estima-
tion: estimating the BV of new-born ewes. In fact, given
that the ultimate goal of ESROM is to improve milk pro-
duction, BLUP methodology is only applied to an ewe
after its first offspring-birth and its corresponding con-
trolled lactation. Up to this moment the estimated BV of
an ewe is computed directly from its parents BVs by using
the pedigree index (PI or pedigree in short), i.e., the arith-
metical mean between the father’s and mother’s BV. Our
goal in this work is to investigate the use of alternative pre-
diction systems to the PI, with the aim of obtaining a bet-
ter estimation and thus to have at our disposal better
information for decision making during the early stages
of Manchego ewe’s life. In concrete, we study the use of
rule-based systems as predictors, but with the constraint
of looking for simple predictors, that is, predictors using
a small number of variables (note that the pedigree index
only uses two variables).

Concretely, the main contributions of the paper are:

• A study of the alternative techniques to the pedigree
index in order to improve its breeding value estimation.

• A comparison of the usefulness of two different types of
rule-based systems: regression rules and linguistic fuzzy
rules. The comparison is based on the precision of the
obtained system and on its ease of understanding for
human experts.

• A new method based on a recent family of evolutionary
algorithms (Estimation of Distribution Algorithms) to
carry out the task of learning weighted linguistic fuzzy
rules.

To achieve our goals we have structured the paper in six
sections apart from this introduction. In Section 2 we
describe the two types of rule-based systems used in the
paper. Section 3 contains the description of the datasets
on which our current research is based. The next two
Sections 4 and 5 are devoted to describe the learning
algorithms used to induce the rule-based systems. Section
6 contains the experiments carried out and the analysis
of the results. Finally, in Section 7 we present our
conclusions.
2. Rule based systems

Without any kind of doubt, rule-based systems consti-
tute one of the widely used paradigms within the expert
systems technology. One of the reasons for their success
is their capability of being useful as:

• predictive systems, that is, the system can be used to
infer the output for a target variable given an input,
i.e., a set of attribute-value pairs for (some of) the pre-
dictive variables,

• descriptive systems, that is, the rules describe interesting
relations between the problem variables.

Although Rule-Based Systems (RBS) are always made
up of rules with the form If antecedent Then consequent,
there are great differences (both syntactic and semantic)
depending on the theory considered (first-order logic, fuzzy
logic, probability theory, etc.). In this work we focus on
two distinct paradigms which, in our opinion, cover two
different goals: regression rules and linguistic fuzzy rules.

2.1. Regression rules

By regression rules (RR) we mean rules whose conse-
quent is a linear regression model. More specifically, if Y

is the target variable and X1, . . . ,Xn are the predictive attri-
butes, then in a regression rule:

• The antecedent of the rule is a conjunction of conditions
over (possibly some of) the predictive variables, defining
a region of the input space. For example, If X1 6 r1 and
X3 2 (�1, r2] could be a possible antecedent for a prob-
lem defined over {X1,X2,X3,Y}.

• The consequent of the rule is a linear regression model
which predicts the value of Y from the value of the pre-
dictive attributes {X1, . . . ,Xn}, i.e., in our example we
could have Then Y = a0 + a1 Æ X1 + a2 Æ X2 + a3 Æ X3 as
the rule consequent.

Although the use of linear regression models implies the
assumption of independence between the predictive attri-
butes and the assumption of linearity between the target
variable and the predictive ones, the advantage of using
regression rules instead of a single linear regression model
lies in the fact that the approximation of variable Y is car-
ried out in a local manner (a model is defined for every
region, i.e., for each rule antecedent) instead of globally
(a single regression model for all the input space).

With respect to inference, when the input sub-spaces
induced by the rules’ antecedents are disjoint,2 a given
input instance can only fire a rule, so the inference reduces
to the pattern-matching phase to identify such a rule and to
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fire it, i.e., to return the value computed for Y by solving
the local regression model encoded in the rule consequent.

2.2. Linguistic fuzzy rules

Fuzzy Rules (FRs) (Zadeh, 1973) are based on Fuzzy Set
Theory (Zadeh, 1965) and are grounded on the use of fuzzy
predicates, X is A, where X is a problem domain variable
and A is a fuzzy set3 The typical4 structure of a fuzzy rule
is as follows:

If X 1 is vj1
1 & . . . &X n is vjn

n Then Y is vjl
y ð1Þ

where {X1, . . . ,Xn,Y} are problem domain variables and
fvj1

1 ; . . . ; vjn
n ; v

jl
y g are fuzzy sets defined over the domain of

their corresponding variables.
When no restriction exists in the selection of the fuzzy

sets fvj1
1 ; . . . ; vjn

n ; v
jl
y g we talk about approximative fuzzy

rules (Bárdossy & Duckstein, 1995). This type of system
usually achieves the highest precision in the prediction task
due to the fact that every fuzzy set appearing in each rule
can be tuned independently of the others. However, the
obtained rule system is a long way from being interpretable
by human experts.

On the other hand, in this work we focus on the so-
called Linguistic or Mamdani fuzzy rules (Mamdani & Ass-
ilian, 1975). In this type of fuzzy rule system, the domain of
each input/output variable is partitioned/covered by a fixed
number of fuzzy sets, each one having associated a linguis-
tic label. For example, the domain of the variable age can
be covered by the set of linguistic labels: {baby, child, teen-
ager, adult, ancient}. By associating a fuzzy set to each lin-
guistic label we get a linguistic variable (Zadeh, 1975). In
the linguistic modeling of a system only the linguistic labels
of a variable can appear in the fuzzy predicates of the rules.
Because of these restrictions in the designing of the fuzzy
rule system, linguistic fuzzy rules (LFR) usually have a
lower precision than approximative systems, but on the
other hand their rules (e.g. If car-speed is high and dis-
tance-to-next-car is short then brake-force is intense) are
fully interpretable by human experts.

