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ABSTRACT

The prediction of the coordination number (CN) of an amino
acid in a protein structure has recently received renewed at-
tention. In a recent paper, Kinjo et al. proposed a real-
valued definition of CN and a criterion to map it onto a
finite set of classes, in order to predict it using classification
approaches. The literature reports several kinds of input
information used for CN prediction. The aim of this pa-
per is to assess the performance of a state-of-the-art learn-
ing method, Learning Classifier Systems (LCS) on this CN
definition, with various degrees of precision, based on sev-
eral combinations of input attributes. Moreover, we will
compare the LCS performance to other well-known learning
techniques. Our experiments are also intended to determine
the minimum set of input information needed to achieve
good predictive performance, so as to generate competent
yet simple and interpretable classification rules. Thus, the
generated predictors (rule sets) are analyzed for their inter-
pretability.
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1 Introduction

One of the main open problems in computational biology is
the prediction of the 3D structure of protein chains. One
approach to this problem is to predict some attributes of a
protein, such as the secondary structure, the solvent acces-
sibility or the coordination number, and then integrate this
knowledge into a full 3D structure predictor.

The coordination number (CN) problem is defined as the
prediction, for a given residue, of the number of residues
from the same protein that are in contact with it in the
native state. Two residues are said to be in contact when
the distance between them is below a certain threshold. This
problem is closely related to contact map (CM) prediction
that predicts, for all possible pairs of residues of a protein,
if they are in contact or not creating a bidimensional binary
map. The coordination number of a residue is the count
of the number of ones in the row of the map associated to
the residue. Contact maps for any protein dataset could be
easily generated through our protein structure comparison
web server at http://www.procksi.net/.

Recently, there has been renewed interest in CN and CM
prediction [5, 13, 16, 22, 26], due partially to the availabil-



ity of larger datasets and to advances in software and hard-
ware. Most studies use the definition of contact informally
stated above, which is essentially a categorical representa-
tion. However, Kinjo et al. [13] have proposed a real-valued
definition of contact, and used linear regression to predict
the CN based on the amino acid (AA) type of the protein pri-
mary sequence and global information about the protein. In
order to compare the performance of their method with the
classification approaches to CN prediction, they proposed a
method to define class boundaries.

The goal of this paper is to assess the predictive perfor-
mance of LCS within the problem definition proposed by
Kinjo et al., treating directly the CN prediction as a clas-
sification problem. The chosen machine learning algorithm
belongs to the family of Learning Classifier Systems (LCS)
[24, 9], which are rule-based machine learning systems us-
ing evolutionary computation [10] as the search mechanism.
Specifically, we have used a recent system called GAssist,
which generates accurate, compact and interpretable solu-
tions [2].

We will test the chosen CN definition using six different
sets of input attributes, representing an increasingly rich in-
formation space in which learning takes place. The first of
these sets is the simplest: the amino acid (AA) type of a
window of residues around the residue for which coordina-
tion number is being predicted. We call this residue the
target residue. The next sets will incrementally add extra
information, such as global protein information or predicted
properties of the protein, as it is usually assumed that a
richer dataset will yield better predictions. We carefully
assess the value of this assumption. The performance of
GAssist on these datasets will be compared against several
alternative learning mechanisms, and the performance of all
these machine learning paradigms will be discussed. Finally,
we will analyze the solutions generated by GAssist.

The rest of the paper is structured as follows: Section 2
will contain a brief summary of background information and
several recent CM/CN prediction approaches. Section 3 will
describe the particular CN definition, class partitions, per-
formance measures and datasets used in this paper. Section
4 will describe the main characteristics of GAssist. Section
5 will report the results of the experiments. In section 6 we
will discuss our results and, finally, section 7 will describe
the conclusions and further work.

2 Background and related work

Proteins are heteropolymer molecules constructed as a chain
of residues or amino acids of 20 different type. This string of
amino acids is known as primary sequence. In native state,
the chain folds to create a 3D structure. It is thought that
this folding process has several steps. The first step, called
secondary structure, consists of local structures such as al-
pha helix or beta sheets. These local structures can group in
several conformations or domains forming a tertiary struc-
ture. The final 3D structure of a protein consists of one or
more domains. In this context, the coordination number of
a certain residue is a profile of this folding process indicating
the number of other residues that, after the folding process,
end up being near the target residue. Some of these con-
tacts can be close in the protein chain but some other can
be quite far apart, some trivial contacts such as those with
the immediate neighbour residues are discarded. Figure 1
contains a graphical representation of the CN of a residue
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for an alpha helix, given a minimum chain separation (dis-
carded trivial contacts) of two. In this example, the CN is
two.

Figure 1: Graphical representation of the CN of a
residue

Threshold

There is a large literature in CN and CM prediction, in
which a variety of machine learning paradigms have been
used, such as linear regression [13], neural networks [5], hid-
den markov models [22], a combination of self-organizing
maps and genetic programming [16] or support vector ma-
chines [26].

There are two usual definitions of the distance used to
determine whether or not there is contact between two
residues. Some methods use the Euclidean distance between
the C atoms of the two residues [22], while other methods
use the Cj atom (C, for glycine) [13]. Also, several meth-
ods discard the contacts between neighbouring residues in
the primary chain by counting only contacts with a chain
separation greater than a certain minimum. There are also
many different distance thresholds.

Several kinds of input information are used in CN pre-
diction beside the AA type of the residues in the primary
chain, such as global information of the protein chain [13],
data extracted from multiple sequences alignments [22, 5,
26, 16, 13] (mainly from PSI-BLAST [1]), predicted sec-
ondary structure [5, 26], predicted solvent accessibility [5],
physical characteristics of the residues [23] or sequence con-
servation [26].

Finally, there are two approaches for the methods that
deal with this problem using classification. On the one hand,
the absolute CN could be predicted, assigning a class to
each possible value of CN. On the other hand, some studies
propose criteria to group instances with close CN, such as
separating the instances that have lower or higher CN than
the average of the training set [5], or defining classes in a
way that guarantees uniform class distribution [13].

