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ABSTRACT

Motivation: We introduce a new method for designating the location
of residues in folded protein structures based on the Recursive Con-
vex Hull (RCH) of a point set of atomic coordinates. The RCH can be
calculated with an efficient and parameterless algorithm.
Results: We show that residue RCH class contains information com-
plementary to widely studied measures such as solvent accessibility
(SA), residue depth (RD), and to the distance of residues from the
centroid of the chain, the residues’ exposure (Exp). RCH is more con-
served for related structures across folds and correlates better with

changes in thermal stability of mutants than the other measures. Fur- Fig. 1. Left: Recursive Convex Hulls of a 2D off-lattice protein model. The
ther, we assess the predictability of these measures using three types backbone is represented by coloured circles joined by solid black lines. Resi-
of machine learning technique: decision trees (C4.5), Naive Bayes dues on the outermost recursive convex hull are coloured red, subsequent

and Learning Classifier Systems (LCS) showing that RCH is more recursive convex hulls are coloured blue, green, and yellow, with residues

easily predicted than the other measures. As an exemplar applica- on the innermost recursive convex hull coloured purple._Right_: A graphical

tion of predicted RCH class (in combination with other measures) we representation of_the ogter Recursive Convex Hull of residues in a 3D model

. . . . - - of a natural protein chain (PDB Id. 1P4X).

show that RCH is potentially helpful in improving prediction of residue

contact numbers.

Contact: nxk@cs.nott.ac.uk

Supplementary Information: Datasets: www.infobiotic.net/datasets, force for protein structure formation. Characterizations of residue

RCH Prediction Servers: www.infobiotic.net accessibility to solvent are, therefore, important for protein struc-
ture prediction (PSP), potentially helping to constrain the search
space to be explored usirte novomethods (Baldi and Pollastri,
2002). Whilst classifying residue neighbourhood density as high or

1 INTRODUCTION low will generally assign the high class to residues buried within

- . . . _the structure and the low class to residues exposed on the surface,
Prediction of the three-dimensional structure of proteins from their.ogiques lining cavities in the structure (that may be functionally

constituent amino acid sequences continues to be one of the keyynificant (Cheret al, 2007) can have a low coordination number
goals of structural biology and a wide range of predictive strategiegyen when located far from the surface. Incorporation of comple-
has been investigated. Steady improvements in predictive accuragyaniary residue solvent accessibility and residue depth information
have resulted from decomposition of the problem into subproblemsiy, ;e fold recognition (Liet al, 2007). A range of measures of
such as prediction of secondary structural elements (approaching @gjqye |ocation have been studied. Lee and Richards (1971) used a

theoretical prediction limit of 80% (Dor and Zhou, 2007; Wood and gpherical probe method to measure the solvent accessible surface of

Hirst, 2005)), of residue coordination number (at over 80% (Bacar;ggjqyes and recently Kawabata and Go (2007) have used adjustable
dit et al,, 2006)) and of residue solvent accessibility (at over 77%

. : . probe parameters to identify putative ligand binding pockets on pro-
using consensus predictors (Gianese and Pascarella, 2006)). Burig|, gyrfaces. Solvent accessibility, however, is difficult to compute
of hydrophobic groups within the protein core is a primary driving 504 goes not distinguish between residues below the surface. Hence,
atom/residue depth (RD), the distance of an atom/residue from its
*to whom correspondence should be addressed nearest solvent accessible neighbour, was introduced (Chakravarty
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and Varadarajan, 1999) and efficient algorithms are aJail&bd
compute RD for a given structure (Pintatral., 2003; Vlahovicek

hull numbers to residues, as we propose here, does not ajagpear
have been previously reported.

etal, 2005). Whilst SA emphasises burial, RD emphasises exposur This paper has two parts. In the first part we analyse RCH as a

and depends on the method used to identify surface atoriasiess

new computable property of proteins. We compare the inftiona

Hence, Half Sphere Exposure (HSE), has been recently pedpos content of RCH to that of residue solvent accessibility (SA3idue

(Hamelryck, 2005). HSE, like CN, counts neighbouring raskl
but distinguishes two regions (half spheres) around easidue
based on th&’,-Cj vector, i.e. a 2D measure of residue location.
In addition, the distance (exposure) of residues from ttaéncben-
troid is a potentially interesting measure being relatetiédocation
of catalytic residues in enzyme structures (Ben-shimonEisdn-
stein, 2005). Measures of atom/residue location typiadgigend on
specific parameters such as probe size for SA or contactséaliu
CN.