From the previous description of LFRs we can deduce
that the knowledge base of a LFR system has two clearly
differentiated components: (1) a domain data base which
contains the definition of the linguistic variables; and (2)
3 In this work we only use triangular fuzzy sets. The membership degree
of a point x with respect to a triangular function defined in the interval
[a, c] and maximum/middle value in b is obtained as:

lTriangularðxÞ ¼

x�a
b�a ; if a 6 x 6 b;
c�x
c�b ; if b 6 x 6 c;

0; otherwise:

8><
>:

4 There are different approaches to the syntax of fuzzy rules; thus TSK
fuzzy rules (Sugeno & Kang, 1985; Takagi & Sugeno, 1985) have a like-
regression model in the consequent, obtaining systems more precise with
respect to the prediction task, but of course, with a considerable loss of
comprehensibility.
a collection of fuzzy rules defined over the linguistic
variables.

With respect to inference we can distinguish the follow-
ing steps:

• Fuzzification interface. This receives numeric inputs for
the input variables and transforms them into fuzzy sets.
We use punctual fuzzification, that is, given a real num-
ber r for an input variable X, we produce a fuzzy set r̂,
such that the membership value to r̂ is 1 for r ðlr̂ðrÞ ¼ 1Þ
and 0 for each value q 6¼ r ðlr̂ðqÞ ¼ 0Þ.

• Defuzzification interface. Given a fuzzy set it produces a
numerical output. We use moment defuzzification, which
returns the center-of-gravity of the given fuzzy set.

• Inference engine. Given an input x = hx1, . . . ,xni any
LFR (see Eq. 1) such that 8i¼1...n lv

ji
i
ðxiÞ > 0 is fired.

As the fuzzy sets defining linguistic fuzzy variables usu-
ally overlap, an input usually fires several rules. When a
rule is fired a fuzzy set for the target variable (Y) is
obtained. In this work, the set v0y is obtained (by using
classical operators) as

lv0y
ðrÞ ¼

l
v

jl
y
ðrÞ if l

v
jl
y
ðrÞ < m

m if l
v

jl
y
ðrÞP m

(

m being the matching degree of x to the rule: m ¼
mini¼1...nlv

ji
i
ðxiÞ.

If k rules are fired by a given input x and v1
y ; . . . ; vk

y are
the obtained fuzzy sets, then we have to combine them
into a single output. In this work we use the weighted
FITA (First Integrate Then Aggregate) approach, which
first defuzzifies v1

y ; . . . ; vk
y into their corresponding

numerical values r1
y ; . . . ; rk

y and then aggregates them
into a single value by using a weighted average:

ŷ ¼
Pk

i¼1ri
y � miPk

i¼1mi

;

mi being the matching degree of x with respect to the ith
rule fired.

On some occasions a numeric weight w 2 [0, 1] is associ-
ated to each LFR. This weight can be understood as the
degree of importance of a rule in the whole system and,
is a simple way of increasing the precision of the system
without significantly decreasing its readability. If weighted
LFRs are used then the final output is computed by taking
into account the rule weights (wi):

ŷ ¼
Pk

i¼1ri
y � mi � wiPk

i¼1mi � wi

:

3. Data

The dataset used in this work has been obtained from
AGRAMA data bases, which contain data from 1989 to
2003. After the data preparation process (described in
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Gámez, 2005) and following AGRAMA experts advice we
get a dataset with 9894 records and 21 numerical variables.

As we seek to get an estimation of ewes BV at a really
early stage, all the records in the dataset correspond to pri-
mipara ewes, because it is after the first offspring-birth and
its corresponding lactation when ewes are evaluated using
BLUP for the first time, and this is just the value that pedi-
gree index tries to replace. The 21 available variables can be
distributed in three different groups: 12 related to BV esti-
mation (and reliability of such estimation) of the animal, its
parents and grandparents; 5 related to lactation data of the
animal’s mother (number of controlled lactations, average
and maximum production over such controlled lactations);
2 related to the ewe’s unique controlled lactation; the pedi-
gree index and BV, i.e., the target variable (see Table 1).
Table 1
Variables in the original data set

BV data: Mother Lactation data:

BVFather, ReBVF, BVMother, ReBVM, NLactM
BVMaternalGM, ReBVMGM, BVParentalGM, AvLactNormM
ReBVPGM, BVMaternalGF, ReBVMGF, MaxLactNormM
BVParentalGF, ReBVPGF, pedigree, BV AvLact120M

Lactation data: AvLactNorm, AvLact120 MaxLact120M

BV is the target variable and pedigree stands for the constructed variable
pedigree index.
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Fig. 1. Scatter plot showing the correlation of the selected predictiv
This set of variables was selected by AGRAMA experts
for a different but similar task: BV classification (Gámez,
2005). However, in a view of the goal we have established
for this work we will only use a small subset of variables:

• First, it is clear that the lactation data of the ewes under
study (AvLactNorm and AvLact120) cannot be used as
predictive attributes.

