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ABSTRACT
Motivation: We introduce a new method for designating the location
of residues in folded protein structures based on the Recursive Con-
vex Hull (RCH) of a point set of atomic coordinates. The RCH can be
calculated with an efficient and parameterless algorithm.
Results: We show that residue RCH class contains information com-
plementary to widely studied measures such as solvent accessibility
(SA), residue depth (RD), and to the distance of residues from the
centroid of the chain, the residues’ exposure (Exp). RCH is more con-
served for related structures across folds and correlates better with
changes in thermal stability of mutants than the other measures. Fur-
ther, we assess the predictability of these measures using three types
of machine learning technique: decision trees (C4.5), Naive Bayes
and Learning Classifier Systems (LCS) showing that RCH is more
easily predicted than the other measures. As an exemplar applica-
tion of predicted RCH class (in combination with other measures) we
show that RCH is potentially helpful in improving prediction of residue
contact numbers.
Contact: nxk@cs.nott.ac.uk
Supplementary Information: Datasets: www.infobiotic.net/datasets,
RCH Prediction Servers: www.infobiotic.net

1 INTRODUCTION
Prediction of the three-dimensional structure of proteins from their
constituent amino acid sequences continues to be one of the key
goals of structural biology and a wide range of predictive strategies
has been investigated. Steady improvements in predictive accuracy
have resulted from decomposition of the problem into subproblems,
such as prediction of secondary structural elements (approaching a
theoretical prediction limit of 80% (Dor and Zhou, 2007; Wood and
Hirst, 2005)), of residue coordination number (at over 80% (Bacar-
dit et al., 2006)) and of residue solvent accessibility (at over 77%
using consensus predictors (Gianese and Pascarella, 2006)). Burial
of hydrophobic groups within the protein core is a primary driving
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Fig. 1. Left: Recursive Convex Hulls of a 2D off-lattice protein model. The
backbone is represented by coloured circles joined by solid black lines. Resi-
dues on the outermost recursive convex hull are coloured red, subsequent
recursive convex hulls are coloured blue, green, and yellow, with residues
on the innermost recursive convex hull coloured purple. Right: A graphical
representation of the outer Recursive Convex Hull of residues in a 3D model
of a natural protein chain (PDB Id. 1P4X).

force for protein structure formation. Characterizations of residue
accessibility to solvent are, therefore, important for protein struc-
ture prediction (PSP), potentially helping to constrain the search
space to be explored usingde novomethods (Baldi and Pollastri,
2002). Whilst classifying residue neighbourhood density as high or
low will generally assign the high class to residues buried within
the structure and the low class to residues exposed on the surface,
residues lining cavities in the structure (that may be functionally
significant (Chenet al., 2007) can have a low coordination number
even when located far from the surface. Incorporation of comple-
mentary residue solvent accessibility and residue depth information
improves fold recognition (Liuet al., 2007). A range of measures of
residue location have been studied. Lee and Richards (1971) used a
spherical probe method to measure the solvent accessible surface of
residues and recently Kawabata and Go (2007) have used adjustable
probe parameters to identify putative ligand binding pockets on pro-
tein surfaces. Solvent accessibility, however, is difficult to compute
and does not distinguish between residues below the surface. Hence,
atom/residue depth (RD), the distance of an atom/residue from its
nearest solvent accessible neighbour, was introduced (Chakravarty
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and Varadarajan, 1999) and efficient algorithms are available to
compute RD for a given structure (Pintaret al., 2003; Vlahovicek
et al., 2005). Whilst SA emphasises burial, RD emphasises exposure
and depends on the method used to identify surface atoms/residues.
Hence, Half Sphere Exposure (HSE), has been recently proposed
(Hamelryck, 2005). HSE, like CN, counts neighbouring residues
but distinguishes two regions (half spheres) around each residue
based on theCα-Cβ vector, i.e. a 2D measure of residue location.
In addition, the distance (exposure) of residues from the chain cen-
troid is a potentially interesting measure being related tothe location
of catalytic residues in enzyme structures (Ben-shimon andEisen-
stein, 2005). Measures of atom/residue location typicallydepend on
specific parameters such as probe size for SA or contact radius for
CN.

In this paper, we introduce a new approach to stratifying residues
in protein structures byrecursivelyidentifying the convex hull layer
to which each residue belongs. The convex hull of a set of points is a
parameterless, mathematically rigorous and unambiguous approach
to identifying the points on the exterior of a point set, analogous
to identifying those points that contact the enclosing surface when
the point set is tightly wrapped. The convex hull is simple and effi-
cient (O(n ∗ logn)) to compute (Preparata and Hong, 1977). The
recursive convex hull (RCH) of a point set is obtained by identifi-
cation of the minimal point set that generates the convex hull (the
vertices) and removal of these points from the point set followed by
recursively applying these steps to the remaining points toidentify
subsequent hulls. Applied to the point set of coordinates ofresidues
in a protein chain, a series of hulls is obtained that group residues by
their distance from the convex surface of the structure. Therecursive
convex hulls of a 2D off-lattice protein model are shown in Figure 1
along with a representation of the outer convex hull of a 3D point set
derived from theCβ atomic coordinates of residues in a real protein
chain.