In this paper, we introduce a new approach to stratifyinglces
in protein structures byecursivelyidentifying the convex hull layer
to which each residue belongs. The convex hull of a set oftpsra
parameterless, mathematically rigorous and unambiguygu®ach
to identifying the points on the exterior of a point set, agalus
to identifying those points that contact the enclosingazefwhen
the point set is tightly wrapped. The convex hull is simpléd aifi-

depth (RD) and exposure (Exp) and show that, although naliyot
unrelated, these properties are indeed complementaryh@Vetbat
RCH correlates better with structural conservation thandther
measures of residue location and that RCH is also bettee-corr
lated with changes in protein thermal stability in the preseof
cavity forming mutations. We turn, in Part 2, to the questibhow
easy/difficult it is, in practical terms, to learn to predicese mea-
sures. The relative predictability of RCH, RD, SA and Expngsi
four different machine learning algorithms was assesséet Lsx
different, progressively richer, sets of input attribua¢shree levels
of precision. The relative benefits of using these variopsiis are
described. C4.5 (Quinlan, 1992), Naive Bayes (John andlegng
1995), GAssist (Bacardit, 2004) and BioHEL (Bacastial., 2007)
are the machine learning methods employed in this papeall¥in
we demonstrate the usefulness of RCH by using the prediaBdd R
class of residues as input for prediction of residue Coaitthn

cient O(n x logn)) to compute (Preparata and Hong, 1977). The Number (CN) showing that, in combination with predicteddeas

recursive convex hull (RCH) of a point set is obtained by tden
cation of the minimal point set that generates the convek(the

vertices) and removal of these points from the point seb¥edid by
recursively applying these steps to the remaining pointdentify

subsequent hulls. Applied to the point set of coordinateesifiues
in a protein chain, a series of hulls is obtained that grosjutees by
their distance from the convex surface of the structure.rébersive
convex hulls of a 2D off-lattice protein model are shown igu¥e 1
along with a representation of the outer convex hull of a 3D{Eet

SA and Exp class, predicted RCH information increases ptigdi
accuracy for CN.

2 MATERIALS AND METHODS
2.1 Datasets and Features Studied

We describe next the datasets and algorithms employedédesat®e novelty

derived from the”s atomic coordinates of residues in a real protein ©f RCH and its relation to previously studied measures. Althe mea-

chain.
Convex hulls have found a wide range of applications in ssidi

of molecular structure. Here we give a brief, by no means com

plete, review. Badel-chagnon and colleagues introducedtiam
of the "molecular surface convex hull” to define the depth 0§ a
molecular surface point (Badel-chagnenal,, 1994) and Lin and
colleagues used convex hulls to align 11 randomly genetaited
active tachykinin peptides, finding that 3D convex hulls barused
to align even these flexible structures (leinal,, 1999; Lin and Lin,

sures studied are based on atomic coordinates. Two polgpspthat
have similar structures when represented usihgcoordinates may have
distinct structures when represented usingcoordinate (Eidhammaet al,,

2003). Throughout this papé€rz atom coordinates are used( for glycyl
residues) as these are sensitive to the orientation of ki atoms.

Protein datasefThe dataset used here are those described by Bacardit et
al. (Bacarditet al., 2006), originally proposed by Kinjo (Kinjet al., 2005).
Protein chains were selected from PDB-REPRDB (a non-rezhinclirated
subset of the Protein Data Bank (PDB) (Noguehal, 2001), covering the
space of possible folds) using the following criteria: ldsan 30% sequence

2001). Meieret al. proposed a convex hull based segmentation techidentity, sequence length greater than 50 residues, no raelproteins,

nique (that makes few assumptions about the underlyingaselyf
to find characteristically shaped regions of molecularazg$ for
prediction of possible protein docking sites (Meral,, 1995).
Liang and Dill used convex hulls to define the boundaries dbse
pockets and depressions in studies of packing densitiesotrips
(Liang and Dill, 2001). Holmes and Tsai tackled protein sitiain
packing and interactions by measuring variation in conuélsicon-
structed around these groups (Holmes and Tsai, 2005). @olem
and Sharp introduce the notion of travel depth (the physiiséhnce
a solvent molecule would have to travel from a surface paird t
suitably defined reference surface) using convex hulls dasa
points (Coleman and Sharp, 2006). Recently, Lee and caie=ag
have employed 3D convex hulls around complementarity regid
antibodies to analyse binding sites (Leteal., 2006) and Wangt

no non-standard residues, no chain breaks, resolutioerktétin A and
a crystallographic R factor better than 20%. Chains that f@aentry in
the HSSP (Sander and Schneider, 1991) database were discait final
dataset contains 1050 protein chains (257560 residues).

Identification of Residue Recursive Convex HGIsvex hulls were iden-
tified from the residueCz atomic coordinates using the QHull package
(Barberet al, 1996). Hulls were iteratively identified, hull residuesrae
assigned a hull number and removed from the point set. Tlmg bepeated
until all residues had been assigned a hull number. The mé&ith Rum-
ber in this dataset was 2.6 (s.d. 2.3). Assignment of RCH rmusito the
1050 chains took 52 minutes. We term this numbering of hdiltem the
outermost inward, residue RCH. An alternative numberirigesee, from
innermost hull outward, termed RCHr are given in the Suppletary Mate-
rial (Section 2.1). The mean RCHr number in this dataset whéssd. 2.7).
Assigning RCHr numbers to all chains took 58 minutes.