• Secondly, as we aim to obtain simple predictors and
given the type of rule systems we are going to induce,
it is clear that we have to consider a small number of
variables (the pedigree index only uses two). Thus, we
consider the following two cases:
(1) We only use variables BVfather and BVmother (BVf

and BVm in short) as the pedigree index does.
(2) As the ultimate goal of the ESROM scheme is to

improve ewes’ milk production, ewes’ lactation data
is really significant for the prediction task. Because
we cannot use the ewe’s own lactation data, we will
investigate if the use of the ewe’s mother’s lactation
data is of utility as predictive information. From the
lactation mother data group we have selected variable
AvLact120M (LactM in short) by using filter mea-
sures (correlation and mutual information). There-
fore, our second predictor will use variables BVf,
BVm and LactM.
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e variables with respect to BV (subsample 20% of the dataset).



Fig. 2. An example of model tree.

5 The support of a fuzzy set A are the points with membership degree
greater than 0. The support associated to a triangular fuzzy set (l,m,r) is
the interval [l, r].
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Fig. 1 shows a scatter plot of the selected variables (plus
pedigree index) versus the target variable BV. As we can
observe there are different degrees of correlation (with
respect to BV) for the selected variables.

4. Learning regression rules

To learn the regression rules knowledge base we will use
an indirect approach: first, we learn a model tree from
the data set; and second, we extract the rules from the
tree.

Model trees (Quinlan, 1992; Wang & Witten, 1997) (see
Fig. 2) are binary decision trees with linear regression func-
tions at the leaf nodes. They can represent any piecewise
linear approximation to an unknown function and form
the basis of a successful technique for predicting continu-
ous numeric values. In this work, we use the public imple-
mentation of M5 0 algorithm (Wang & Witten, 1997)
available in the WEKA data mining suite (Witten & Frank,
2005). M5 0 includes the use of pruning for over-fitting pre-
diction and a smoothing process to compensate discontinu-
ities between adjacent linear models, which substantially
increases the accuracy of predictions.

Once the model tree has been learnt we extract the
regression rules by simply following the different paths
from the root to each leaf. Thus, from the model tree in
Fig. 2 we get the following rule set:

R1. If BVf 6 21.045 and BVm 6 5.78 and BVm 6 �6.33
Then LM1
R2. If BVf 6 21.045 and BVm 6 5.78 and BVm > �6.33
Then LM2
R3. If BVf 6 21.045 and BVm > 5.78 Then LM3
R4. If BVf > 21.045 and BVm 6 4.555 Then LM4
R5. If BVf > 21.045 and BVm > 4.555 Then LM5

However, because the model trees are binary, it is quite
frequent that in non-trivial trees the same variable appears
many times along a branch, giving rise to complex anteced-
ents. Therefore, it is interesting to rewrite the obtained
rules in such a way that a variable only appears in one con-
junct of the antecedent, making its interpretation as well as
the pattern matching phase easier. For example, rules R1
and R2 can be rewritten as follows:

R1. If BVf 6 21.045 and BVm 6 �6.33 Then LM1
R2. If BVf 6 21.045 and BVm 2 (�6.33,5.78] Then LM2

5. Learning linguistic fuzzy rules

Although in the literature we can find different propos-
als for learning LFRs we base this work on the so-called
grid-based methods. These methods assume that the lin-
guistic variables have been defined previously and focus
on the rule generation process.

Linguistic variables can be defined by domain experts or
learnt from data. Although we will come back to this topic
(Section 5.2), one of the easiest and most frequently used
ways of constructing linguistic variables from data is to
choose the number of linguistic labels, and then to build
a symmetrical fuzzy partition of the domain by using trian-
gular fuzzy sets. Thus, if a linguistic variable has l labels,
the real domain of such a variable is divided into l � 1
equi-width. Then, the l points {p1, . . . ,pl} defining the limits
of the intervals are used to define the fuzzy sets associated
to the linguistic labels: triangular fuzzy set (pi�1,pi,pi+1) is
associated to the ith linguistic label, except for the left-most
and the right-most labels, which will have (p1,p1,p2) and
(pl�1,pl,pl), respectively. Fig. 6a shows an example of sym-
metrical partition with l = 7. Grid-based methods use this
division of linguistic variables (concretely the support5

associated to each label) to create an n-dimensional grid
which divides the input space into (overlapped) sub-spaces,
and then they learn at most one rule for each input
sub-space. The following algorithms/approaches have been
used in this work:



L. delaOssa et al. / Expert Systems with Applications 33 (2007) 96–109 101
• Wang and Mendel (WM) algorithm (Wang & Mendel,
1992) is one of the most commonly LFRs learning algo-
rithms because of its simplicity and efficiency (linear on
the number of instances in the data set). The WM algo-
rithm behaves greedily by selecting for every non-empty
sub-space the rule (consequent) with the highest degree
of importance (see Wang & Mendel (1992) for details).

• COR methodology (Casillas, Cordón, & Herrera, 2002).
The main shortcomings of the WM algorithm result
from its greedy behaviour. Thus, in each sub-space it
looks for the rule with the best individual performance,
without considering that the interaction between all the
system rules will actually define its global performance.

Casillas et al. (2002) propose a WM-based method in
which they study the cooperation between the different
rules of the system. This modification, known as COR

Methodology (from Cooperative Rules) is based on
replacing the greedy behaviour of WM algorithm in
the selection of each rule, by a combinatorial search of

cooperative rules in the space of all rule candidate sets.
As opposed to the greedy and local philosophy of the
WM algorithm, the use of COR tries to accomplish a
global analysis.