Convex hulls have found a wide range of applications in studies
of molecular structure. Here we give a brief, by no means com-
plete, review. Badel-chagnon and colleagues introduced a notion
of the ”molecular surface convex hull” to define the depth of any
molecular surface point (Badel-chagnonet al., 1994) and Lin and
colleagues used convex hulls to align 11 randomly generatedbio-
active tachykinin peptides, finding that 3D convex hulls canbe used
to align even these flexible structures (Linet al., 1999; Lin and Lin,
2001). Meieret al.proposed a convex hull based segmentation tech-
nique (that makes few assumptions about the underlying surface)
to find characteristically shaped regions of molecular surfaces for
prediction of possible protein docking sites (Meieret al., 1995).
Liang and Dill used convex hulls to define the boundaries of surface
pockets and depressions in studies of packing densities in proteins
(Liang and Dill, 2001). Holmes and Tsai tackled protein side-chain
packing and interactions by measuring variation in convex hulls con-
structed around these groups (Holmes and Tsai, 2005). Coleman
and Sharp introduce the notion of travel depth (the physicaldistance
a solvent molecule would have to travel from a surface point to a
suitably defined reference surface) using convex hulls of surface
points (Coleman and Sharp, 2006). Recently, Lee and colleagues
have employed 3D convex hulls around complementarity regions of
antibodies to analyse binding sites (Leeet al., 2006) and Wanget
al. have used convex hulls of protein backbones in neural network
based classification of protein structures. (Wanget al., 2006). Howe-
ver, dissection of protein structures byrecursivelyassigning convex

hull numbers to residues, as we propose here, does not appearto
have been previously reported.

This paper has two parts. In the first part we analyse RCH as a
new computable property of proteins. We compare the information
content of RCH to that of residue solvent accessibility (SA), residue
depth (RD) and exposure (Exp) and show that, although not totally
unrelated, these properties are indeed complementary. We show that
RCH correlates better with structural conservation than the other
measures of residue location and that RCH is also better corre-
lated with changes in protein thermal stability in the presence of
cavity forming mutations. We turn, in Part 2, to the questionof how
easy/difficult it is, in practical terms, to learn to predictthese mea-
sures. The relative predictability of RCH, RD, SA and Exp using
four different machine learning algorithms was assessed using six
different, progressively richer, sets of input attributesat three levels
of precision. The relative benefits of using these various inputs are
described. C4.5 (Quinlan, 1992), Naive Bayes (John and Langley,
1995), GAssist (Bacardit, 2004) and BioHEL (Bacarditet al., 2007)
are the machine learning methods employed in this paper. Finally,
we demonstrate the usefulness of RCH by using the predicted RCH
class of residues as input for prediction of residue Coordination
Number (CN) showing that, in combination with predicted residue
SA and Exp class, predicted RCH information increases predictive
accuracy for CN.

2 MATERIALS AND METHODS

2.1 Datasets and Features Studied
We describe next the datasets and algorithms employed to assess the novelty
of RCH and its relation to previously studied measures. All of the mea-
sures studied are based on atomic coordinates. Two polypeptides that
have similar structures when represented usingCα coordinates may have
distinct structures when represented usingCβ coordinate (Eidhammeret al.,
2003). Throughout this paperCβ atom coordinates are used (Cα for glycyl
residues) as these are sensitive to the orientation of side chain atoms.

Protein datasetThe dataset used here are those described by Bacardit et
al. (Bacarditet al., 2006), originally proposed by Kinjo (Kinjoet al., 2005).
Protein chains were selected from PDB-REPRDB (a non-redundant curated
subset of the Protein Data Bank (PDB) (Noguchiet al., 2001), covering the
space of possible folds) using the following criteria: lessthan 30% sequence
identity, sequence length greater than 50 residues, no membrane proteins,
no non-standard residues, no chain breaks, resolution better than 2̊A and
a crystallographic R factor better than 20%. Chains that hadno entry in
the HSSP (Sander and Schneider, 1991) database were discarded. The final
dataset contains 1050 protein chains (257560 residues).

Identification of Residue Recursive Convex HullsConvex hulls were iden-
tified from the residueCβ atomic coordinates using the QHull package
(Barberet al., 1996). Hulls were iteratively identified, hull residues were
assigned a hull number and removed from the point set. This being repeated
until all residues had been assigned a hull number. The mean RCH num-
ber in this dataset was 2.6 (s.d. 2.3). Assignment of RCH numbers to the
1050 chains took 52 minutes. We term this numbering of hulls,from the
outermost inward, residue RCH. An alternative numbering scheme, from
innermost hull outward, termed RCHr are given in the Supplementary Mate-
rial (Section 2.1). The mean RCHr number in this dataset was 5.1 (s.d. 2.7).
Assigning RCHr numbers to all chains took 58 minutes.