3 Problem definition
3.1 Definition of coordination number

We have used the definition of Kinjo et al. [13] of CN as
it is the most recent work for this domain, and because its
non-crisp definition can give a smoother fitness landscape.
The distance used is defined using the Cs atom (C, for
glycine) of the residues. Next, the boundary of the sphere
around the residue defined by the distance cutoff d. € R+
is made smooth by using a sigmoid function. A minimum



chain separation of two residues is required. Formally, the
CN, N?, of residue ¢ in protein chain p is computed as:

1
NP= Y (1)
Pt 1+ exp(w(ri; — dec))
where r;; is the distance between the Cz atoms of the ith
and jth residues. The constant w determines the sharpness

of the boundary of the sphere.

3.2 Conversion of the real-valued CN defini-
tion into a classification domain

In order to predict real-valued CN using classification tech-
niques, we need to map the continuous domain onto a finite
set of categories. In this paper we will test two different
criteria to generate datasets with n classes: The first one
(uniform frequency - UF) was used by Kinjo et al. Par-
tition the CN domain into a set of classes that contain equal
number of examples. The second criterion (uniform length
- UL) partitions the CN domain into a set of classes that
cover segments of equal length of the domain. These two
criteria correspond to the two more widely known unsuper-
vised discretization algorithms of the same names [14].

3.3 Protein dataset

We have used the dataset and training/test partitions pro-
posed by Kinjo et al. The protein chains were selected from
PDB-REPRDB [18] with the following conditions: less than
30% of sequence identity, sequence length greater than 50,
no membrane proteins, no nonstandard residues, no chain
breaks, resolution better than 2 A and a crystallographic R
factor better than 20%. Chains that had no entry in the
HSSP [21] database were discarded. The final data set con-
tains 1050 protein chains and 257560 residues.

3.4 Déefinition of thetraining and tests sets

This definition includes two parts: the generation of the
training and test partitions and the proposal of the sets of
input information from which the CN is predicted.

The set was divided randomly into ten pairs of training
and test set using 950 proteins for training and 100 for test
in each set, using bootstrap. The proteins included in each
partition are reported in http://macclOl.genes.nig.ac.
jp/"akinjo/sippre/suppl/list/. We have placed a copy
of the dataset at http://www.asap.cs.nott.ac.uk/~jqb/
datasetsGECC0-2006.tar.gz (127MB).

We enriched the CN definition with six different set of in-
put attributes. The first set represents the simplest set of
input data: the AA type of the residues in a window around
the target one. The following sets add extra information,
such as global protein information or predicted characteris-
tics of the protein. The set of input attributes are labeled
CN1 through CN6 in the rest of this paper. This allows
us to assess rigorously whether additional information is of
benefit, and the degree of usefulness of each kind of extra
data.

The global protein information consists of 21 real-valued
attributes. The first attribute is the length of the protein
chain (number of residues). The other 20 attributes contain
the frequency of each AA type in the protein chain. Two
types of predicted information have been used. The first is
the average real-valued CN of a protein chain [13], called
PredAveCN. This feature was predicted using GAssist it-
self. PredAveCN was partitioned into 10 classes (10 different
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states in the Pred AveCN domain), using the two criteria de-
fined in subsection 3.2. This protein-wise feature was pre-
dicted from the 21 global protein attributes stated above,
that is, the protein length and the frequency of appearance
of the 20 AA types in the chain. The second predicted infor-
mation is secondary structure of the target residue, using the
PSI-PRED predictor [12]. This predicted information con-
sists of two parts: a secondary structure type (helix, strand
or coil) and a confidence level (]0..9]) of the prediction.
Table 1 summarizes the input attributes used in the
datasets, and table 2 describes which attributes are included
in each sets of input information. CN3 and CNb5 represent
two different ways of aggregating the same source of infor-
mation to CN1, either as global information or as a pre-
dicted information. CN2, CN4 and CN6 add the predicted
secondary structure to CN1, CN3 and CNb5, respectively.
Finally, we will partition the real-valued CN definition into
two, three and five states (classes), using the two criteria de-
scribed in section 3.2. We will evaluate a total of 36 datasets
(six sets of input attributes, three of classes and two class
definitions) derived from the Kinjo et al.’s protein dataset.

3.5 Performance measure

The accuracy that will be reported in section 5 is not the
standard machine learning accuracy metric (#correct exam-
ples/#total examples). As is usual in the protein structure
prediction field [13, 12], we will take into account the fact
that each example (a residue) belongs to a protein chain.
Therefore, we will first compute the standard accuracy mea-
sure for each protein chain, and then average these accura-
cies to obtain the final performance measure. Because dif-
ferent chains have different lengths, the used measure can
differ greatly from the standard accuracy. The rationale
for this is to mimic the real-life situation, in which a new
protein is sequenced, and researchers are interested in the
predicted properties based on the entire protein sequence,
independent of its length.

4 The GAssist Learning Classifier System

GAssist [2] is a Pittsburgh Genetic-Based Machine Learning
system descendant of GABIL [9]. The system applies an
almost standard generational GA, which evolves individuals
that represent complete problem solutions. An individual
consists of an ordered, variable-length rule set.

A fitness function based on the Minimum Description
Length (MDL) principle [20] is used. The MDL principle
is a metric applied to a theory (being a rule set here) which
balances the complexity and accuracy of the rule set The de-
tails and rationale of this fitness formula are explained in [2].
The system also uses a windowing scheme called ILAS (in-
cremental learning with alternating strata) [4] to reduce the
run-time of the system, especially for dataset with hundreds
of thousands of instances, as in this paper. This mechanism
divides the training set into several non-overlapping subsets
and chooses a different subset at each GA iteration for the
fitness computations of the individuals.

We have used the GABIL [9] rule-based knowledge repre-
sentation for nominal attributes and the adaptive discretiza-
tion intervals (ADI) rule representation [2] for real-valued
ones. Section 5 shows an example of a rule set generated by
GAssist using the GABIL representation. To initialize each
rule, the system chooses a training example and creates a
rule that guarantees to cover this example [3].



