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Abstract. This paper introduces the use of multi-objective evolution-
ary algorithms in multiple instance learning. In order to achieve this pur-
pose, a multi-objective grammar-guided genetic programming algorithm
(MOG3P-MI) has been designed. This algorithm has been evaluated
and compared to other existing multiple instance learning algorithms. Re-
search on the performance of our algorithm is carried out on two well-
known drug activity prediction problems, Musk and Mutagenesis, both
problems being considered typical benchmarks in multiple instance prob-
lems. Computational experiments indicate that the application of the
MOG3P-MI algorithm improves accuracy and decreases computational
cost with respect to other techniques.

1 Introduction

Multiple instance learning, or multi-instance learning (MIL) introduced by Di-
etterich et al. [I] is a recent learning framework which has stirred interest in
the machine learning community. In this paradigm, instances are organized in
bags (i.e., multisets) and it is the bags, instead of individual instances, that are
labeled for training. Multiple instance learners assume that every instance in
a bag labeled negative is actually negative, whereas at least one instance in a
bag labeled positive is actually positive. Note that a positive bag may contain
negative instances.

Since its introduction, a wide range of tasks have been formulated as multi-
instance problems. Among these tasks, we can cite content-based image retrieval
[2] and annotation [3], text categorization [4], web index page recommendation
[Bl6] and drug activity prediction [7U8]. Also, a variety of algorithms have been
introduced to learn in the multi-instance setting. Some of them are algorithms
designed from scratch [II78], while others [49ITOTTIT2IT3IT4] are based on well-
known supervised learning algorithms. In this sense, the work of Zhou [I5] is
relevant in that it shows a general way in which supervised learners can be
turned into multi-instance learners by shifting their focus from a discrimination
on instances to the discrimination on the bags.

In this paper, we introduce a multi-objective grammar guided genetic pro-
gramming algorithm designed to handle MIL problems. Our main motivations
with this are: (a) genetic programming that allows a rule based classifier to be
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generated (well known are the exceptional properties of these systems with re-
spect to the comprehensibility and clarity of the knowledge being discovered)
and (b) multi-objective strategy solutions that represent a tradeoff between dif-
ferent rule quality measurements, which is more interesting than maximising one
individual measurement. As we will see, our algorithm (MOG3P-MI) generates
a simple rule based classifier that increases generalization ability and includes
interpretability and clarity in the knowledge discovered. Experiments are carried
out by solving two well-known examples of drug activity prediction, Musk and
Mutagenesis, which have been extensively used as benchmarks in evaluating and
comparing MIL methods. Results show that this approach improves accuracy
considerably with respect to existing techniques used to date.

The rest of this paper is organized as follows. Section 2 describes the proposed
MOG3P-MI algorithm. Section 3 reports on experimental results. Finally, section
4 presents the conclusions and future work.

2 Multi-objective Genetic Programming for
Multiple-Instance Learning

In this section we specify different aspects which have been taken into account
in the design of the MOG3P-MI algorithm: individual representation, genetic
operators and fitness function. With regard to the evolutionary process, our
algorithm is based on the well-known Strength Pareto Evolutionary Algorithm 2
(SPEA2) [16] and, for this reason, no explanation about how it works is included.

2.1 Individual Representation

An individual consists of two components, a genotype which is encoded as tree
structures with limitations in tree depth to avoid too large a size, and a phenotype
which represents the full rule with antecedents and consequences. The antecedent
consists of tree structures and represents a rule which can contain multiple com-
parisons attached by conjunction or disjunction, while the consequence specifies
the class for the instance that satisfies all the conditions of the antecedent. To
carry out the classification of the bags of instances, we use the formal definition
of multi-instance coverage given by [15]. We consider that the possible value of
the consequence is always the positive class, that is, all individuals are classified
in the positive class and all examples that do not satisfy the individuals rule set
are implicitly classified as belonging to the negative class.

We use a grammar to enforce syntactic constrains and satisfy the closure
property (see Figure [I). This grammar mantains syntactical and semantic con-
straints in both the generation of individuals in the initial population and the
production of new individuals via crossover.