Calculation of Residue Solvent Accessibility (SA)Solvent accessible sur-
face values for each residue were extracted from the DSSP (Holm and
Sander, 1993) file for each structure. These values were divided by the sol-
vent accessible surface values for each amino acid as definedin Rost and
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Fig. 2. Box and whisker plots of RD against RCH for 257560 residues from
1050 proteins. Black dots indicate median values. Values were normalized
and rounded to one decimal place.

Sander (1994) to obtain the relative solvent accessibilityof each residue.
The mean SA value in this dataset was 0.27 (s.d. 0.27).

Calculation of Residue Exposure (Exp)In this study, we characterise resi-
due exposure as the distance of residues from the centroid ofeach chain.
(Ben-shimon and Eisenstein, 2005). The chain centroid was determined from
the coordinates of the residues and the euclidean distance of each residue
from this point was calculated to obtain the residues exposure value. The
mean Exp value in this dataset was 19.1Å (s.d. 7.8). Determination of Exp
values for the whole dataset took less than 2 minutes.

Calculation of Residue Depth (RD)Residue depth (RD) values were
obtained from the DPX server (Pintaret al., 2003) using default settings.
RD values were positively skewed with a mean RD of 0.86 (s.d. 1.41).

NormalizationIn Section 2.2 both unnormalized and normalized values
are reported for characterisation of the measures studied using box plots
(Figure 2), correlation coefficients (Table 1), structuralconservation (Table
2), thermal stability (Table 3) and mutual information between class assi-
gnments (Table 4). The value for each residue was divided by the maximum
value for that measure in the corresponding chain to obtain the normalized
value. Histograms of unnormalized and normalized measuresare shown in
the Supplementary Materials (Figures 5 and 6). After normalization RCH
and RCHr are symmetric.

2.2 Comparison Between RCH and Other Measures of
Residue Location

BoxPlotsFigure 2 plots RD versus RCH for each residue in the dataset using
the statistically robust Box and Whisker technique. Boxes cover 50% of the
data points, whiskers extend to 1.5 times the interquartilerange with outliers
plotted as blue dots and median values indicated with black dots. Median
values for RD are positively correlated with RCH yet RCH makes finer
distinctions between degrees of burial and exposure. Further box plots for
these measures are available in the Supplementary Materials (Figure 3).

Correlation coefficientsPairs of measures that have a low correlation
coefficient are likely to be unrelated and potentially provide complemen-
tary information for PSP. Table 1 shows the Pearson correlation coefficients
between the measures studied. RD has low correlation with the other mea-
sures. RCH is most highly anti-correlated with SA (-0.62) and has a higher
correlation with SA and Exp than RD. RCH is not highly correlated with
RD, suggesting that these are distinct characterisations of residue location.
RCH appears to be the measure that correlates closely to manyof the other

Table 1. Correlation Coefficientsbetween Measures Stu-
died. Norm. indicates coefficients based on normalized
measures.

SA RD Exp RCH RCHr
SA 1.00 -0.51 0.39 -0.62 0.41

1.00 -0.50 0.55 -0.68 0.68 Norm.
RD 1.00 -0.26 0.43 -0.30

1.00 -0.34 0.48 -0.48 Norm.
Exp 1.00 -0.41 0.85

1.00 -0.81 0.81 Norm.
RCH 1.00 -0.42

1.00 -1.00 Norm.
RCHr 1.00

1.00 Norm.

Table 2. Conservation of Measures. Correla-
tion of the Measures Studied between aligned
residues in related structures. Norm. indicates
coefficients based on normalized measures.

RD Exp RCH RCHr SA
0.37 0.38 0.46 0.48 0.52

Norm. 0.37 0.46 0.55 0.55 0.50

Table 3. Correlation of Structural Features with
Thermal Stability . Correlation of the measures stu-
died with changes in thermal stability of mutant
proteins. Norm. indicates coefficients based on nor-
malized measures.

RD Exp RCH RCHr ∆ASA
-0.22 0.29 -0.38 0.29 -0.34

Norm. -0.20 0.44 -0.35 0.35 -0.37

measures. Hence, we would like to determine whether it is relatively more
learnable than these other measures.