Table 1: Input attribute definitions for the tested datasets

[ Att. source [ Description

[ Type [ Cardinality

Len Number of residues in a protein chain real-valued 1 attribute
FreqRes Frequencies of appearance of the each AA type in real-valued 20 attributes
the protein chain
AA-type The AA type of a window of £M residues around nominal 2M+1 attributes
the target residue
PredAveCN | Predicted average CN of a protein nominal 1 attribute
PredSS Predicted secondary structure of the £ M residues | nominal+real-valued | 2¥(2M+1) attributes
around the target residue

Table 2: Definition of the input attributes for all the used datasets. M =window size

| Domain | Attributes | F#real-valued att. | #nominal att. | total #att. |
CN1 AA-type 0 2*M+1 2¥M+1
CN2 AA-type,PredSS 2*M+1 (2*¥M+1)*2 (2*M+1)*3
CN3 AA-type,Len,FreqRes 21 2*M+1 2*¥M+-22
CN4 AA-type,Len,FreqRes,PredSS 2*¥M+-22 (2*M+1)*2 (2*M+1)*3+21
CN5 AA-type,PredAveCN 0 2*¥M+2 2*M-+2
CN6 AA-type,PredAveCN,PredSS 2*M+1 (2*M+1)*2+1 (2*M+1)*3+1

Finally, we have used a mechanism wrapped over GAssist
to boost its performance. We generate several rule sets using
GAssist with different random seeds and combine them as
an ensemble, combining their predictions using a simple ma-
jority vote. This approach is similar to Bagging [7]. GAssist
used its standard parameters [2] with the 1000 iterations for
the runs in the first stage, and 20000 for the runs in the sec-
ond stage, 150 strata for the ILAS windowing scheme, and
10 rule sets per ensemble.

5 Resaults

The results are reported in three stages. In the first stage
we do some quick tests of GAssist using the CN1 dataset on
a broad range of values for the distance cut-off d., residue
window size M and two classes (low/high CN). The aim
of these tests is to determine the optimal settings of the
dataset for GAssist, and only test the other datasets on
these settings.

In the second stage, we test GAssist on the 36 defined
datasets, and compare its performance to three other sys-
tems: C4.5 [19], a rule induction system, Naive Bayes [11], a
Bayesian learning algorithm and LIBSVM [8], a support vec-
tor machine using RBF kernels. We have used the WEKA
implementations [25] of both C4.5 and Naive Bayes. Stu-
dent t-tests are applied to the results of the experiments
to determine, for each dataset if the best method is signif-
icantly better than the other algorithms using a confidence
interval of 95%. The Bonferroni correction [17] for multiple
pair-wise comparisons has been used.

The third stage includes an analysis of the interpretability
of the solutions generated by GAssist, extracting some gen-
eral metrics from these solutions and relating the generated
rules to physico-chemical properties of the proteins.

5.1 First stage
In this first stage we run GAssist using the CNI1
dataset generated from the following parameters: d. €

{6,8,10,12, 14, 16,18A}, window size € {0,1,4, 10,16} and
constant w of CN definition: 3. We summarize these results
in figures 2 and 3, which report the accuracy of all com-
binations of d. and window sizes. The first figure reports
protein-wise accuracy and the second figure residue-wise ac-
curacy. In these experiments, both the residue-wise and the
protein wise accuracy are reported. The best combination
of parameters is d. of 10A and a window size of 4 (4 residues
each side of the target one), which gives a protein-wise ac-
curacy of 68.3% and a residue-wise accuracy of 67.7% for
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the two-classes UF dataset.

Figure 2: Protein-wise accuracy for the first
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Figure 3: Residue-wise accuracy

experiments
68

stage

67

66

65 [

Residue-wise accuracy

64

63

62 . . . . .
10 12 14
Cutoff distance in Amstrongs

5.2 Second stage

Using the parameters optimized in the previous experiment,
we tested the selected learning systems on the CN1..CN6
datasets, as summarized in table 3. Each value is the accu-
racy definition stated in section 3 averaged over the test sets.
The t-tests applied to these results are summarized in table
4, where each cell counts how many times the method in
the row significantly outperforms the method in the column
with a confidence level of 95%.



Table 3: Accuracy of the tested systems on the CN1..CN6 datasets. A e marks methods that were significantly
outperformed by GAssist, while a 0 marks methods that significantly outperformed GAssist in that dataset.
Student T-tests with 95% confidence level were applied

Uniform frequency class def.

‘ Dataset ‘ System I

I Uniform length class def.
[

2 classes [ 3 classes [ 5 classes 2 classes [ 3 classes [ 5 classes

GAssist 69.0£0.5 50.7£0.5 34.2+0.3 75.940.8 63.8+£0.9 46.54+0.9

CN1 Naive Bayes 68.7£0.5 50.7£0.6 34.5+0.5 76.3+0.7 64.0+0.8 47.0£0.8
C4.5 68.1+£0.4e | 49.4+0.4¢ | 30.910.6e 75.0+0.7 63.3£0.9 46.1£0.9

LIBSVM 68.9+0.4 51.440.6 35.5+0.60 77.4+0.80 | 65.0+0.80 46.940.8

GAssist 71.0£0.5 53.6+0.4 35.9+0.4 79.0+0.7 65.8+£0.9 47.04+0.9

CN2 Naive Bayes 66.3+0.7e | 49.8+0.6e | 33.4£0.5e 72.1£0.7¢ | 61.3£1.0e | 39.9+0.7e
C4.5 70.6+0.6 52.81+0.4e | 33.610.4e 77.9£0.6e 66.7£0.9 46.5£1.0

LIBSVM 72.7+£0.60 | 57.0£0.60 | 39.0+0.50 79.9£0.60 | 69.1£1.00 | 48.7£0.90

GAssist 70.9£0.5 52.6+0.7 35.7£0.6 77.241.1 65.1+£0.9 47.04+0.8

CN3 Naive Bayes 67.7+£0.7e | 50.4+0.9¢ | 34.1+0.8e 76.21+0.9 62.5+1.1e | 43.5+1.4e
C4.5 69.9+0.5¢ | 50.1+£0.7e | 31.1+0.6e 77.0+0.9 65.1+£0.7 44.0£0.7e