2.2 Genetic Operators

The elements of the next population are generated by means of two operators:
mutation and crossover.
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antecedent -> comparison
‘OR comparison antecedent

‘AND comparison antecedent

comparison -> comparatorNumerical valuesToCompare
comparatorCategorical valuesToCompare

comparatorNumerical -> <

| >

comparatorCategorical -> CONTAIN
NOT_CONTAIN

valuesToCompare -> attribute value

Fig. 1. Grammar used for individual representation

Mutation. The mutation operator can be applied to either a function node or
a terminal node. A node in the tree is randomly selected. If the chosen node is a
terminal it is simply replaced by another terminal. If it is a function, there are
two possibilities with the same likelihood: (a) the function is replaced by a new
function with the same arity and, (b) a new function node (not necessarily with
the same arity) is chosen, and the original node together with its relative sub-
tree is substituted by a new randomly generated sub-tree. If the new offspring
is too large, it will be eliminated to avoid having invalid individuals.

Crossover. The crossover is performed by swapping the sub-trees of two parents
between two compatible points randomly selected in each parent. Two tree nodes
are compatible if their operators can be swapped without producing an invalid
individual according to the defined grammar. If any of the two offspring is too
large, they will be replaced by one of their parents.

2.3 Fitness Function

The fitness function evaluates the quality of each individual according to two
indices that are normally used to evaluate the accuracy of algorithms in clas-
sification problems [I7/18]. These are sensitivity and specificity. Sensitivity is
the proportion of cases correctly identified as meeting a certain condition and
specificity is the proportion of cases correctly identified as not meeting a certain
condition. A value of 1 in both measures represents a perfect classification.

tn . tp
—_— sensitivity = ———
tn+ fp tp+ fn

speci ficity = (1)
Where tp is the number of positive bags correctly predicted, ¢n is the number
of negative bags correctly predicted, fp is the number of positive bags incorrectly
predicted and fn is the number of negative bags incorrectly predicted.
Our fitness function combines these two indicators and the goal is to maxi-
mize them at same time. These measures are relationed, that is, there is a tradeoff
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between sensitivity and specificity (any increase in sensitivity will be accompa-
nied by a decrease in specificity).

3 Experiments and Results

Our experiments are aimed to evaluate our proposed algorithm as compared to
other classification techniques. Experimental results were estimated by 5 runs
of 10-fold cross-validation with five different seeds for each partition and the
average values of accuracy are reported in the next sections.

3.1 Datasets and Running Parameters

Experiments have been made on a drug activity prediction problem which is
the most famous application for MIL. We discuss two datasets, Musk and Mu-
tagenesis which are available at hitp://www.cs.waikato.ac.nz/ml/milk. The key
properties of these datasets are shown in Table [l

Table 1. Characteristics of the Musk and Mutagenesis datasets

Musk Mutagenesis
Data Set Muskl  Musk2 Easy  Hard
Number of bags 92 102 188 42
Number of positive bags 47 39 125 13
Number of negative bags 45 63 63 29
Number of instances 476 6598 10486 2132

These datasets are the most popular ones in the MIL domain, especially Musk.
Every MIL algorithm developed so far has been tested using this problem. There-
fore, we evaluated our algorithm based on these datasets.

The parameters used in all MOG3P-MI runs were: population size: 1000, ex-
ternal population size: 50, generations: 100, crossover probability: 95%, mutation
probability: 15%, selection method for both parents: binary tournament selection
with replacement, maximum tree depth: 15. The initial population was generated
using the ramped-half-and-half method. The algorithm has been implemented
in the JCLEC framework [19].

3.2 Comparison with Other Algorithms

Solving the Musk Problem. Comparisons are made with previous algorithms
that include the ones specially designed for attacking the multiple-instance prob-
lem, as ITERATED-DISCRIM-APR. which is the best of the four APR algo-
rithms reported in [I], TILDE which is a top-down induction system for learning
first order logical decision tree [20], CITATION-KNN [II] which is a variant of k
nearest neighbour algorithm, RIPPER and RIPPERMI [21] which are a generic
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Table 2. Summary results for Musk dataset

Muskl Musk?2

Algorithm Acc  Acc
MOG3P-MI 0.93 0.93
ITERATED-DISCRIM-APR 092 0.89
CITATION-KNN 092 0.86
DIVERSE DENSITY 0.89 0.82
RIPPERMI 0.88 0.77
NAIVE-RIPPERMI 0.88 0.77
TILDE 0.87 0.79
SVM 0.87 0.83

extension to propositional rule learners to handle multiple-instance data, Diverse
Density [22] which is one of the most popular algorithms and MI-SVM [4] which
is the best approach of support vectorial machines for MIL.