Conservation of RCHFor related proteins, aligned residues are potentially
conserved even in the absence of strong sequence homology. Measures that
have relatively high correlation for aligned residue pairspotentially reflect
conserved aspects of protein structure. We, therefore, assess to what degree
these measures are correlated between aligned residues in pairs of superim-
posed structures from a range of folds. Following (Hamelryck, 2005), the
conservation of RCH and the other measures was calculated for 15621 ali-
gned residues (BLAST E-value>= 1.0) in 218 pairs of structures from
the SABmark version 1.63 Twilight Zone database (Van Walleet al., 2005).
This dataset comprises pairs of superimposed structures covering 236 folds.
These pairs are structurally similar yet are without probable common evo-
lutionary origin, effectively, a hard dataset to predict. Table 2 reports the
correlation coefficients for both unnormalized and normalized measures.
RCH and RCHr have higher conservation correlation coefficients than RD,
Exp and SA indicating that, for such aligned residues, RCH ismore highly
correlated with structurally conserved locations than RD,Exp and (after nor-
malisation) SA. As we used Cβ coordinates, values for RD and SA are
around 0.1 lower than those previously reported (Hamelryck, 2005).
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Table 4. Pairwise Mutual Information . MI between
two class (Q2) assignments for pairs of measures. Norm.
indicates MI for class assignments based on normalized
measures.

SA RD Exp RCHr RCH
SA 1.00 0.21 0.06 0.08 0.26

1.00 0.21 0.12 0.26 0.26 Norm.
RD 0.91 0.04 0.05 0.14

0.91 0.06 0.14 0.14 Norm.
Exp 1.00 0.38 0.07

1.00 0.29 0.29 Norm.
RCHr 0.99 0.08

1.00 1.00 Norm.
RCH 0.99

1.00 Norm.

Relationship of RCH to Changes in Thermal Stability of Mutant Proteins
Changes in thermal stability of proteins after mutations ofcore hydrophobic
residues (that potentially lead to cavity formation) has been correlated with
changes in SA and residue depth (for references see Hamelryck (2005)).
For such residues, measures that correlate relatively highly with changes
in the proteins thermal stability reflect structurally important features. We,
therefore, assess for these residues the degree to which these measures are
correlated with changes in protein thermal stability. The correlation of these
measures of residue location (both normalized and unnormalized) with chan-
ges in the thermal stability (∆∆G in kcal/mol) of 91 Ile/Leu/Val to Ala point
mutations was measured. 16 protein structures from the Protherm database
(Gromihaet al., 1999; Bavaet al., 2004; Kumaret al., 2006) were employed,
again following the approach of Hamelryck (2005). The correlation coeffi-
cients for RD, SA, Exp, RCH, RCHr and∆ASA (related to the change in
accessible surface upon folding) are shown in table 3. RD values were simi-
lar to those previously reported. RCH is more highly correlated with changes
in thermal stability upon mutation than the other measures.Exp and∆ASA
showed higher correlation when the data was normalized. RD showed the
lowest correlation of the measures studied. This data indicates that (unnor-
malized) RCH is correlated more strongly with residues in the hydrophobic
core (that are related to structural stability) than are theother measures.

Mutual InformationThe degree to which the classes assigned to residues
using these measures are mutually informative was assessedusing Mutual
Information (MI) (Cover and Thomas, 2006). For discrete data, MI is defined
as:

I(X; Y ) =
X

y∈Y

X

x∈X

p(x, y) log
p(x, y)

p(x) p(y)
, (1)

where p(x) and p(y) are the probabilities ofx and y occurring in the
dataset, andp(x, y) is the probability of the combination ofx andy occur-
ring together in the dataset. MI is used here to measure the quantity of
information that one measure (e.g. SA) tells us about another (e.g. RCH).

Table 4 shows the MI between pairs of measures for all 257560 residues
studied. When the MI between the class assignments for a pairof measures
is high they represent closely related problems (the MI between a measure
and itself is maximal, and is 1.00 if the classes assigned to the measure are
well balanced). SA shares 0,26 MI with RCH whilst Exp shares 0.38 MI with
RCHr and all other pairwise MI values are less than 0.10. Thisindicates that
the RCH class of residues provides information distinct to SA, RD and Exp
class information. MI for Q3 and Q5 class assignments is given in the Sup-
plementary Materials (Table 3) along with a detailed pairwise examination
of the Q5 class assignments for SA vs. RCH, and RCHr vs. Exp, where
increased levels of MI were observed (Supplementary Materials, Tables 4,

Fig. 3. Space fillingCβ atom models of proteins coloured by RCH and RD.
’Core’ residues are coloured red/yellow and ’surface’ residues blue/green
(rendered using RasMol).

6) along with RD vs. RCH (and 5). Frequent differences in class assignments
are observed for measures with greater than 0.20 MI.

To further highlight the distinction between RD and RCH, visualisations
of two space fillingCβ atom models of protein structures are shown in figure
3. The values for each measure were normalized and the colourassigned, in
both measures, to indicate values from ”exposed” (blue) to ”buried” (red).
These models provide visual confirmation that residue RCH assignments are
distinct to those for RD. Further examples are available in the Supplementary
Materials (Figures 1 and 2).