LIBSVM 72.0+0.40 | 55.3+0.80 | 38.0£0.50 79.311.00 | 68.1£0.80 47.2+0.7

GAssist 72.7£0.4 55.34+0.6 37.5+£0.4 80.140.8 66.9+0.9 47.740.9

CN4 Naive Bayes 69.8+0.8¢ | 52.7+0.9¢ | 36.1+0.9e 76.9+1.0e | 64.2+0.9e | 43.7+1.2e
C4.5 72.2+0.4 53.4+0.5¢ | 34.0+0.5e 79.1+0.7 67.6+£0.7 45.2+0.7e

LIBSVM 75.9+0.40 | 59.94+0.70 | 41.940.40 81.7£0.70 71.5£0.80 | 50.8£0.90

GAssist 71.240.5 52.940.9 35.940.8 77.240.9 65.3+0.8 47.140.8

CN5 Naive Bayes 71.5+0.5 54.0+0.80 | 37.3+0.70 78.41+0.8 67.2+£0.80 | 48.7+0.70
C4.5 70.3£0.6 51.710.8e¢ | 33.110.8e 77.1£1.0 65.8+£0.7 47.0£0.8

LIBSVM 72.0+0.60 | 55.0+0.80 | 37.8+£0.70 79.1£0.90 | 67.910.70 47.7£0.9

GAssist 72.940.4 55.940.7 37.8+£0.7 80.3+0.7 67.3+£0.8 47.84+0.8

CNG Naive Bayes 68.510.5¢ | 52.0£0.7e¢ | 35.1£0.6e 75.2+£0.9e¢ | 63.9+£0.8e¢ | 42.8+0.5e
C4.5 72.4+0.5 54.510.6e | 35.510.6e 79.5+0.7 68.4+0.70 48.1£0.8

LIBSVM 75.8+0.40 | 59.8+0.60 | 41.7£0.60 81.5+0.80 71.310.70 | 50.8%0.80

Table 4: Number of times a method significantly
outperforms another
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GAssist - 23 17 0| 40

Naive Bayes 4 - 11 0 || 15

C4.5 1 16 - 0 17

LIBSVM 31 26 34 - 91
Times outperformed [ 36 65 62 0 ||

The results show some general trends across all learning
methods. First of all, the UL class definition leads to bet-
ter accuracy than the UF definition for all datasets. This
reflects the capacity of the UL definition to adapt itself to
the physical reality of the proteins as its criterion is based
on the dimensions of the CN domain. The UF definition, a
priori, may look more appropriate from a machine learning
point of view, as it creates well balanced class distributions.
However, in this case the class frontiers may separate ex-
amples that are practically equal. Nevertheless, it may we
worth studying the amount of information contributed by
both measures. It may be possible that the UF definition,
although leading to lower accuracy, provides more added
value to a final 3D protein structure predictor.

From the tested sets of input attributes, we can say that
all the different kind of attributes contribute to increasing
the predictive accuracy of the tested systems. We can quan-
tify the contribution of the predicted secondary structure in-
formation as an accuracy increase of 2-3% on most datasets
and learning systems, comparing the performance of CN1-
CN2, CN3-CN4 and CN5-CNG6.

Another general observation is that the use of either
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global protein information or the protein-wise predicted av-
erage CN is equivalent, as we observe that most systems
achieve similar performance in the CN3-CN5 and CN4-CN6
datasets. The contribution of this kind of input information
to the accuracy increase is 1.5-2%. GAssist had an average
run-time ranging from 9.5 to 14 hours in the CN3 dataset,
while it had a run-time ranging from 0.3 to 1.1 hours in
the CN5 dataset. The main reason for this is the larger
search space, although the mix or real-valued and nominal
attributes requires the use of a less efficient knowledge rep-
resentation. Considering this issue and the fact that the
solutions generated by the CN5 datasets use less attributes
than the ones generated by CN3 (therefore, more readable)
it is reasonable to recommend the use of the latter kind
input attribute for future experiments.

Looking at the specific results of each learning method,
we observe that both GAssist and C4.5 obtain their highest
accuracy in the CN6 dataset, while Naive Bayes obtains its
highest accuracy in the CN5 dataset, and LIBSVM in CN4.
LIBSVM achieves the best accuracy in 33 of the 36 datasets,
as reflected by the t-tests, where LIBSVM outperforms the
other methods in 91 of 108 times, and it is never signifi-
cantly outperformed. The t-tests place GAssist in the sec-
ond position of the ranking for both the number of times it
outperforms C4.5 and Naive Bayes and the number of times
it is outperformed by the other methods. Finally, both C4.5
and Naive Bayes perform comparably, at the bottom of the
ranking.

5.3 Interpretability and explanatory power of
GAssist results

Table 5 summarizes two simple metrics of the solutions: the
average number of rules per rule set and the average number
of expressed attributes in the generated rules. We see that
GAssist creates compact solutions, ranging from just 2 rules
in the CN1 - 2 classes - UL dataset to 7.5 rules in the CN1 -5
classes - UF dataset. At most, an average of 11.8 attributes



Table 5: Complexity measures of the GAssist solutions on the CN1..CN6 datasets. #rules = average number
of rules per rule set. Exp. Att.= average number of expressed attributes per rule

ataset

Uniform frequency class def. |

Uniform length class def.