Table 2] shows a summary with the average values obtained by the different
algorithms for each association of datasets. The results of the different algorithms
are taken from [4] and [21].

In the Muskl dataset, the hypotheses generated by MOG3P-MI contain an
average of eight literals. These results are more accurate than those of other
techniques which also generate interpretable knowledge. Moreover, the results are
better than models which are not directly interpretable and have been specifically
designed for this learning task, as ITERATED-DISCRIM-APR algorithm. The
following is an example of rules generated by our algorithm.

IF ( (f10 > -220.8815) N (f7 > 35.2688) N (f163 < 199.6827)

A (f55 > -84.9990) N (f134 > -216.0463) N (f34 > -216.1496)

A ((f128 < 18.1158) V (f140 > 13.6820) V (f136 > -78.2625) ) )
THEN Molecules have a musky smell.
ELSE Molecules have not a musky smell.

In the Musk2 dataset, MOG3P-MI obtains an accuracy of 93%, which is far
from the results found with the other techniques. This dataset has more bags and
more instances by bags than in Muskl. However, our algorithm is not affected
by these characteristics, and again it obtains the best results with respect to the
rest of the techniques, these being comparable to those obtained in Muskl.

Solving the Mutagenesis Problem. The results of MOG3P-MI are com-
pared to learners able to generate comprehensible hypotheses like PROGOL
[23], FOIL and TILDE [20]. Also, we compare them to propositional rule learn-
ers, RIPPERMI [21] and NAIVE-RIPPERMI [2]]. Table Bldisplays the accuracy
of MOG3P-MI, as well as the accuracy of five popular learners explained previ-
ously. The results of the different algorithms are taken from [21].

The best accuracy was obtained using Mutagenesis-hard which uses individual
atoms and global molecular features that are highly correlated with the activity
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Table 3. Summary results for Mutagenesis dataset

Mutagenesis-easy Mutagenesis-hard

Algorithm Acc Acc
MOG3P-MI 0.84 1.00
RIPPERMI 0.82 0.91
NAIVE-RIPPERMI 0.78 0.91
TILDE 0.77 0.86
PROGOL 0.76 0.86
FOIL 0.61 0.83

of the molecule. For this dataset, the other techniques obtain a good perfor-
mance, but the best results are obtained by MOG3P-MI which obtains a perfect
classification.

In a Mutagenesis-easy dataset, the accuracy of all the techniques fell. Never-
theless, our algorithm got the best results on the other ones. Thus, we can say
that MOG3P-MI is competitive in terms of predictive accuracy, with respect to
other learners. In addition, the induced hypotheses are concise, they contain an
average of seven literals. The following is an example of the rule generated by
our algorithm.

IF ( (element2 = 7.0) A\ (chargel > -0.4862) A (charge2 < -0.5673) A
( (quantal # 9.0) V (charge2 > -0.3719) ) )

THEN Molecules have mutagenic activity.

ELSE Molecules do not have a mutagenic activity.

4 Conclusion and Future Work

The problem of MIL is a learning problem which has raised interest in the
machine learning community. This problem is encountered in contexts where
an object may have several alternative vectors to describe its different possible
configurations.

In this paper, we describe the first attempt to apply multi-objective gram-
mar guided genetic programming for multiple instance learning. MOG3P-MI is
derived from the traditional G3P method and the SPEA2 multiobjective al-
gorithm. Experiments on the Musk and Mutagenesis datasets show that our
approach obtains the best results in terms of accuracy in the rest of the existing
learning algorithm. Added to this are the benefits of interpretability and clarity
in the knowledge discovered which provides a rule based system. The experi-
mental study shows the success of our approach. However, further optimization
is possible: issues such as the stopping criterion, the pruning strategy, and intro-
duction of a third objective to improve the simplicity of obtaining easier rules
would be an interesting issue for future work.
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