3 LEARNABILITY OF RCH AND OTHER
MEASURES

Having demonstrated that residue RCH is a new and distinct charac-
terisation of residue location, we turn to the predictability of these
measures and assess, in practical terms, which of these characterisa-
tions of residue location is easier to learn. Hence, potentially more
useful for PSP.

3.1 Prediction Experiments
Inputs to PredictionsFor each measure (RCH, RCHr, RD, SA and
Exp) predictions were made using six types of input information and
three levels of precision: two, three and five class partitions (Q2, Q3
and Q5). Table 5 summarises the six different types of input infor-
mation used for predictions of the measures studied. Combinations
of both local (neighbourhood of the target in the chain) and global
(protein-wise) information were used. A window of four residues
either side of the target residue has been shown to lead to high CN
predictive accuracy using LCS (Bacarditet al., 2006) and was used
in this study also to facilitate comparison of results. For each repre-
sentation (RCH, SA etc.) these inputs were labeled 1-6 in therest of
this paper, for example, RCH-3 denotes RCH predicted using input
dataset 3. For each measure a total of 18 datasets was evaluated (six
sets of input attributes each at three levels of class assignment). A
detailed description of these inputs appears in Stoutet al. (2007).
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Table 5. Datasets. For each dataset (1-6) the input information type
included in that dataset is indicated by•. The two types of local (target
and its closest neighbours) and three types of global (protein-wise)
input information were investigated are shown.

Dataset
Scope Input Information 1 2 3 4 5 6

Local
AA Types in Window of
target±4 residues

• • • • • •

Pred. Secondary Structure of
target

• • •

Global
Chain Length • •

Residue Frequencies • •

Pred. average of target measure • •

In order to determine the degree to which RCH and RCHr vary
in their learnability and capture properties of protein structures, in
what follows we use their unnormalized versions.

Predicted secondary structure information of the target residue
was obtained using the PSI-PRED predictor (Jones, 1999). This
consists the secondary structure type (helix, strand or coil) and a
confidence level ([0..9]) of the prediction.

For each measure, the average value of that measure was deter-
mined for each chain and ten pairs of training and test folds were
prepared. For each instance, the inputs were the chain length (one
integer value) and amino acid composition of each chain (20 real
values) and the target class was the measured average value for the
particular measure (partitioned into 10 classes using a uniform fre-
quency cut-point strategy). Cut-points were determined separately
for each training fold and used to assign classes to the values in
the corresponding training and test folds. The predicted average
value of the measure under consideration (termed PredAveRCH,
PredAveRD etc.) was predicted using the GAssist LCS (details
below) prior to preparation of the data sets for the full measure
predictions. 950 instances (chains) were used for trainingand 100
instances for testing. 10 iterations were performed for each pre-
diction using different random number seeds and the 10 rule sets
generated were combined as an ensemble using a majority voteto
predict the measure.

Class AssignmentsIn order to predict measures using classifi-
cation techniques, the calculated values for each measure were
partitioned into two, three and five classes (bins) here termed Q2,
Q3 and Q5 respectively. For imbalanced measures, such as SA,
a class boundary that leads to more balanced classes is traditio-
nally chosen, e.g. for SA a cut point of 25% is widely used. We
apply class balancing for all measures and levels of discretization
(Q2, Q3 and Q5) in this study, adopting a uniform frequency clas-
sification procedure. For our data, balanced classes for SA were
obtained using, for example, a cut point of 18%. Class boundaries
were determined individually for each training/test set pair using the
corresponding training fold. Details of the cut points usedare given
in the Supplementary Materials (Table 1).

Definition of the training and tests setsDatasets were divided ran-
domly into ten training and test set pairs (950 chains for training and
100 for testing), using bootstrap (Kohavi, 1995). We have placed a
copy of the datasets at www.infobiotic.net.

Table 6. Summary of the highest predictive accuraciesfor each
measure studied, in descending order of accuracy. Mean± s.d. for
ten fold cross validated predictions based on the input datasets that
gave the best results for each measure: namely type 4 or 6 (indicated
by ◦).

Alg C4.5 BioHEL GAssist Naive Bayes
RCHr 79.8±1.5 78.5±1.5 78.4±1.5◦ 77.9±1.7◦
RCH 77.3±1.0 75.9±1.2◦ 75.7±1.1 76.1±1.1◦
RD 76.0±0.4◦ 75.3±0.3 75.2±0.3◦ 75.1±0.4
Exp 73.9±1.4 72.8±1.6 72.5±1.4◦ 73.4±1.3◦
SA 73.3±0.3 72.2±0.4◦ 72.2±0.4◦ 72.3±0.4◦

Performance measuresDifferent protein chains have different
lengths and it is prediction accuracy on chains that is typically repor-
ted (Kinjoet al., 2005; Jones, 1999). Prediction accuracies for each
chain were, therefore, averaged to obtain the protein-wiseaccuracy
reported here.