Let {S1, . . . ,St} be the set of non-empty sub-spaces with
respect to the defined linguistic variables and a given data-
set D. Let Ci the set of available consequents (i.e. those
that have positive examples in D) for sub-space Si. Then,
the search space defined by COR methodology is

�
t

i¼1
ðCi [ f@gÞ

that is to say, the search space is the Cartesian product
of the total set of possible consequents augmented with
the null ð@Þ consequent.

Once the search space has been defined, two compo-
nents have to be specified to instantiate the COR meth-
odology in a concrete algorithm:
– A search method: local search, evolutionary algo-

rithms, etc.
– The score to evaluate the goodness of the candidate

solutions proposed by the search algorithm. To eval-
uate an individual/point/solution of the search space,
it is decodified into its corresponding LFR system. To
do this, we run over the candidate solution and for
each position (1, . . . , t) we generate a rule with the
antecedent that defines sub-space Si and the conse-
quent specified by the ith position of the individual/
solution being decodified. Those rules whose conse-
quent is null ð@Þ are removed (not generated). Then,
the LFR system obtained is used to predict the value
of the target variable for each instance contained in
the data set and the (root) mean squared error (with
respect to the actual value of the target variable) is
computed as the fitness/goodness of the individual
being evaluated. Of course, as we look for the individ-
ual/system with the smallest associated error, our
problem is a minimization one.
• WCOR methodology (Alcalá, Casillas, Cordón, & Her-
rera, 2002). As commented in Section 2.2 a way of
improving the accuracy of LFRs is to assign a weight
in [0,1] to each rule. Alcalá et al. (2002) propose WCOR
as an extension of COR in which weighted LFRs are
allowed. Therefore, in WCOR the search space is
defined as follows:

�
t

i¼1
ðCi [ f@gÞ �

t

i¼1
½0; 1�:

Of course, the problem is more complex now because
we have a larger search space and also because we have
to deal with a hybrid problem: combinatorial and numeri-
cal optimization.
5.1. UMDA-COR and UMDA-WCOR

In this work we use Estimation of Distribution Algo-

rithms (EDAs) (Larrañaga & Lozano, 2001) as the search
engine to guide the discovery process. EDAs have been suc-
cessfully applied to the problem of learning LFRs by using
the COR methodology (Flores, Gámez, & Puerta, 2005)
and we now extend their application to WCOR, this being
one of the main contributions of the paper.

EDAs are a recent metaheuristics that have attracted a
great deal of interest during the last 5 years. EDAs are evo-
lutionary algorithms based on populations as well as
genetic algorithms (Michalewicz, 1996) (GAs), but in which
genetics has been replaced by the estimation/learning and
sampling of a probability distribution which relates the
variables or genes forming to an individual or chromo-
some. Fig. 3 shows the general outline of EDAs evolution
process. As we can see, steps (b) and (c) replace the classical
selection + crossover + mutation used in genetic algo-
rithms. Step (b) is the key point in EDAs algorithms,
because working with the joint probability distribution is
intractable even in small problems, so that a simpler model
has to be estimated/learnt.

In this work we use the simplest EDA algorithm: UMDA
Univariate Marginal Distribution Algorithm (Mühlenbein,
1998). The UMDA imposes the stronger assumption with
respect to the underlying probability distribution: marginal
independence among all the variables. In practice this
assumption implies that the t-dimensional joint probability
distribution is factorised as

P ðs1; s2; . . . ; xtÞ ¼
Yt

i¼1

P ðsiÞ;

that is, no structural learning is needed, and only marginal
probabilities are required during parameter learning.

Therefore, the application of UMDA to COR comes
down to the estimation of the marginal probability distri-
bution for the set of values/consequents allowed for each
sub-space, i.e., Ci [ f@g. In our implementation the esti-
mated probabilities are smoothed out by using Laplace



Fig. 3. Description of a canonical EDA.

102 L. delaOssa et al. / Expert Systems with Applications 33 (2007) 96–109
correction. With respect to sampling, because of the inde-
pendence assumption, each position (marginal distribu-
tion) is sampled independently.

In spite of its simplicity, in general, UMDA has a good
performance and, in particular, when applied to the COR
methodology it behaves better than GAs (Flores et al., 2005).

In WCOR a candidate solution is a hybrid individual of
length 2t: the first t positions represent the consequent
selected for each sub-space (as in COR) and positions
t + 1, . . . , 2t are numbers in [0, 1] and represent the weights
assigned to the rules. Thus, position i (1 6 i 6 t) represents
the consequent of the rule generated by subspace Si and
position t + i represents the weight of that rule. Alcalá
et al. (2002) use a GA that separately applies crossover
over the discrete (1, . . . , t) and numerical (t + 1, . . . , 2t)
parts of the chromosome and then combines the results
obtaining eight offsprings from the combination of two
parents. In this work, and encouraged by the success of
UMDA when applied to COR, we extend our previous
approach to cope with weights. Thus, we use the previously
described UMDA algorithm to manage the discrete part of
the problem and UMDAg to cope with the numerical part.
UMDAg (Larrañaga, Etxeberria, Lozano, & Peña, 1999) is
an adaptation of UMDA to the continuous case by using
the normal distribution to model the density of each vari-
able, while the joint density is factorised as the product
of all the unidimensional and independent normal densi-
ties. Thus, model induction is reduced to the estimation
of l and r2 for each variable. Furthermore, as each vari-
able is independently simulated, any standard method for
sampling from a normal distribution can be used (e.g.
Box and Muller).