Metric H

|

‘ D ‘ 2 classes | 3 classes [ 5 classes |[ 2 classes | 3 classes [ 5 classes |
oNi  L_#rules || 65411 | 6408 | 756407 || 2.0£0.0 | 7.1£0.6 | 5.4%£0.6 |
[ Exp. Att || 6.653.2 | 6.4E3.1 | 6.0%3.0 || 42%42 | 7.253.0 | 6.3%33 |

cNo | #rules || 6.741.0 | 6.5£0.7 | 71603 ]| 50501 | 58%0.7 | 5.8%E0.7 |
[ Bxp. Att || 9.954.7 | 9.354.6 | 9.854.5 |[ 11.546.0 | 8.054.3 | 9.554.9 |

on3 |_mles || 54506 | 5405 | 6.2004 || 4115 | 6.3£0.7 | 56206 ]
[Exp. Att || 7.5%4.0 | 72539 | 7.7E3.8 || 82548 | 64E3.7 | 7.653.0 |

o4 | #rules || 59410 | 6.5£0.7 | 69404 || 50402 | 5.7%£0.7 | 5.6£0.6 |
[ Exp. Att || 9.855.0 | 9.7%4.8 | 10.0%4.7 || 11.8%64 | 7.4¥4.7 | 9.7%5.1 |

ons | #rules || 6.340.9 | 6.6£1.0 | 65407 || 2.0£0.3 | 6.6£0.6 | 5.6£0.7 |
[Exp. Att || 7.3%3.5 | 72434 | 7.3%3.4 || 45545 | 6.8£3.3 | 7.0£3.6 |

N6 | #rules || 64410 | 7.1£0.7 | 70504 || 50£02 | 6.4£0.7 | 58%£0.7 |
[ Exp. Att || 10.0£4.9 | 10.3%4.7 | 9.0%4.6 | 13.1£7.5 | 9.085.4 | 10.3%58 |

were expressed in the CN4 - 2 classes - UL dataset, which
has a total of 42 attributes. In comparison, C4.5 sometimes
generated solutions with as many as 8000 leaves, and LIB-
SVM used around 160000 instances from the training set
as support vectors. No simple complexity measure can be
extracted from Naive Bayes.

The case of the CN1 dataset using the uniform length
classes definition and two classes is especially interesting.
In this dataset GAssist always generated solutions with just
two rules, obtaining an average accuracy of 75.9%. One such
rule set is shown below:

1. f AA_y ¢ {X} and AA_3 ¢ {D,E,Q} and AA_; ¢
{D,E,Q} and AA € {A,C,F,I,L,M,V,W} and
AA1 ¢ {D,E,P} and AA; ¢ {X} and AA3 ¢
(D,E,K,P,X} and AAs ¢ {E,K,P,Q,R,W,X}
then class is 1

2. Default class is 0

AA4, denotes the AA type at the position +n in respect
to the target residue. The AA type is represented using
the one letter code, plus the symbol X that indicates end
of chain, for the case when the window overlaps with the
beginning or the end of the protein chain.

We see two types of predicates: those stating if the AA
type of a certain position of the window belongs or does
not belong to a certain set. When the number of AA types
that the predicate for a certain residue can take includes
more than 10, GAssist generates the complementary pred-
icate to produce a more compact solution. Therefore, all
the predicates defined as € are more specific than the ones
defined as ¢. The more specific attributes are usually also
the most relevant ones, and in this rule set we only have
one such predicate: the one associated to the target residue.
It is reasonable to expect that the more relevant attributes
are those associated directly to the residue for which we are
predicting its CN.

Table 6 contains the average number of AA types included
in the predicate associated to each window position, for all
the rule sets produced for this dataset, which is a generality
(complementary of specific) metric of each window position.
This table also reports the percentage of times that each
window position was expressed in the generated rule. A non
expressed attribute is irrelevant for the prediction. We ob-
serve that the window positions to the right of the target
residue are more relevant than the ones to the left, and that
the window positions +2 are the most irrelevant ones. Fur-
ther analysis should be performed to determine if there is a
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physical explanation for this issue or if it is the effect of a
GA positional bias [6].

Table 6: Expression and generality rate for the rule
sets generated by GAssist for the CN1 dataset and

uniform-length class definition
[ Window position | Expression rate | Generality rate |

-4 95% 94.5%+4.6
-3 99% 88.1%+4.3
-2 57% 98.2%+2.5
-1 100% 84.7T%+E5.7
0 100% 39.4%+£2.3
1 100% 83.5%+3.2
2 80% 96.2%+£3.1
3 100% 78.8%+5.8
4 100% 78.5%+4.7

Moreover, we can extract a simple physico-chemical ex-
planation of such predicates: the set of AA types con-
tained in the predicate associated to the target residue
(A,C,FILLM,V,W) are all hydrophobic [15]. Hydrophobic
residues are usually found in the inner part of a protein in
native state. Therefore it is logical that they present higher
CN than the other residues, as this rule predicts high CN.
On the other hand, from the rest of predicates of the rule
set, the more frequently appearing AA types in the negated
predicates are D and E, which are negatively charged. This
type of AA usually appears on the surface of the proteins,
so it is sensible that they are not included in the predicates
of a rule intended for predicting a high CN, that as stated
before, usually appears in the core of proteins.

Table 7 extends this analysis to all the rule-sets generated
for this dataset, reporting two metrics: (1) the frequency
of appearance of each AA type for each window position,
and (2) the average appearance frequency of each AA type
for all positions. From this average we obtain a ranking of
specificity of each AA type: Glutamine (E) and Proline (P)
the two AA types appearing less often. On the other hand
Alanine (A), Cysteine (C), Phenylalanine (F), Isoleucine (I),
Leucine (L), Methionine (M) and Valine (V) appear in more
than 95% of all positions, therefore being the less specific AA
types for predicting a high value for the CN.

Table 8 analyzes these rules from a slightly different point
of view: ranking the AA types for each window position. As
we have already observed that the predicate for the central
residue takes a different form compared to the rest of pred-
icates, we analyze the positions featured in the predicates.
For the central residue, after the 8th AA type in the rank-
ing all frequencies are very close to 0, for the other ones, we
do not find a frequency less than 95% until position 15th



Table 7: Frequency of appearance in percentage of each AA type by window position in the generated rules
for the CN1 dataset and uniform-length class definitions