Machine Learning MethodsWe use four different machine lear-
ning (ML) methods. The first two are popular ML systems taken
from the WEKA package (Witten and Frank, 2005): C4.5 (Quinlan,
1992), a decision tree rule induction system, Naive Bayes (John and
Langley, 1995), a Bayesian learning algorithm. Learning systems
belonging to the Learning Classifier Systems (LCS) (Hollandand
Reitman, 1978) class of ML techniques were also studied. These
systems are rule-based machine learning systems that employ evolu-
tionary computation (Holland, 1975) as the search mechanism. Two
LCS methods have been employed: GAssist (Bacardit, 2004) and
BioHEL (Bacarditet al., 2007) that implement different rule induc-
tion paradigms. A detailed description of both systems is included
in the Supplementary Material (Section 3.1).

Analysis of ResultsFor each experiment, the mean prediction
accuracy (as defined in section 2) over the test sets is reported. Stu-
dent t-tests were applied to the ten results from each experiment to
determine the best method for each dataset at a confidence level of
95%. Standard deviations and any significant differences are indi-
cated in each table. The conservative Bonferroni correction (Miller,
1981) for multiple pair-wise comparisons was applied.

In addition, the contributions of global input informationwere
assessed as follows: for each learning system and precision(Q2,
Q3 and Q5), the maximum of (Dataset4, Dataset6)-Dataset2 was
computed. As a base for the performance gap, the dataset with
predSS was used, because in certain situations the Dataset1per-
formed poorly, distorting the comparisons. Finally, the contribution
of predicted secondary structure was also assessed as follows: for
each learning system and number of states the value of the maxi-
mum of (Dataset2-Dataset1, Dataset4-Dataset3, Dataset6-Dataset5)
was determined.

3.2 Prediction Results
For each measure studied, Table 6 summarizes the best Q2 predic-
tive accuracy (in descending order) for each measure (usingthe best
possible input dataset in each case). Detailed results for the pre-
dictions are given in the Supplementary Materials (Tables 7- 10).
Predictive accuracy was higher on the two RCH based representa-
tions than on the SA, RD or Exp representation. The predictive
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accuracies for RCHr being statistically significantly higher than
those for the other measures (p-value=0.5).

For all representations, higher predictive accuracies were seen
when fewer classes were predicted (lower precision – Q2). Q5pre-
dictive accuracy for RCH was between 30% and 40%, Q3 was
approximately 20% higher, between 55% and 60% whilst for Q2
prediction accuracies exceeded 77%. The LCS’s performed best on
the RCHr representation when using input dataset RCHr-4. This
dataset combines local information (a window of residues around
the target and its predicted secondary structure) with global chain
information (chain length and chain residue composition).The more
compact RCHr-6 was frequently the most learnable dataset for
C4.5 and Naive Bayes. This dataset comprises local information
(window and predicted secondary structure) and global information
(predicted average RCHr of the chain).

3.3 Predicted RCH Improves CN Prediction

Table 7. Coordination Number prediction (by BioHEL) using amino-
acid sequence and various combinations of the predicted measures.•
indicates input information that leads to statistically significant increases
in predictive accuracy compared to the baseline CN1 inputs.The group of
best performing methods (H) all have statistically similar performance.

Dataset Protein-wise acc.
CN1 77.2±0.8
CN1+RD 77.4±0.8
CN1+RCHr 77.6±0.7
CN1+Exp 77.7±0.8
CN1+Exp+RCHr 77.7±0.7
CN1+RCH 78.5±0.9
CN1+RCH+RCHr 78.8±0.7•
CN1+Exp+RCH 78.9±0.8•
CN1+SA 78.9±0.8•
CN1+Exp+RCH+RCHr 78.9±0.7•
CN1+Exp+SA 79.1±0.8•H
CN1+Exp+SA+RCHr 79.1±0.8•H
CN1+SA+RCHr 79.1±0.8•H
CN1+SA+RCH 79.7±0.8•H
CN1+Exp+SA+RCH 79.8±0.8•H
CN1+SA+RCH+RCHr 79.8±0.8•H
CN1+Exp+SA+RCH+RCHr 79.8±0.7•H

Finally, we assess the utility of predicted RCH as an input to
prediction of other aspects of protein structure, specifically Coor-
dination Number (CN). For each of the measures studied, the Q5
predictions (using input dataset 4) made by BioHEL (which was, in
general, the best performing method) are fed back into prediction
of CN (Bacarditet al., 2006). The CN of a residue is a count of
the number of other residues from the chain that are located within
a certain threshold distance. Specifically, we have used theKinjo
et al. (2005) definition of CN. We predict whether the CN of a resi-
due is above or below the midpoint of the CN domain, using as input
information the AA type of a window of±4 residues around the tar-
get (equivalent to the first set of input attributes used to predict the
other features),CN1.