Therefore, in the learning phase of our algorithm we run
through the index i = 1, . . . , 2t estimating a marginal dis-
crete distribution if i 6 t and a unidimensional normal dis-
tribution if i > t. Analogously, in the sampling phase we
run through the index i = 1, . . . , 2t sampling the appropri-
ate distribution.

5.2. Tuning the definition of the linguistic variables

The definition of linguistic variables by choosing the
number of labels (l) and then constructing a symmetrical
fuzzy partition is a typical choice when using LFRs. How-
ever, a careful definition of the linguistic variables usually
helps to improve the performance of the system. There
are two main ways of doing this:

• Once the LFR system has been learnt a post-processing
step is carried out that tunes the membership functions
of the fuzzy set used in the linguistic variables in order
to improve the system’s precision. In (Cordón, Herrera,
Hoffmann, & Magdalena, 2001, chap. 4) GAs are used
to guide the tuning process.

• A different possibility is to tune the linguistic variables in
combination with a rule induction mechanism. That is,
different candidate definitions are created and scored
by learning (and evaluating) a LFR system for each def-
inition. In this approach it is common to tune not only
the membership functions but also the number of labels
used in the definition of each linguistic variable, i.e., the
following parameters are tuned simultaneously: (1) the
number of labels li for each variable Xi; and (2) the three
points (left,middle, right) that describe the fuzzy set
associated to each linguistic label. Again, GAs are a
common choice to guide the tuning process (Cordón,
Herrera, Hoffmann, et al., 2001; Cordón, Herrera, &
Villar, 2001, chap. 4).

In this work we focus on the second approach in order
to tune the definition of the linguistic variables involved
in our problem. The major points of our algorithm are:

• In our case, as we will use the definitions obtained as the
input for an evolutionary-based learning process, we
deal with a simplified version of the problem described
above. Concretely, we assume a fixed number of labels
for the linguistic variables and this number (given by
the user) is the same for all the variables. Furthermore,
as in symmetrical partitions, the fuzzy set associated to
the jth linguistic label only has a non-empty intersection
with the (j � 1)th and (j + 1)th labels, intersecting them
at height 0.5. This assumption implies that only the mid-
dle point of the triangular fuzzy sets has to be tuned,
except for the left-most and right-most labels because
in these cases the middle point is located at the minimum
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and maximum value of the problem domain variable.
Therefore, if l is the number of linguistic labels for each
one of the n linguistic variables, then a candidate solu-
tion to our tuning problem can be codified by a vector
of n(l � 2) doubles:
variable X1
Fig. 4. Regression rules-based syst
last one which is the consequent.
� � �
em obt
variable Xn
c2
1
 c3

1
 � � �
 cl�2
1
 cl�1

1
 � � �
 c2
n

ained
c3
n

when
� � �
using B
cl�2
n

Vp and
cl�1
n

where cj
i stands for the middle point of the fuzzy set

associated to the jth label of the ith linguistic variable.
Remember that c1

i and cl
i are not included because they

are fixed to mini and maxi, respectively.
• As in Cordón, Herrera, and Villar (2001) we use the

WM algorithm to score each definition. That is, for each
candidate solution we run WM taking as input the def-
BVm as pr
inition for the linguistic variables that such a solution
encodes. The (root) mean squared error associated to
the system learnt by WM will be the fitness associated
to that candidate solution.

• To guide the search we have used a simple generational
GA with real-code representation (an array of doubles).
Convex combination has been used as a crossover oper-
ator, i.e., given a value a 2 [0, 1], position cj

i is obtained
for both off-springs as: cj0

i ¼ a � cja
i þ ð1� aÞ � cjb

i and
cj00

i ¼ a � cjb
i þ ð1� aÞ � cja

i , where a and b denote the
two parents. With respect to mutation, position cj

i is
mutated by replacing its current value with a random
number uniformly generated in ½cj�1

i ; cjþ1
i �.

• Once the genetic algorithm stops and returns a definition
for the linguistic variables we perform the following pro-
cess: If cj

i and cjþ1
i are too close, then we remove their

corresponding labels from the definition and add a
edictive variables. Each column represents a conjunct of the rule, except the
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new label with the middle point at
cj

iþcjþ1
i

2
. If the new def-

inition has a better or similar score (using WM) than the
original one, maintain the change and go on, otherwise
the change is rejected and the original linguistic labels
are retained. The goal of this step is to reduce the num-
ber of linguistic labels without decreasing the precision
of the system. It is clear that a reduction in the number
of linguistic labels yields a reduction in the number of
rules of the resulting system, and usually few rules
means less overfitting.

To end this section let us remark that the tuning process
is carried out in a global way, so the definition obtained for
a variable (e.g. BVF) will be, in general, different if the
Fig. 5. Regression rules-based system obtained when using BVp, BVm and Lac

except the last one which is the consequent.
whole set of involved variables is different (e.g. {BVf,
BVm,BV} vs {BVf,BVm,LactM,BV}).

6. Experiments and results

In this section we describe the design of the experiments
carried out and analyse the results obtained.