[Pos AJCID[EJFJG[H] T [K]L [MI[NJPJQ[R]|S]T[V [W]Y ]
-4 || 100 | 96 [100| 44 | 99 |100| 98 | 100 | 93 | 100 | 100|100|100| 84 | 94 |100|100| 100 | 83 | 99
-3 || 100 | 94 | 14 | 12 | 100|100 |100| 100 [100| 100 |{100| 89 | 94 | 66 | 100|100|100| 100 | 94 | 99
-2 || 100 | 94 [100]| 98 [100|100| 99 | 100 [100| 100 | 99 | 97 | 88 | 98 | 99 | 98 | 99 | 100 | 94 [100
-1 100 | 94 | 41 | 43 | 98 |100|100| 100 | 18 | 100 |100|{100| 8 | 96 | 99 |100|100| 100 | 96 | 100
0 100 [100| O 0 [100| O 0 [ 100 | O | 100 |100| O 0 0 0 0 0 [100]82] 5
1 100 | 97 | 4 4 (100 99| 98 | 100 | 96 | 100 [100| 81 | O | 94 [100| 99 |100| 100 | 99 | 100
2 100 | 98 | 98 |100|{100|100| 98 | 100 | 97 | 100 | 97 |100| 38 | 100| 100|100 |100| 100 | 98 | 100
3 100 | 98 | 55 | 11 |{100|100|100| 100 | 1 | 100 |100| 96 | 2 | 47 | 66 |100| 99 | 100 [ 100|100
4 100 [ 99 | 94| 1 |100|100| 98 | 100 | 1 | 100 |100| 96 | 66 | 1 | 28 |100|100| 100 | 85 |100

[Ave.][100.0[96.7]56.2]34.8]99.7|38.8[87.9] 100.0[56.2] 100.0]99.6[84.344.0] 65.1] 76.2|33.6]88.7] 100.0] 92.3]44.6]

of the ranking. For the non-central positions, the interest-
ing columns are the ones at the bottom of the ranking. We
can observe that Proline (P) and Glutamine (E) are the less
frequent AA types for seven of the nine window positions.

Therefore, we can extract sound explanations from the
generated rules, and we have found more paths of analysis:
analyzing the specificity degree of the used attributes and
windows positions, and relating the generating predicates
with physical/chemical properties.

6 Discussion

The discussion section is focused on the comparison of learn-
ing methods in these datasets. GAssist performs better than
Naive Bayes and C4.5 but worse than LIBSVM. The di-
rect comparison of GAssist and C4.5 is clearly favorable to
GAssist, and this is important as these two systems use
a very similar knowledge representation. GAssist is better
than C4.5 at exploring the search space of the kind of so-
lutions that an axis-parallel knowledge representation can
offer. The comparison with LIBSVM is less favorable for
GAssist, as it was outperformed in most datasets, especially
in those with real-valued input attributes, which may indi-
cate that the non-linear knowledge representation used by
LIBSVM is superior for this kind of data.

Nevertheless, there are several strong points that back
the use of GAssist. The first of them, already analyzed
in the previous section is the explanatory power of GAssist
solutions. From a pure machine learning point of view, these
solutions are extremely compact, both in number of rules
and also in number of expressed attributes. Moreover, it is
quite easy to extract practical real-world explanations from
the generated rules. On the other hand, it is quite difficult
to extract an explanation from LIBSVM solutions. Actually
the only easy metric to measure the size of the LIBSVM
solutions is the number of examples selected in the training
stage as support vectors. This number of examples can be
huge, containing around 70-90% of the training set (approx.
236000 instances).

Another issue of concern is the run-time. Although GAs-
sist is not a fast learning system, it is considerably faster
than LIBSVM. GAssist run time on these datasets ranged
between 0.3 to 24 hours, while LIBSVM run time ranged
from 21 hours to 4.5 days. Even more critical is the time
spent at the test stage. While LIBSVM in some cases took
hours to predict all examples in the test set, GAssist used ap-
proximately about a minute to use its ensemble of rule-sets
to produce the test predictions. This issue is very important,
because the final goal of the line of research where this work
is included is to create an online web-based 3D protein struc-
ture prediction server, where multiple users would normally
want to predict tens, if not hundreds, of protein structural
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features at a time. Our experience with www.proksi.net web
server for protein structure comparison indicates that in an
exploitation environment such as this the run-time is criti-
cal, and in this aspect GAssist can be faster than LIBSVM
by two orders of magnitude.

7 Conclusionsand further work

In this paper we tested whether using classification we could
improve the accuracy over the current state-of-the art of
predicting protein residues CN. The current state-of-the-art
[13] uses a real-valued definition of CN that was predicted as
a regression, rather than classification, problem. The tests
reported in this paper included six different sets of input
attributes for the domain, some of them using predicted
information, or global protein chain information. We have
two criteria to convert the real-valued CN definition into a
finite set of classes, and three version of the dataset with
two, three and five classes. All these datasets were tested
using four different machine learning approaches, but mainly
focusing our efforts in an evolutionary computation-based
machine learning system, called GAssist.

The experiments were useful from several aspects. We
identified the contribution that each of the tested types of
input information can provide to the predictive performance
of the system. We compared two different class definitions
for the CN domain, and we assessed the performance of
GAssist on these domains, comparing it to three other ma-
chine learning systems. From this comparison, LIBSVM
gives better predictive performance than GAssist, but on
the other hand, it is much slower and the generated solutions
have little explanatory power. The explanatory power is the
strongest point of GAssist, as it can generate very compact
solutions that are easy to interpret and easy to justify by
using domain knowledge such as physical properties of the
proteins.

Finally, there are several lines of further work. Focusing
on the current kind of experiments, we will test other kind
of input information and improve GAssist in order to boost
the performance on the current CN definitions. On a higher
level, we have investigated two possible class partitions cri-
teria. It would be interesting to investigate which of these
options, plus other CN definitions gives more information
to the user, as the final goal of predicting CN is to inte-
grate this predictions into a 3D protein structure prediction
system. The explanatory analysis of the generated rule-sets
would also be very useful, and not just to understand the
GAssist predictions, but also in order to identify informa-
tion that can be fed back to GAssist to improve its learning
process and to better understand aspects of protein folding.