Calculation of Residue Solvent Accessibility (S&)vent accessible sur-

al have Used convex hu”S Of pl’OteIn baCkbOnes |n neural nktWorface values for each residue were extracted from the Dssmn(}aod

based classification of protein structures. (Wanal., 2006). Howe-
ver, dissection of protein structures k®cursivelyassigning convex

Sander, 1993) file for each structure. These values werdediviby the sol-
vent accessible surface values for each amino acid as definedst and
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Fig. 2. Box and whisker plots of RD against RCH for 257560 residuesfr
1050 proteins. Black dots indicate median values. Value® wermalized
and rounded to one decimal place.

Sander (1994) to obtain the relative solvent accessibifftgach residue.
The mean SA value in this dataset was 0.27 (s.d. 0.27).

Calculation of Residue Exposure (Exp)this study, we characterise resi-
due exposure as the distance of residues from the centragadabf chain.
(Ben-shimon and Eisenstein, 2005). The chain centroid wgesmhined from
the coordinates of the residues and the euclidean disténeach residue
from this point was calculated to obtain the residues exgosalue. The
mean Exp value in this dataset was 19.(s.d. 7.8). Determination of Exp
values for the whole dataset took less than 2 minutes.

Calculation of Residue Depth (ROResidue depth (RD) values were
obtained from the DPX server (Pintat al, 2003) using default settings.
RD values were positively skewed with a mean RD of 0.86 (s4ll)1

NormalizationIn Section 2.2 both unnormalized and normalized values

are reported for characterisation of the measures studied lbox plots

(Figure 2), correlation coefficients (Table 1), structwwahservation (Table
2), thermal stability (Table 3) and mutual information beem class assi-
gnments (Table 4). The value for each residue was dividetidynaximum

value for that measure in the corresponding chain to obtembrmalized
value. Histograms of unnormalized and normalized measaneshown in
the Supplementary Materials (Figures 5 and 6). After nozatbn RCH

and RCHr are symmetric.

2.2 Comparison Between RCH and Other Measures of
Residue Location

BoxPlotsFigure 2 plots RD versus RCH for each residue in the datagsg us
the statistically robust Box and Whisker technique. Box@sec 50% of the
data points, whiskers extend to 1.5 times the interquasihge with outliers
plotted as blue dots and median values indicated with blatk dVedian
values for RD are positively correlated with RCH yet RCH nwmaffimer
distinctions between degrees of burial and exposure. €ulibx plots for
these measures are available in the Supplementary MatéFiglure 3).

Correlation coefficientsPairs of measures that have a low correlation

coefficient are likely to be unrelated and potentially pdevicomplemen-
tary information for PSP. Table 1 shows the Pearson coiwaelabefficients
between the measures studied. RD has low correlation wéthotiher mea-
sures. RCH is most highly anti-correlated with SA (-0.62)l &as a higher
correlation with SA and Exp than RD. RCH is not highly cortethwith

RD, suggesting that these are distinct characterisatibnssalue location.
RCH appears to be the measure that correlates closely to ofidhg other

Table 1. Correlation Coefficients between Measures Stu-

died. Norm. indicates coefficients based on normalized
measures.
SA RD Exp RCH RCHr
SA 1.00 -051 039 -0.62 041
1.00 -050 0.55 -0.68 0.68 Norm.
RD 1.00 -0.26 0.43 -0.30
1.00 -0.34 0.48 -0.48 Norm.
Exp 1.00 -041 0.85
1.00 -0.81 0.81 Norm.
RCH 1.00 -0.42
1.00 -1.00 Norm.
RCHr 1.00
1.00 Norm.

Table 2. Conservation of Measures Correla-
tion of the Measures Studied between aligned
residues in related structures. Norm. indicates
coefficients based on normalized measures.

| RD Exp RCH RCHr SA
037 038 046 048 052
Norm. | 0.37 046 055 055 0.50

Table 3. Correlation of Structural Features with
Thermal Stability. Correlation of the measures stu-
died with changes in thermal stability of mutant
proteins. Norm. indicates coefficients based on nor-
malized measures.

| RD Exp RCH RCHr AASA
-0.22 029 -0.38 029 -0.34
Norm. | -0.20 0.44 -0.35 0.35 -0.37

measures. Hence, we would like to determine whether it &ively more
learnable than these other measures.