As commented in Section 3 our dataset has 9894
instances. Taking into account this (considerably large)
number of instances and in order to make an honest esti-
mation of the obtained systems accuracy/precision, we
have followed a 5-fold cross validation approach in our
experiments. Therefore, in each iteration of the cross vali-
dation process, about 7900 instances were used for training
tM as predictive variables. Each column represents a conjunct of the rule,
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the models/systems and about 1980 to test them. Besides,
in order to compare the results, the same 5 partitions
(train+test) have been used in all the experiments.

In Section 2.1 we describe the method used to induce the
regression rules-based system. Concretely, we have run its
Weka (Witten & Frank, 2005) implementation (weka.classi-
fiers.trees.M5P) by using its default parameter setting (pru-
ned = yes, smoothing = yes, min number of instances per
leaf = 4). The systems obtained for our two different pre-
dictors [BVp ^ BVm! BV] and [BVp ^ BVm ^ LactM!
BV] are in Figs. 4 and 5, respectively.

With respect to the precision of this approach the results
are in the row denoted as M5 0 in Tables 2 and 3. For this
approach we show (distinguishing between train and test)
the mean ± deviation (computed over the 5 folds of the
cross validation) of two standard measures for numerical
prediction: root mean squared error (rmse) and correlation
Table 2
Results obtained by the different approaches when BVp and BVm are used as

Method gran. nr. rmsetra rmse

Pedigree – – 7.0727 ± 8.5e�4 7.072

M50 – 28 6.4789 ± 0.0013 6.544

WM 5,5,5 22 7.3951 ± 0.0292 7.460
5,5,5t 20 7.3010 ± 0.2672 7.307
7,7,7 30 7.3416 ± 0.0856 7.355
7,7,7t 40 7.2508 ± 0.0065 7.310
4,6,7t 19 7.5063 ± 0.3164 7.522

COR 5,5,5t 17 6.8574 ± 0.0022 6.869
7,7,7t 28 6.7627 ± 0.0013 6.819
4,6,7t 17 6.7586 ± 0.0025 6.794

WCOR 5,5,5t 19 6.8458 ± 0.0392 6.864
7,7,7t 29 6.7204 ± 0.0084 6.787
4,6,7t 19 6.7652 ± 0.0089 6.787

Table 3
Results obtained by the different approaches when BVp, BVm and LactM are

Method gran. nr. rmsetra rmse

Pedigree – – 7.0727 ± 8.5e�4 7.072

M50 – 37 6.4581 ± 0.0087 6.517

WM 5,5,5,5 59 7.4293 ± 0.0282 7.494
5,5,5,5t 48 7.3826 ± 0.0841 7.423
7,7,7,7 138 7.2487 ± 0.0375 7.336
7,7,7,7t 105 7.0436 ± 0.0165 7.121
7,7,6,7t 99 7.0479 ± 0.0162 7.109
4,6,6,7t 55 7.3884 ± 0.0177 7.446

COR 5,5,5,5t 39 6.7432 ± 0.0066 6.796
7,7,7,7t 83 6.7322 ± 0.0113 6.846
7,7,6,7t 79 6.7288 ± 0.0098 6.816
4,6,6,7t 43 6.8273 ± 0.0075 6.887

WCOR 5,5,5,5t 39 6.7161 ± 0.0114 6.785
7,7,7,7t 89 6.6743 ± 0.0126 6.789
7,7,6,7t 83 6.6643 ± 0.0092 6.758
4,6,6,7t 42 6.7085 ± 0.0144 6.773
coefficient (corr). Also the number of rules in the resulting
systems is shown.

In the case of linguistic fuzzy rules we have developed
our own software, which is written in Java and uses the
API provided by FuzzyJess (IRG-NCR, 2005; Orchand,
2001) for fuzzy sets representation and operations. First,
we will describe the details of the process followed to tune
the definition of the linguistic variables. As we remark on
Section 5.2 our goal with the tuning process is to get a bet-
ter starting point for the LFR discovering process than the
one provided by symmetrical partitions. Because of this we
have dealt with a simplified version of the problem and we
have given few resources to the genetic algorithm: the train-
ing set is a sample (2000 instances) of the original one; pop-
ulation size has been fixed to 50 individuals; and the
maximum number of generations before stopping is set to
50. The rest of parameters are: 5 or 7 labels per linguistic
predictive attributes

tst corrtra corrtst

0 ± 0.0138 0.8618 ± 5.9e�6 0.8617 ± 4.1e�7

4 ± 0.0056 0.8839 ± 1.1e�6 0.8815 ± 4.6e�6

7 ± 0.0488 0.8559 ± 7.1e�5 0.8531 ± 1.9e�4
8 ± 0.3182 0.8631 ± 4.1e�5 0.8616 ± 8.9e�5
7 ± 0.1122 0.8601 ± 4.7e�5 0.8589 ± 1.0e�4
5 ± 0.0102 0.8607 ± 4.2e�6 0.8583 ± 3.1e�5
9 ± 0.4079 0.8482 ± 6.0e�4 0.8457 ± 0.0011

6 ± 0.0066 0.8696 ± 8.9e�5 0.8692 ± 0.0002
0 ± 0.0061 0.8736 ± 3.4e�5 0.8715 ± 0.0002
1 ± 0.0099 0.8731 ± 8.7e�5 0.8718 ± 0.0004