Table 8: Ranking of appearance of the AA type by window position in the generated rules for the CN1

dataset and uniform-length class definitions

[PosJ T T 2 [ 3 1 41T 5 T 6 [ 7 ]
4 [[V-100] T-100 [S-100[P-100] N-100 [ M-100[L-100
-3 |[V-100] T-100 | S-100 | R-100|M-100] L-100 |K-100
-2 |[Y-100] V-100 | L-100|K-100] I-100 | G-100|F-100
-1 |[Y-100] V-100 | T-100] S-100 | N-100 | M-100|L-100
0 |[V-100|M-100[L-100] I-100 | F-100 | C-100 |A-100
Y-100[ V-100 | T-100| R-100]M-100] L-100 | I-100
Y-100[ V-100 | T-100] S-100 | R-100 | Q-100 |N-100
Y-100]W-100|V-100[ S-100 | M-100] L-100 | I-100
Y-100] V-100 | T-100] S-100 | M-100] L-100 | I-100

8 |
1-100
1-100
D-100
1-100
W-82
F-100
L-100
H-100
G-100

9 |
G-100
H-100
A-100
H-100

Y-5
A-100
1-100
G-100
F-100

10 ]
D-100
G-100

T-99
G-100
T-0
W-99
G-100
F-100
A-100

11 ]
A-100
F-100
R-99
A-100

S-0

S-99
F-100
A-100

C-99

12 ]
Y-99
A-100
M-99
R-99
R-0
G-99
E-100
T-99
H-98

3
F-99
Y-99
H-99
F-98

Q-0
H-93

A-100
C-08
N-96

[14 [ 15 [ 16 [ 17 [ 18 | 19 [ 20 ]
H-08] C-96 |R-94|K-93] Q-84 |[W-83| E-44
W-94| P-04 |C-04|N-89| Q-66 | D-14 |E-12
S-98 [ Q-08 |E-08|N-07|W-04] C-04 [P-88
W-96] Q-96 | C-94| E-43| D-41 | K-18| P-8
P-0 | N-0 [K-0| H-0| G0 | E-0 [ D-0
C-97 | K-96 | Q-94|N-81| B-4 | D-4 | P-0
W-98| H-08 | D-08| C-98 | M-97 | K-97 | P-38
N-96 | R-66 |D-55|Q-47| B-11| P-2 | R-1
D-94|W-85|P-66|R-28 K1 | B-1

RN

Q-1

8
We

Acknowledgments
acknowledge the support of the UK Engineering and

Physical Sciences Research Council (EPSRC) under grants
GR/T07534/01, GR/62052/01 and GR/S64530/01 and the
Biotechnology and Biological Sciences Research Council
(BBSRC) under grant BB/C511764/1.

9 References Predicting absolute contact numbers of native protein
structure from amino acid sequence. Proteins,

[1] S. F. Altschul, T. L. Madden, A. A. Schaffer, 58:158-165, 2005.

J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman. [14] H. Liu, F. Hussain, C. L. Tam, and M. Dash.
Gapped blast and psi-blast: a new generation of Discretization: An enabling technique. Data Mining
protein database search programs. Nucleic Acids Res, and Knowledge Discovery, 6(4):393-423, 2002.
25:3389*34027 ‘1997 A ‘ [15] C. D. Livingstone and G. J. Barton. Protein sequence

(2] J. Ba(%ardl't. Pittsburgh Ge@etzcs-Based Machme alignments: a strategy for the hierarchical analysis of
Learm?g Zt” the ng M?ung ;Tgb }EEPT?SethtZOTLSLI I residue conserzfa)tion. Computer Applications in the
generalization, and run-time. esis, Ramon Llu Biosciences, 9(6):745-756, 1993.

University, Barcelona, Catalonia, Spain, 2004. [16] R. MacCallum. Striped sheets and protein contact
http://www.cs.nott.ac.uk/ jgb/publications/thesis.pdf. prediction. Bioinformatics, 20:1224-1231, 2004.

3] J', Bacardit. Analysis of th? 1n1t1ah.zat10n stage of a [17] R. G. Miller. Simultaneous Statistical Inference.
pittsburgh approach legrmng classifier system. In Springer Verlag, New York, 1981. Heidelberger, Berlin.
gE?CO 2005&’Pmceedmgs gf the Genetzcland 5 [18] T. Noguchi, H. Matsuda, and Y. Akiyama.

volutionary Computation Conference, volume 2, Pdb-reprdb: a database of representative protein

" g)a%es 1831?:1;5% Alc?bM PrEZS’BZOtOE"X Lot and chains from the protein data bank (pdb). Nucleic

- bacardit, D). Lxoldberg, M. butz, A. Llora, an Acids Res, 29:219-220, 2001.
gialsvs[iﬁ(::rs;esl‘i.erigéi\(/lllcl)lf(;;ilﬁgpgfjg;;g;ziiiflr:ar;i n [19] J. R. Quinlar;. C4.5: Programs for Machine Learning.
: ) : Morgan Kaufmann, 1993.
Parallel Problem SOlU,Z ng from Nature - PPSN 2004, [20] J. Rissanen. Modeling by shortest data description.
pages 1021-1031. Springer-Verlag, LNCS 3242, 2004. Automatica. vol. 14:465-471. 1978

[5] P. Baldi and G. l?ollastrl. The pr1nc1pled. design of [21] C. Sander and R. Schneider. Database of

large-scale recursive neural network architectures . . .
. o homology-derived protein structures. Proteins,
dag-rnns and the protein structure prediction 9:56-68. 1991
E)rgé)Qler;l(.)Oéoumal of Machine Learning Research, 4:575 [22] Y. Shao and C. Bystroff. Predicting interresidue
’ : L e . contacts using templates and pathways. Proteins,

[6] L. Booker. Recombination distribution for genetic 53:497-502. 2003

algorithms. In Foundations of Genetic Algorithms 2, ' ! o . .
ages 29-44. Morgan Kaufmann, 1993 [23] M. Stout, J. Bacardit, J. Hirst, N. Krasnogor, and
P . ' ; . ’ i . J. Blazewicz. From hp lattice models to real proteins:

[7] L. Breiman. Bagging predictors. Machine Learning, S . . .

24(2):193-140. 1996 coordination number prediction using learning
(2):123-140, : . ) classifier systems. In jth European Workshop on

(8] Su;)(pjorgil)?cltgo fr;jagh_z;]ze flgegiﬁfn er\i : oaf léborr‘z;)yu{ Z}Z Evolutionary Computation and Machine Learning in
: Bioinformatics 2006 (to appear), 2006.