Conservation of RCHror related proteins, aligned residues are potentially
conserved even in the absence of strong sequence homoleggukés that
have relatively high correlation for aligned residue pgiotentially reflect
conserved aspects of protein structure. We, thereforesass what degree
these measures are correlated between aligned residuassropsuperim-
posed structures from a range of folds. Following (Haméinz005), the
conservation of RCH and the other measures was calculatetb621 ali-
gned residues (BLAST E-valug= 1.0) in 218 pairs of structures from
the SABmark version 1.63 Twilight Zone database (Van Wetlal., 2005).
This dataset comprises pairs of superimposed structuresiog 236 folds.
These pairs are structurally similar yet are without prédaimmmon evo-
lutionary origin, effectively, a hard dataset to predicable 2 reports the
correlation coefficients for both unnormalized and norgeali measures.
RCH and RCHr have higher conservation correlation coefftsi¢ghan RD,
Exp and SA indicating that, for such aligned residues, RCiidse highly
correlated with structurally conserved locations than Rkp and (after nor-
malisation) SA. As we used gL coordinates, values for RD and SA are
around 0.1 lower than those previously reported (HameJr20oK5).
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Table 4. Pairwise Mutual Information. MI between
two class (Q2) assignments for pairs of measures. Norm.
indicates Ml for class assignments based on normalized

measures.

SA RD Exp RCHr RCH

SA 1.00 0.21 0.06 0.08 0.26
1.00 0.21 0.12 0.26 0.26  Norm.

RD 091 0.04 0.05 0.14
091 0.06 0.14 0.14 Norm.

Exp 1.00 0.38 0.07
1.00 0.29 0.29 Norm.

RCHr 0.99 0.08
1.00 1.00 Norm.

RCH 0.99
1.00 Norm.

Relationship of RCH to Changes in Thermal Stability of Mufaroteins
Changes in thermal stability of proteins after mutationsare hydrophobic
residues (that potentially lead to cavity formation) hasrbeorrelated with
changes in SA and residue depth (for references see HagRgO5)).
For such residues, measures that correlate relativelylyhigith changes
in the proteins thermal stability reflect structurally innfamt features. We,
therefore, assess for these residues the degree to whish rieasures are
correlated with changes in protein thermal stability. Thgelation of these
measures of residue location (both normalized and unnaredadiwith chan-
ges in the thermal stabilityX A G in kcal/mol) of 91 lle/Leu/Val to Ala point
mutations was measured. 16 protein structures from thé@&rotdatabase
(Gromihaet al,, 1999; Bavaet al,, 2004; Kumaset al., 2006) were employed,
again following the approach of Hamelryck (2005). The datien coeffi-
cients for RD, SA, Exp, RCH, RCHr and ASA (related to the change in
accessible surface upon folding) are shown in table 3. RDegalvere simi-
lar to those previously reported. RCH is more highly coteglavith changes
in thermal stability upon mutation than the other measuEgp.andAASA
showed higher correlation when the data was normalized. firiwved the
lowest correlation of the measures studied. This data ateticthat (unnor-
malized) RCH is correlated more strongly with residues ahlidrophobic
core (that are related to structural stability) than areotiver measures.

Fig. 3. Space fillingC'3 atom models of proteins coloured by RCH and RD.
'Core’ residues are coloured red/yellow and 'surface’ daes blue/green
(rendered using RasMol).

6) along with RD vs. RCH (and 5). Frequent differences inchssignments
are observed for measures with greater than 0.20 MI.

To further highlight the distinction between RD and RCH udlsations
of two space fillingC' s atom models of protein structures are shown in figure
3. The values for each measure were normalized and the cadsigned, in
both measures, to indicate values from "exposed” (blue)ptaigd” (red).
These models provide visual confirmation that residue RGlitjaments are
distinct to those for RD. Further examples are availableéSupplementary
Materials (Figures 1 and 2).

3 LEARNABILITY OF RCH AND OTHER
MEASURES

Having demonstrated that residue RCH is a new and distirgecach
terisation of residue location, we turn to the predictiypitif these

Mutual InformationThe degree to which the classes assigned to residues . . . .
g 9 measures and assess, in practical terms, which of theszctiasa-

using these measures are mutually informative was assessggl Mutual
Information (MI) (Cover and Thomas, 2006). For discreteadhtl is defined

as:

Y = 2.y) log L&)
I(X;Y)=>" > pz,y)l B @) oy’

yeY zeX

(€

where p(xz) and p(y) are the probabilities of: and y occurring in the
dataset, ang(z, y) is the probability of the combination af andy occur-
ring together in the dataset. Ml is used here to measure thatigu of
information that one measure (e.g. SA) tells us about an¢éhg. RCH).
Table 4 shows the MI between pairs of measures for all 257&88idues
studied. When the MI between the class assignments for apaieasures
is high they represent closely related problems (the Ml betwa measure
and itself is maximal, and is 1.00 if the classes assignelearteasure are
well balanced). SA shares 0,26 Ml with RCH whilst Exp shar88 01 with
RCHr and all other pairwise Ml values are less than 0.10. iRd&ates that
the RCH class of residues provides information distinctA¢ BD and Exp
class information. Ml for Q3 and Q5 class assignments isrginghe Sup-
plementary Materials (Table 3) along with a detailed paevéxamination
of the Q5 class assignments for SA vs. RCH, and RCHr vs. Exgrevh
increased levels of MI were observed (Supplementary Maserirables 4,

tions of residue location is easier to learn. Hence, paéntmore
useful for PSP.