6 ± 0.0400 0.8701 ± 0.0017 0.8694 ± 0.0016
3 ± 0.0148 0.8747 ± 0.0003 0.8722 ± 0.0006
6 ± 0.0132 0.8728 ± 0.0003 0.8720 ± 0.0004

used as predictive attributes

tst corrtra corrtst

0 ± 0.0138 0.8618 ± 5.9e�6 0.8617 ± 4.1e�7

1 ± .0061 0.8847 ± 1.0e�5 0.8825 ± 2.3e�6

1 ± 0.0439 0.8444 ± 6.1e�5 0.8414 ± 4.5e�5
5 ± 0.0785 0.8603 ± 2.1e�5 0.8585 ± 2.4e�5
9 ± 0.0238 0.8585 ± 5.3e�5 0.8545 ± 2.5e�5
4 ± 0.0563 0.8619 ± 3.3e�5 0.8585 ± 7.7e�5
1 ± 0.0560 0.8617 ± 3.2e�5 0.8591 ± 7.8e�5
0 ± 0.02047 0.8578 ± 4.3e�6 0.8548 ± 3.9e�5

3 ± 0.0133 0.8739 ± 0.0002 0.8718 ± 0.0005
2 ± 0.0135 0.8755 ± 0.0005 0.8710 ± 0.0006
7 ± 0.0154 0.8758 ± 0.0004 0.8723 ± 0.0006
3 ± 0.02543 0.8710 ± 0.0004 0.8685 ± 0.0012

4 ± 0.0222 0.8751 ± 0.0005 0.8723 ± 0.0009
9 ± 0.0270 0.8771 ± 0.0005 0.8725 ± 0.0011
1 ± 0.0290 0.8773 ± 0.0004 0.8736 ± 0.0011
4 ± 0.0246 0.8753 ± 0.0006 0.8727 ± 0.0010
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variable, a = 0.35 in the convex combination based cross-
over and probability of mutation 0.2. Fig. 6 shows the lin-
guistic variables returned by the GA for BVf (c), BVm (e)
and BV (b) when using 7 labels as input and tuning the pre-
dictor (BVf,BVm). Part (g) shows the output of the GA for
variable LactM when tuning the predictor that also uses
this variable as input. As we can see in all the cases there
are fuzzy sets that have their middle point quite close. By
applying the process described in Section 5.2 to the output
of the GA we get the partitions shown in parts (d), (f) and
(h) of Fig. 6. Notice that variable BV is not modified by this
editing process, while BVf drops from 7 to 4 labels and
BVm and LactM drop from 7 to 6 labels.

Now, we describe the experiments carried out to learn
LFR systems:
1.0

-40 -30 -20 -10 0  10  20  30  40  50  60  70

VL LW ML MD MH HG VH 1

(a) BV (simmetrical partition)

1.0

-60 -40 -20 0  20  40  60  80

VL LW
ML

MD MHHG
VH 1

(c) BVf (7 labels)

1.0

-40 -20 0  20  40  60  80  100

VL LW ML MD MH HG VH 1

(e) BVm (7 labels)

1.0

0  100  200  300  400  500  600

VL LW ML MD MH HG VH 1

(g) LactM (7 labels)

Fig. 6. Variables involved in the problem a
• The first method we have used is the WM algorithm. We
have run WM by using as input the following definition
for the linguistic variables:
– The definitions obtained by constructing symmetrical

partitions with 5 and 7 labels. Denoted by (5, 5,5),
(7,7,7), (5,5,5,5) and (7, 7,7,7), the order of the vari-
ables being BVf, BVm, [LactM,] BV.

– The definitions obtained by the GA-based tuning
process with 5 and 7 labels. Denoted by (5,5,5)t, . . .

– The definitions used by editing the GA output. In this
case the editing process does not have any effect on
the 5-labels definitions, so only the 7-labels edited
definitions are shown. By (4, 6,7)t we denote the case
in which BVf, BVm and BV are reduced to 4, 6 and 7
labels. Analogously, by (7, 7,6,7) we denote the case
.0

-40 -30 -20 -10 0  10  20  30  40  50  60  70

VL LW ML MD MH HG VH

(b) BV (tuned partition)
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-60 -40 -20 0  20  40  60  80

LW MD HG VH

(d) BVf (4 labels)
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-40 -20 0  20  40  60  80  100
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(f) BVm (6 labels)

.0

0  100  200  300  400  500  600

LW ML MD MH HG VH

(h) LactM (6labels)

nd their associated linguistic variables.
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in which BVf, BVm, LactM and BV are reduced to 7,
7, 6 and 7 labels, respectively. Notice that, as the tun-
ing process is global, different definitions are obtained
for the same variable (e.g. BVf) when different sets of
variables are involved in the predictor.

– Finally, in the case of the more complex predictor,
namely the one that uses LactM, we have try an addi-
tional definition: (4,6,6,7)t. This definition is made
up by using (4,6,7)t for (BVf,BVm,LactM) and the
6-labels based definition taken from (7, 7,6,7)t for
LactM. The idea is to study the effect of this simpler
partition over the obtained system: precision and
number or rules.

The results are shown in Tables 2 and 3, where we show the
same data as for the RR-based systems.

• From the results obtained by applying WM algorithm
we select the tuned partitions as the definitions to be
used as input for COR and WCOR. In COR and
WCOR the following design decisions have been taken:
the probabilistic model induced at each generation is
learnt from the best 50% individuals of the current pop-
ulation; the current population and the sampled one are
combined by truncation, i.e., they are merged, sorted by
fitness and the best population-size individuals are
retained; the population size is 200 and the maximum
number of allowed iterations is 100.
In this case due to the stochastic nature of the search
algorithms, each (5 cross validated) experiment has been
repeated ten times, and the results (Tables 2 and 3) show
the mean and deviation over the 10 independent runs.