The contribution of SA, Exp, RCH and RCHr to CN prediction
(individually and in combination with one another) was evaluated
by extending the CN1 dataset with 16 combinations of input attri-
butes that correspond to all combinations of these measures. Using
predicted RD as input gave the lowest improvement (0.2%) over the
CN1 (local window) input alone and was, therefore, not included
in predictions made with combinations of inputs. Table 7 shows the
results of these experiments. As a baseline, the performance of the
original CN1 is included. The table has been sorted by accuracy to
help identify the combinations of predicted measures that give the
biggest performance boost.

The results of these experiments were analyzed using pairedt-
test with 95% confidence level and the Bonferroni correction. Two
types of results were identified: the datasets in which BioHEL per-
formed significantly better than when learning from CN1 (marked
with a •) and the (statistically indistinguishable) group of datasets
that resulted in the highest predictive accuracies are indicated (H).

There are two groups of measures: those that only provide a
small performance boost over CN1 (RD, Exp and RCHr), and others
that provide a larger boost (SA and RCH). Furthermore, combining
Exp and RCHr (together and with other measures) only marginally
improves the performance, indicating that these measures are mostly
redundant (consistent with the observed increase in MI between
these two measures, table 4). On the other hand, combining SA
and RCH resulted in much better accuracy, showing that thesemea-
sures complement each other. The best combinations of measures
(Exp+SA+RCH, SA+RCH+RCHr and Exp+SA+RCH+RCHr) lead
to a performance increase of 2.6% over the baseline CN1 dataset.

4 DISCUSSION

4.1 Prediction Results
The results show some general trends across all measures studied
and all learning methods. Predictive accuracy is increasedwhen
richer input information is employed. Inclusion of local informa-
tion in the form of predicted secondary structure typicallyleads to
an increase in Q2 predictive accuracy of 2-3% on most datasets for
the learning systems used, whilst using global protein information
(chain length and composition) can boost Q2 predictive accuracy by
more than 10% (in the case of RCH and RCHr). The type 3 and 4
datasets, containing 21 real valued global protein attributes, in par-
ticular present a considerably larger search space, and themixture
of real-valued and nominal attributes makes the learning problem
more difficult than for purely nominal knowledge representations.
The type 5 and 6 datasets use less attributes than the type 3 and 4
datasets enabling the LCS’s to generate rule sets that are more easily
interpreted. The RCHr representation was the most predictable mea-
sure this resulting from use of input dataset 4 (chain composition
and length information) and the BioHEL LCS. C4.5 performed best
when using datasets 4 and 6, benefiting from predicted local and glo-
bal information. Naive Bayes generally performed best whenusing
the more compact dataset 6.

There were interesting differences between these representa-
tions of residue location; RCH was easier to learn than the other
representations perhaps due to this representation correctly assi-
gning classes to residues for anisotropic (elongated) structures. For
such structures, the Exp representation may assign some surface
residues to the buried class and some buried residues to the exposed
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class. Similarly, RCH was more predictable than SA; assignment of
residues deep within structures but on the surface of cavities (high
solvent accessibility) to the exposed class may have lowered the
predictability of the SA representation.

RD was more predictable than SA and Exp but was not as easily
predicted as RCH and RCHr. As SA emphasises buried residues,so
RD emphasises exposed residues. The highly imbalanced nature of
the RD measure (Supplementary Materials, Figures 5 and 6) leads
to imbalanced class assignments even when using a uniform fre-
quency cut-point strategy (Supplementary Materials, Table 2). This
imbalance is likely to have made this measure relatively more dif-
ficult to learn. Furthermore, when fed back as inputs for prediction
of CN, RD in particular provided little additional information over
the CN1 inputs resulting in only marginal improvements in CN
prediction. Prediction accuracy for all measures is likelyto be boo-
sted by including additional (e.g. non-local) input information. For
example, 79.3% ten-fold cross validated accuracy has been reported
for two state SA prediction at a 25% cut point using an integra-
ted system of neural networks (Dor and Zhou, 2007) with position
specific scoring matrices and a range of other input data.

4.2 ”White Box” Prediction: Interpretable Analysis
and Performance Considerations

Understanding the basis on which a prediction is made may be more
valuable than making relatively accurate predictions in a blind man-
ner. Decision trees can be interpreted, however, on these problems
C4.5, produced pruned trees that ranged in mean size from 1068
(sd=331) to 138977 (sd=2735) nodes limiting their explanatory
value. Naive Bayes, on the other hand, generates compact soluti-
ons, however, these are probabilistic models that have no immediate
physico-chemical interpretation. In contrast, it is much easier to
relate the compact rule sets evolved by the LCS algorithms tothe
underlying physical and chemical properties of proteins. The fol-
lowing is an example of a rule set evolved by the GAssist LCS
that produced 71.2% two state predictive accuracy on the RCH-6
dataset.