3.1 Prediction Experiments

Inputs to Predictiong-or each measure (RCH, RCHr, RD, SA and
Exp) predictions were made using six types of input infororaand
three levels of precision: two, three and five class pan#i@2, Q3
and Q5). Table 5 summarises the six different types of inpfatri
mation used for predictions of the measures studied. Caatibims
of both local (neighbourhood of the target in the chain) aluthag
(protein-wise) information were used. A window of four ichses
either side of the target residue has been shown to lead oGy
predictive accuracy using LCS (Bacardttal., 2006) and was used
in this study also to facilitate comparison of results. Facterepre-
sentation (RCH, SA etc.) these inputs were labeled 1-6 ingieof
this paper, for example, RCH-3 denotes RCH predicted usipgti
dataset 3. For each measure a total of 18 datasets was edb(sixt
sets of input attributes each at three levels of class as&gt). A
detailed description of these inputs appears in Sébwl. (2007).
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Table 5. Datasets For each dataset (1-6) the input information type Table 6. Summary of the highest predictive accuraciefor each
included in that dataset is indicated &yThe two types of local (target measure studied, in descending order of accuracy. Meard. for
and its closest neighbours) and three types of global (jpretese) ten fold cross validated predictions based on the inputsdgtahat
input information were investigated are shown. gave the best results for each measure: namely type 4 oriégtad
by o).
Dataset
Scope | Input Information 1 2 3 4 5 6 Alg | C4.5 BioHEL GAssist  Naive Bayes
Local AA Types in Window of( e e e e e e RCHr | 79.8+1.5 78515 78.4t15 77.9t1.70
targett-4 residues RCH | 77.3:1.0 75.9:1.2 757411 76.%1.1o
Pred. Secondary Structure pf e ° ° RD 76.0£0.40 75.3:0.3 75.2£0.3 75.1+0.4
target Exp 73.9+14 72816 725140 73.4:1.30
Chain Length e o SA 73.3t0.3 72.2t0.40 72.2£0.40 72.3:0.4o
Global | Residue Frequencies °
Pred. average of target measyre o o

Performance measureBifferent protein chains have different
lengths and it is prediction accuracy on chains that is glpicepor-
) _ ted (Kinjoet al, 2005; Jones, 1999). Prediction accuracies for each
In order to determine the degree to which RCH and RCHr varyehain were, therefore, averaged to obtain the protein-adseracy
in their learnability and capture properties of proteirustares, in reported here.
what follows we use their unnormalized versions. _ Machine Learning Method#Ve use four different machine lear-
Predicted secondary structure information of the targsitic® ing (L) methods. The first two are popular ML systems taken
was obtained using the PSI-PRED predictor (Jones, 19995 Th ¢om the WEKA package (Witten and Frank, 2005): C4.5 (Quipla
consists the secondary structure type (helix, strand dj @0t @ 1997) 5 decision tree rule induction system, Naive Bayasr(and
confidence level ([0..9]) of the prediction. Langley, 1995), a Bayesian learning algorithm. Learninstems
For each measure, the average value of that measure was detgh|onging to the Learning Classifier Systems (LCS) (Holland
mined for each chain and ten pairs of training and test fold®wW Rejiman, 1978) class of ML techniques were also studiedsdhe
prepared. For each instance, the inputs were the chainhl¢age oy qtems are rule-based machine learning systems thatevali-
integer value) and amino acid composition of each chain €0 1 541y computation (Holland, 1975) as the search mechaniaio
values) and the target class was the measured average oathe f | o5 methods have been employed: GAssist (Bacardit, 200d) an
particular measure (partitioned into 10 classes using@umifre-  gjsE| (Bacarditet al, 2007) that implement different rule induc-
quency cut-point strategy). Cut-points were determingras®iely  tjon haradigms. A detailed description of both systems dtuigted
for each training fold and used to assign classes to the sédlue | the Supplementary Material (Section 3.1).
the corresponding training and test folds. The predicteetage Analysis of Result§or each experiment, the mean prediction
value of the measure under consideration (termed PredA¥eRC .. racy (as defined in section 2) over the test sets is Ezh@tu-
PredAveRD etc.) was predicted using the GAssist LCS (dtail jo 1 tests were applied to the ten results from each expetito

below) prior to preparation of the data sets for the full e@s  jatermine the best method for each dataset at a confiderelefev
predictions. 950 instances (chains) were used for traiaimd)100 9504 Standard deviations and any significant differencesiati-

instances for testing. 10 iterations were performed fohga@- .44 in each table. The conservative Bonferroni corredtitiller,
diction using different random number seeds and the 10 efle s 1981) for multiple pair-wise comparisons was applied.