Figs. 7 and 8 show, in form of decision table, the systems
obtained by COR and WCOR when using the definition of
linguistic variables denoted by (4, 6,7)t. Analogously, Figs.
9 and 10 show the systems obtained when using the defini-
tion of linguistic variables denoted by (4, 6,6,7)t.
Fig. 7. LFR-based system obtained when using the definition (4,6,7)t as
input for COR.

Fig. 8. LFR-based system obtained when using the definition (4,6,7)t as
input for WCOR.
6.1. Analysis

In this section we analyze the results from two different
perspectives: precision and complexity/comprehensibility
of the obtained systems:

• Precision. We based our analysis about precision on the
results obtained over the test.
– With respect to the precision of the obtained systems

it is clear that regression rules get the best result. This
is not an unexpected result, because the actual value
we are using in the supervised learning task was
obtained by BLUP, which relies on defining and
simultaneously solving a set of linear equations. With
respect to the prediction carried out by the pedigree
index, the systems obtained with RRs reduce the
error in more than 0.5 units and improve the correla-
tion in more than two points. Furthermore, these sys-
tems always have less error (greater correlation) than
all the systems obtained by using LFRs.

– Between the LFR-based systems it is clear that the
two following comments hold: (1) The systems learnt
by WCOR improve on those learnt by COR, which
are better than the ones learnt by using WM; (2) it
is better to use 7 labels than 5. The best results are
obtained by WCOR when using definition
(7,7,6,7)t, which reduces error of pedigree index in
more than 0.3 units and improves the correlation in
more than 1.2 points.

– With respect to the use or otherwise of the LactM var-
iable, it can be observed that there is only a slight
improvement on the precision of the obtained sys-
tems when this variable is used. That is, we should
Fig. 9. LFR-based system obtained when using the definition (4,6,6,7)t as
input for COR.



Fig. 10. LFR-based system obtained when using the definition (4,6,6,7)t

as input for WCOR.
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Fig. 11. Modeling of [BVf ^ BVm! BV] carried out by (a) pedigree
index, (b) regression rules and (c) linguistic fuzzy rules.
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suppose that although this variable is relevant to our
problem, it is not determinant once we know the
value of BVm.

– Fig. 11 shows the modeling surfaces for the predictor
[BVf ^ BVm! BV] by running pedigree index, the
RR-based system, and the WCOR (4,6,7)t LFR-
based system, over a data set artificially created by
systematically generating points in a grid defined over
BVf · BVm. In the plots we can observe the nature
(linearity and non-linearity) of each method.
• Complexity/Comprehensibility. We base our analysis
about the complexity of a system on both the number
of rules and the type of rules.
– With respect to RR-based systems the number of

rules when using or otherwise variable LactM is 37
and 28, respectively. With respect to the complexity
of each rule, we can see how the post-processing of
the rules contributes to simplify the system. As an
example, when LactM is used, the antecedent of the
originally tree-extracted 17th rule looks as follows:

If BVf 6 21.045 and BVm 6 5.775 and BVm > �3.455
and BVf 6 3.905 and BVf > �11.815 and BVm >0.795
and BVf > �6.425 and LactM 6 167.54 and LactM
>163.12 and BVm >2.05 Then . . .

which is far more complex than its post-processed
version shows in Fig. 5. However, even with this
new writing, regression rules are quite difficult to
understand because the consequent is a regression
equation.

– In the case of LFR-based systems it is clear that the
number of rules largely depends on the cardinality
of the linguistic variables used. However, due to the
tuning process carried out, we can observe how the
systems learnt by COR/WCOR using definitions
(4,6,7)t and (4,6,6,7)t have 17/19 and 43/42 rules,
respectively, which are good figures when compared
with RR-based systems. Furthermore, the consequent
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used in this case is far more interpretable than a
regression equation, and so we can conclude that a
human expert will prefer to deal with linguistic fuzzy
rules than with regression rules.

7. Concluding remarks

In this paper an application of rule-based systems to a
farming problem has been studied. The problem here con-
sidered is the breeding value estimation of Manchego ewes
in their early stages of life, that is, before they become
mothers. After the first offspring-birth and its correspond-
ing controlled lactation BLUP methodology can be used,
but until that moment a simple predictor is considered:
the pedigree index.

The goal of the paper was threefold: firstly, we have
studied if the estimation made by the pedigree index can
be improved by using rule-based systems; secondly, we
have studied the pros and cons of solving the problem by
using two different types of systems: regression rules and
linguistic fuzzy rules; and finally, we have presented an
EDA-based approach to the problem of learning weighted
linguistic fuzzy rules.

The results obtained show that the pedigree index based
estimations are significantly improved when using the rule-
based predictors, attaining two points of increase in the
correlation coefficient when regression rules are used. On
the other hand, we have found that EDAs are a suitable
technique to approach the problem of learning weighted
linguistic fuzzy rules. Finally, with respect to the compari-
son between the two types of rules used, it is clear that
regression rules achieve the highest precision, but linguistic
fuzzy rules are more easier to understand for human
experts.

For the future we plan to continue working on this
problem and other related farming problems by identifying
tasks in which intelligent/expert systems can be applied. In
addition, encouraged by the results obtained by our EDA-
based approach to WCOR, we plan to develop new models
in which some dependencies are allowed (e.g., direct rela-
tions between consequents and their weights).
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