Science and Information Engineering, National Taiwan 2] S WfW'l Classi ﬁ( ﬁfp )b d

University, 2001. Software available at [24] S. W. YYLISOLL. W7asSIIer ItNess based on accuracy.

http: // ) - . edu. tw/~ci1in/1ib Evolutionary Computation, 3(2):149-175, 1995.
pi//wWw.cs18.ntu. edu. tu/ c) 1n/ L1 SV [25] 1. H. Witten and E. Frank. Data Mining: practical

[9] K. A. DeJong, W. M. Spears, and D. F. Gordon. ) i . L

. . . . machine learning tools and techniques with java
Using genetic algorithms for concept learning. ) .
Machine Learning, 13(2/3):161-188, 1993 implementations. Morgan Kaufmann, 2000.
9 R ’ R [26] Y. Zhao and G. Karypis. Prediction of contact maps
[10] J. H. Holland. Adaptation in Natural and Artificial : ¢ vect hi In P f the IEEE
Systems. University of Michigan Press, 1975 USINE SUDPOTL VOCTot TMachines. “n £ 7oc. of the
Y ’ . o : Symposium on Biolnformatics and BioEngineering,
[11] G. H. John and P. Langley. Estimating continuous

distributions in Bayesian classifiers. In Proceedings of

254

the Eleventh Conference on Uncertainty in Artificial
Intelligence, pages 338-345. Morgan Kaufmann
Publishers, San Mateo, 1995.

D. Jones. Protein secondary structure prediction
based on position-specific scoring matrices. J Mol
Biol, 292:195-202, 1999.

A. R. Kinjo, K. Horimoto, and K. Nishikawa.

pages 26-36. IEEE Computer Society, 2003.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Academy
    /AgencyFB-Bold
    /AgencyFB-Reg
    /Alba
    /AlbaMatter
    /AlbaSuper
    /Algerian
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialRoundedMTBold
    /ArialUnicodeMS
    /BabyKruffy
    /BaskOldFace
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BlackadderITC-Regular
    /BodoniMT
    /BodoniMTBlack
    /BodoniMTBlack-Italic
    /BodoniMT-Bold
    /BodoniMT-BoldItalic
    /BodoniMTCondensed
    /BodoniMTCondensed-Bold
    /BodoniMTCondensed-BoldItalic
    /BodoniMTCondensed-Italic
    /BodoniMT-Italic
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BradleyHandITC
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /CalisMTBol
    /CalistoMT
    /CalistoMT-BoldItalic
    /CalistoMT-Italic
    /Castellar
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chick
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CopperplateGothic-Bold
    /CopperplateGothic-Light
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Croobie
    /CurlzMT
    /EdwardianScriptITC
    /Elephant-Italic
    /Elephant-Regular
    /EngraversMT
    /ErasITC-Bold
    /ErasITC-Demi
    /ErasITC-Light
    /ErasITC-Medium
    /EstrangeloEdessa
    /Fat
    /FelixTitlingMT
    /FootlightMTLight
    /ForteMT
    /FranklinGothic-Book
    /FranklinGothic-BookItalic
    /FranklinGothic-Demi
    /FranklinGothic-DemiCond
    /FranklinGothic-DemiItalic
    /FranklinGothic-Heavy
    /FranklinGothic-HeavyItalic
    /FranklinGothic-Medium
    /FranklinGothic-MediumCond
    /FranklinGothic-MediumItalic
    /FreestyleScript-Regular
    /FrenchScriptMT
    /Freshbot
    /Frosty
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Gigi-Regular
    /GillSansMT
    /GillSansMT-Bold
    /GillSansMT-BoldItalic
    /GillSansMT-Condensed
    /GillSansMT-ExtraCondensedBold
    /GillSansMT-Italic
    /GillSans-UltraBold
    /GillSans-UltraBoldCondensed
    /GlooGun
    /GloucesterMT-ExtraCondensed
    /GoudyOldStyleT-Bold
    /GoudyOldStyleT-Italic
    /GoudyOldStyleT-Regular
    /GoudyStout
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /ImprintMT-Shadow
    /InformalRoman-Regular
    /Jenkinsv20
    /Jenkinsv20Thik
    /Jokerman-Regular
    /Jokewood
    /JuiceITC-Regular
    /Karat
    /Kartika
    /KristenITC-Regular
    /KunstlerScript
    /Latha
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSans-TypewriterBoldOblique
    /LucidaSans-TypewriterOblique
    /LucidaSansUnicode
    /Magneto-Bold
    /MaiandraGD-Regular
    /Mangal-Regular
    /MaturaMTScriptCapitals
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MSOutlook
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /OCRAExtended
    /OldEnglishTextMT
    /Onyx
    /PalaceScriptMT
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Papyrus-Regular
    /Parchment-Regular
    /Perpetua
    /Perpetua-Bold
    /Perpetua-BoldItalic
    /Perpetua-Italic
    /PerpetuaTitlingMT-Bold
    /PerpetuaTitlingMT-Light
    /Playbill
    /Poornut
    /PoorRichard-Regular
    /Porkys
    /PorkysHeavy
    /Pristina-Regular
    /PussycatSassy
    /PussycatSnickers
    /Raavi
    /RageItalic
    /Ravie
    /Rockwell
    /Rockwell-Bold
    /Rockwell-BoldItalic
    /Rockwell-Condensed
    /Rockwell-CondensedBold
    /Rockwell-ExtraBold
    /Rockwell-Italic
    /ScriptMTBold
    /ShowcardGothic-Reg
    /Shruti
    /SnapITC-Regular
    /Square721BT-Roman
    /Stencil
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /TwCenMT-Bold
    /TwCenMT-BoldItalic
    /TwCenMT-Condensed
    /TwCenMT-CondensedBold
    /TwCenMT-CondensedExtraBold
    /TwCenMT-Italic
    /TwCenMT-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Vrinda
    /Webdings
    /WeltronUrban
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2001
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