generated were combined as an ensemble using a majorityoote | aq4gition, the contributions of global input informatiovere

predict the measure. _ _ _ assessed as follows: for each learning system and predi§an
(?Iass Ass!gnmentm order to predict measures using classifi- Q3 and Q5), the maximum of (Dataset4, Dataset6)-Dataset2 wa

cation techniques, the calculated values for each measare W .omnnted. As a base for the performance gap, the dataset with

partitioned into two,_three and_flve classes (bins) here ¢dr@2, redSS was used, because in certain situations the Datametl

Q3 and Qs respectively. For imbalanced measures, such as Sfymeq poorly, distorting the comparisons. Finally, thetcibution

a class boundary that leads to more balanced classes iicradi predicted secondary structure was also assessed assolior

nally chosen, e.g. for SA a cut point of 25% is widely used. Wegachy jearning system and number of states the value of the max

apply class balancing for all measures and levels of digat@in 1, of (Dataset2-Datasetl, Datasetd-Dataset3, DatBsstdets)
(Q2, Q3 and Q5) in this study, adopting a uniform frequenag-l was determined.

sification procedure. For our data, balanced classes for 8& w

obtained using, for example, a cut point of 18%. Class botesla o

were determined individually for each training/test sét paing the ~ 3-2 Prediction Results

corresponding training fold. Details of the cut points uaeglgiven  For each measure studied, Table 6 summarizes the best Q2-pred

in the Supplementary Materials (Table 1). tive accuracy (in descending order) for each measure (tisengest
Definition of the training and tests sdbmtasets were divided ran- possible input dataset in each case). Detailed resultshiopte-

domly into ten training and test set pairs (950 chains faning and  dictions are given in the Supplementary Materials (Tablesl@).

100 for testing), using bootstrap (Kohavi, 1995). We haweetl a  Predictive accuracy was higher on the two RCH based repgesen

copy of the datasets at www.infobiotic.net. tions than on the SA, RD or Exp representation. The predictiv
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accuracies for RCHr being statistically significantly regrthan
those for the other measures (p-value=0.5).

For all representations, higher predictive accuraciessveeen
when fewer classes were predicted (lower precision — Q2)p1@5

The contribution of SA, Exp, RCH and RCHr to CN prediction
(individually and in combination with one another) was endéd
by extending the CN1 dataset with 16 combinations of inpuit-at
butes that correspond to all combinations of these meadusésg

dictive accuracy for RCH was between 30% and 40%, Q3 wagredicted RD as input gave the lowest improvement (0.2%) thnee
approximately 20% higher, between 55% and 60% whilst for Q2CN1 (local window) input alone and was, therefore, not idel

prediction accuracies exceeded 77%. The LCS'’s performgiddoe

in predictions made with combinations of inputs. Table Ashthe

the RCHr representation when using input dataset RCHr-4s Th results of these experiments. As a baseline, the perforenahthe

dataset combines local information (a window of residuesiiad
the target and its predicted secondary structure) withajlobain
information (chain length and chain residue compositidhg more

original CN1 is included. The table has been sorted by acgua
help identify the combinations of predicted measures thet the
biggest performance boost.

compact RCHr-6 was frequently the most learnable dataget fo The results of these experiments were analyzed using pgired
C4.5 and Naive Bayes. This dataset comprises local infeomat test with 95% confidence level and the Bonferroni correctimo

(window and predicted secondary structure) and globatimétion

(predicted average RCHr of the chain).

3.3 Predicted RCH Improves CN Prediction

Table 7. Coordination Number prediction (by BioHEL) using amino-
acid sequence and various combinations of the predictecuren e
indicates input information that leads to statisticallgrsficant increases
in predictive accuracy compared to the baseline CN1 infirts group of
best performing method¥{ all have statistically similar performance.

Dataset Protein-wise acc.
CN1 77.2+0.8
CN1+RD 77.4£0.8
CN1+RCHr 77.6:0.7
CN1+Exp 77.7+0.8
CN1+Exp+RCHr 77.7+0.7
CN1+RCH 78.5t0.9
CN1+RCH+RCHr 78.8+0.7¢
CN1+Exp+RCH 78.9+0.80
CN1+SA 78.91-0.8e
CN1+Exp+RCH+RCHr 78.9£0.7¢
CN1+Exp+SA 79.1+0.8e ¥
CN1+Exp+SA+RCHr 79.140.80 ¥
CN1+SA+RCHr 79.1+0.8e ¥
CN1+SA+RCH 79.710.80 ¥
CN1+Exp+SA+RCH 79.8+0.80 ¥
CN1+SA+RCH+RCHTr 79.8£0.80 ¥
CN1+Exp+SA+RCH+RCHTr 79.8-0.7e V¥

types of results were identified: the datasets in which BiblgEr-
formed significantly better than when learning from CN1 (keal
with a e) and the (statistically indistinguishable) group of datas
that resulted in the highest predictive accuracies areateld §).