1. If PredSSConf < 7.5 andPredAveAtt > 8.64 andRes
−4 /∈ {K, x}

andRes
−2 /∈ {x} andRes /∈ {D, E, K, N, Q} andRes+1 /∈ {x} and

Res+2 /∈ {K} andRes+4 /∈ {x} → class is 1

2. If PredSS /∈ {C} andPredAveAtt > 4.8 andRes
−4 /∈ {E, Q} and

Res
−3 /∈ {D, T} and Res

−2 /∈ {E} and Res
−1 /∈ {D, P, V } and

Res /∈ {D, E, H, K, N, P, Q, R, T} andRes+1 /∈ {x} andRes+2 /∈

{H} andRes+3 /∈ {K} andRes+4 /∈ {E, K, Q, R, x} → class is 1

3. If PredSS /∈ {C} and PredAveAtt > 4.8 and Res
−4 /∈

{E, R} and Res
−3 /∈ {D, E} and Res

−1 /∈ {P, W} and Res /∈

{A, D, E, K, N, P, Q, R} andRes+1 /∈ {W, x} andRes+2 /∈ {V, W}

andRes+3 /∈ {K, R} andRes+4 /∈ {K, x} → class is 1

4. If PredSS ∈ {E} andPredAveAtt > 4.5 andRes
−4 /∈ {C, K, x} and

Res
−3 /∈ {R} andRes

−2 /∈ {K, R} andRes
−1 /∈ {D, Q, S, x} and

Res /∈ {E, F, K, M, R, T} andRes+1 /∈ {F, L, x} andRes+2 /∈ {K}

andRes+3 /∈ {C} andRes+4 /∈ {x} → class is 1
....
Default class is 0

The rule set structure is a decision list, rules are tested inorder
starting with the first and rule evaluation continues until amatch
is found or the default (last) rule is reached. This rule set comprised
15 rules, the first four rules are shown (the full rule set is shown
in the Supplementary Materials, Section 4.3). In the first rule, the
confidence level of the secondary structure prediction is tested then
the predicted average value for the property under consideration
(predicted average RCH> 8.64). Subsequent predicates test the

amino acid types of residues surrounding the target in the sequence.
AA±M means the amino acid type of the residue at position±M

in respect to the target residue. Amino acids are represented by their
one letter code, plus the symbolx representing positions after the
start/end of the chain, for cases where the window of neighbouring
residues overlaps the beginning or the end of the chain. For positions
relative to the target residue (eg.Res−2) these predicates restrict
the amino acid types for the residue at that position (membership or
non-membership of a set). In subsequent rules, the predicted Secon-
dary Structure class (PredSS) of the target residue; eitherHelix (H),
Sheet (E) or Coil (C) is tested. In many cases, the target residue
type is largely restricted to hydrophobic residues that areoften found
buried in the protein core and, therefore, have higher RCH numbers.
The LCS has correctly identified this, predicting the above average
RCH class (1) for these residues.

The accuracy, simplicity and interpretability of the rule sets
generated by the LCS’s must, however, be balanced against the
computational expense needed to generate them. Run times for the
learning phase of the BioHEL algorithm ranged from three minu-
tes on the smaller input datasets to almost seven hours on thelarger
ones. In contrast, the worst case for C4.5 was 32 minutes and for
Naive Bayes was less than one minute. Moreover, for each problem
set, the LCS algorithms, BioHEL and GAssist, were run multiple
times to produce ten classifiers for input to the ensemble procedure.
Once trained, however, run times for the resulting classifiers on the
entire test set was around two minutes for C4.5 and Naive Bayes
but less then one minute for the LCS’s, an indication, for instance,
of how these LCS evolved classifiers would perform as part of a
prediction web server.

5 CONCLUSIONS
In this paper, a new measure of residue location in folded protein
chains, the recursive convex hull (RCH), was introduced. RCH is
a parameterless, simple to compute and mathematically rigorous
method that situates residues in layers within protein structures.
We show that RCH is distinct to other widely studied measures
of residue location and that RCH distinguishes a range of degrees
of residue burial/exposure, correlates better with residue conserva-
tion and changes in protein stability under mutation than measures
such as solvent accessibility, residue depth or residue distance from
chain centroid.Further, we assess the predictability of these mea-
sures using three types of machine learning technique: decision
trees (C4.5), Naive Bayes and Learning Classifier Systems (LCS),
employing a range of predictive inputs. We show that an LCS that
employs iterative rule learning, BioHEL, predicts RCH at 77.3%,
60.6% and 39.0% accuracy for Q2, Q3 and Q5, respectively. We
present examples of the competent yet simple and interpretable
LCS classification rules, showing how they relate to the underlying
physical and chemical properties of the residues. As an exemplar
application of predicted RCH class (in combination with other mea-
sures) we show that prediction of contact number can be improved
by up to 2.6%.
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