There are two groups of measures: those that only provide a
small performance boost over CN1 (RD, Exp and RCHr), andrsthe
that provide a larger boost (SA and RCH). Furthermore, cambi
Exp and RCHr (together and with other measures) only maigina
improves the performance, indicating that these measueeaastly
redundant (consistent with the observed increase in M| &etw
these two measures, table 4). On the other hand, combining SA
and RCH resulted in much better accuracy, showing that timese
sures complement each other. The best combinations of nesasu
(Exp+SA+RCH, SA+RCH+RCHr and Exp+SA+RCH+RCHr) lead
to a performance increase of 2.6% over the baseline CNletatas

4 DISCUSSION
4.1 Prediction Results

The results show some general trends across all measudisdstu
and all learning methods. Predictive accuracy is increagleen
richer input information is employed. Inclusion of locafanma-
tion in the form of predicted secondary structure typicédigds to
an increase in Q2 predictive accuracy of 2-3% on most datdset
the learning systems used, whilst using global proteinrmédion
(chain length and composition) can boost Q2 predictive l@oyuby
more than 10% (in the case of RCH and RCHr). The type 3 and 4
datasets, containing 21 real valued global protein atiegyun par-
ticular present a considerably larger search space, anahittiare

of real-valued and nominal attributes makes the learnimgplpm
more difficult than for purely nominal knowledge represéntss.
The type 5 and 6 datasets use less attributes than the type 8 an

Finally, we assess the utility of predicted RCH as an input todatasets enabling the LCS’s to generate rule sets that ascaasily

prediction of other aspects of protein structure, spedificaoor-

interpreted. The RCHTr representation was the most prédadictaea-

dination Number (CN). For each of the measures studied, the Qsure this resulting from use of input dataset 4 (chain coitipas

predictions (using input dataset 4) made by BioHEL (whicls via
general, the best performing method) are fed back into gtiedi

and length information) and the BioHEL LCS. C4.5 performedtb
when using datasets 4 and 6, benefiting from predicted |ockd-

of CN (Bacarditet al, 2006). The CN of a residue is a count of bal information. Naive Bayes generally performed best wigng

the number of other residues from the chain that are locattiinw
a certain threshold distance. Specifically, we have use&ihj@

the more compact dataset 6.
There were interesting differences between these regeesen

et al. (2005) definition of CN. We predict whether the CN of a resi- tions of residue location; RCH was easier to learn than therot

due is above or below the midpoint of the CN domain, usingjaistin
information the AA type of a window of-4 residues around the tar-
get (equivalent to the first set of input attributes used &gt the

other features)CN1

representations perhaps due to this representation tgrieessi-
gning classes to residues for anisotropic (elongatedgtsires. For
such structures, the Exp representation may assign sorfeeeur
residues to the buried class and some buried residues tajihsesl




Residue RCH Prediction

class. Similarly, RCH was more predictable than SA; assegrirof
residues deep within structures but on the surface of eavftiigh
solvent accessibility) to the exposed class may have lavdre
predictability of the SA representation.

RD was more predictable than SA and Exp but was not as easil
predicted as RCH and RCHr. As SA emphasises buried resisloes,
RD emphasises exposed residues. The highly imbalancereraftu
the RD measure (Supplementary Materials, Figures 5 andaflsle
to imbalanced class assignments even when using a unif@m fr
guency cut-point strategy (Supplementary Materials, &)l This
imbalance is likely to have made this measure relativelyabf-
ficult to learn. Furthermore, when fed back as inputs for jotézh
of CN, RD in particular provided little additional informah over
the CN1 inputs resulting in only marginal improvements in CN
prediction. Prediction accuracy for all measures is likelype boo-
sted by including additional (e.g. non-local) input infation. For
example, 79.3% ten-fold cross validated accuracy has legemted
for two state SA prediction at a 25% cut point using an integra
ted system of neural networks (Dor and Zhou, 2007) with posit
specific scoring matrices and a range of other input data.

4.2 "White Box” Prediction: Interpretable Analysis
and Performance Considerations

Understanding the basis on which a prediction is made maydse m
valuable than making relatively accurate predictions ifiredman-
ner. Decision trees can be interpreted, however, on th s

amino acid types of residues surrounding the target in theesee.
AA+ M means the amino acid type of the residue at positidi

in respect to the target residue. Amino acids are repregéenteheir
one letter code, plus the symhelrepresenting positions after the
gtart/end of the chain, for cases where the window of neigtibhg
residues overlaps the beginning or the end of the chain.d%tipns
relative to the target residue (ees_2) these predicates restrict
the amino acid types for the residue at that position (mestiyeior
non-membership of a set). In subsequent rules, the preldsgeon-
dary Structure class (PredSS) of the target residue; ditbkx (H),
Sheet (E) or Coil (C) is tested. In many cases, the targeduesi
type is largely restricted to hydrophobic residues thabéen found
buried in the protein core and, therefore, have higher RQHbars.
The LCS has correctly identified this, predicting the aboverage
RCH class (1) for these residues.

The accuracy, simplicity and interpretability of the rulets
generated by the LCS’s must, however, be balanced agaiest th
computational expense needed to generate them. Run timéwfo
learning phase of the BioHEL algorithm ranged from threeunin
tes on the smaller input datasets to almost seven hours dartes
ones. In contrast, the worst case for C4.5 was 32 minutes@nd f
Naive Bayes was less than one minute. Moreover, for eachgmob
set, the LCS algorithms, BioHEL and GAssist, were run mldtip
times to produce ten classifiers for input to the ensembleguhare.
Once trained, however, run times for the resulting classifia the
entire test set was around two minutes for C4.5 and Naive 8aye

C4.5, produced pruned trees that ranged in mean size fro® 106ut less then one minute for the LCS’s, an indication, fotanse,

(sd=331) to 138977 (sd=2735) nodes limiting their explanat
value. Naive Bayes, on the other hand, generates compaittt-sol
ons, however, these are probabilistic models that have nwilrate
physico-chemical interpretation. In contrast, it is mu@sier to
relate the compact rule sets evolved by the LCS algorithmbedo
underlying physical and chemical properties of proteinise Tol-
lowing is an example of a rule set evolved by the GAssist LCS
that produced 71.2% two state predictive accuracy on the BCH
dataset.

1. If PredSSConf < 7.5andPredAveAtt > 8.64andRes_4 ¢ {K,xz}
andRes_o2 ¢ {z}andRes ¢ {D,E, K, N,Q} andResy1 ¢ {z} and
Resio ¢ {K}andResy4 ¢ {z} —classis1

. If PredSS ¢ {C} andPredAveAtt > 4.8 andRes_4 ¢ {E,Q} and
Res_3 ¢ {D, T} andRes_» ¢ {E} andRes_1 ¢ {D,P,V} and
Res ¢ {D,E,H,K,N,P,Q,R,T} andResy1 ¢ {z} andRes;2 ¢
{H} andResy3 ¢ {K}andRes;4 ¢ {E,K,Q,R,z} — classis 1

. If PredSS ¢ {C} and PredAveAtt > 4.8 and Res_4 ¢
{E,R} andRes_3 ¢ {D,E} and Res_1 ¢ {P,W} and Res ¢
{A,D,E,K,N,P,Q,R}andResy1 ¢ {W,z}andRes 2> ¢ {V,W}
andRes 3 ¢ {K, R} andRes 4 ¢ {K,z} — classis 1

. If PredSS € {E}andPredAveAtt > 4.5andRes_4 ¢ {C, K, z} and
Res_3 ¢ {R} andRes_» ¢ {K,R}andRes_1 ¢ {D,Q,S,z} and
Res ¢ {E,F,K,M,R,T}andRes;1 ¢ {F,L,z}andRes 2 ¢ {K}
andResis ¢ {C}andRes 4 ¢ {z} — classis 1

Default class is 0

The rule set structure is a decision list, rules are testeorder
starting with the first and rule evaluation continues untihatch
is found or the default (last) rule is reached. This rule setgrised
15 rules, the first four rules are shown (the full rule set isvah
in the Supplementary Materials, Section 4.3). In the firg,rthe
confidence level of the secondary structure predictionsietethen
the predicted average value for the property under coretider
(predicted average RCH 8.64). Subsequent predicates test the

of how these LCS evolved classifiers would perform as part of a
prediction web server.

5 CONCLUSIONS

In this paper, a new measure of residue location in foldedepro
chains, the recursive convex hull (RCH), was introducedHRE

a parameterless, simple to compute and mathematicallyotigo
method that situates residues in layers within proteincsires.
We show that RCH is distinct to other widely studied measures
of residue location and that RCH distinguishes a range ofesey

of residue burial/exposure, correlates better with resichnserva-
tion and changes in protein stability under mutation thaasnees
such as solvent accessibility, residue depth or residuantie from
chain centroid Further, we assess the predictability of these mea-
sures using three types of machine learning technique:sideci
trees (C4.5), Naive Bayes and Learning Classifier Systei@S)L
employing a range of predictive inputs. We show that an LG8 th
employs iterative rule learning, BioHEL, predicts RCH at3e3,
60.6% and 39.0% accuracy for Q2, Q3 and Q5, respectively. We
present examples of the competent yet simple and intelpecta
LCS classification rules, showing how they relate to the gy
physical and chemical properties of the residues. As an pkeam
application of predicted RCH class (in combination withestmea-
sures) we show that prediction of contact number can be ivegro
by up to 2.6%.
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