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ABSTRACT OF THE DISSERTATION 

The Effect of Small Disjuncts and Class Distribution on Decision 
Tree Learning 

by Gary Mitchell Weiss 

Dissertation Director: Haym Hirsh 

The main goal of classifier learning is to generate a model that makes few misclassifica-

tion errors.  Given this emphasis on error minimization, it makes sense to try to under-

stand how the induction process gives rise to classifiers that make errors and whether we 

can identify those parts of the classifier that generate most of the errors.  In this thesis we 

provide the first comprehensive studies of two major sources of classification errors.  The 

first study concerns small disjuncts, which are those disjuncts within a classifier that 

cover only a few training examples.  An analysis of classifiers induced from thirty data 

sets shows that these small disjuncts are extremely error prone and often account for the 

majority of all classification errors.  Because small disjuncts largely determine classifier 

performance, we use them as a "lens" through which to study classifier induction. Factors 

such as pruning, training-set size, noise and class imbalance are each analyzed to deter-

mine how they affect small disjuncts and, more generally, classifier learning. 

The second study analyzes the effect that rare classes and class distribution have on 

learning.  Those examples belonging to rare classes are shown to be misclassified much 

more often than common classes.  The thesis then goes on to analyze the impact that 
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varying the class distribution of the training data has on classifier performance.  The ex-

perimental results indicate that the naturally occurring class distribution is not always 

best for learning and that a balanced class distribution should be chosen to generate a 

classifier robust to different misclassification costs.  It is often necessary to limit the 

amount of training data used for learning, due to the costs associated with obtaining and 

learning from this data. This thesis presents a budget-sensitive progressive-sampling al-

gorithm for selecting training examples in this situation. This algorithm is shown to pro-

duce a class distribution that performs quite well for learning (i.e., is near optimal). 
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Chapter 1 

Introduction 

"Errors to be dangerous must have a great deal of truth mingled with them"  

 - Sydney Smith 

A general goal of classifier learning is to generate a model, based on training data, which 

makes as few errors as possible when classifying new, previously unseen, examples.  

Given this emphasis on minimizing the number of classification errors, it makes sense to 

try to understand how the induction process gives rise to classifiers that make errors and 

whether these errors have any structure to them.  That is, can we identify the portions of a 

classifier, or aspects of a learning problem, that lead to most of the classification errors?  

In this thesis we demonstrate that the answer is “yes”.  Because it is difficult to study 

classifier induction in general, in this thesis we focus our attention primarily on one 

popular class of learners—decision tree learners (some results are also presented for rule 

learners).  

Two major sources of classification errors are identified and studied in depth.  The 

first source of errors are those learned classification rules that are generated from rela-

tively few training examples (called small disjuncts).  These rules are shown, in many 

cases, to contribute most of the classification errors, even though they classify relatively 

few examples.  The second source of errors are rare, or underrepresented, classes.  Do-

mains with rare classes prove to be difficult for induction systems.  While this problem is 
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associated with a characteristic of the learning problem, there is a structure to the errors.  

In particular, classification rules predicting the rare class tend to be very error prone and 

most classification errors occur when classifying examples belonging to the rare class.  

The first source of errors is studied in Chapters 3 - 5 while the second source of errors is 

studied in Chapters 6 - 9. 

These two sources of errors are investigated empirically, by analyzing the classifiers 

induced from a large set of benchmark data sets.  Each of these two studies begins by 

measuring, or quantifying, the extent to which these sources are responsible for misclassi-

fication errors.  The results confirm that these sources of errors really do account, in 

many cases, for the majority of all errors.  Each of the two studies then analyzes the re-

sults in order to determine the structure of the problem and then proceeds to explain the 

phenomena, drawing on some basic theory. 

Each study then conducts additional experiments in order to better understand the 

source of the errors are how various factors contribute to these errors.  For the first study, 

factors such as the pruning strategy, amount of noise, training-set size and class imbal-

ance are varied in order see how these factors affect the distribution of errors in the in-

duced classifier, and, in particular, how they affect the classification rules that are gener-

ated from few training examples.  These results provide insight into how each of these 

important factors affects inductive learning.  The second study varies the class distribu-

tion of the training data.  These experiments show how changing the class distribution of 

the training data affects the ability of the learner to classify examples belonging to the 

rare and common classes, and, more importantly, how this affects overall classifier per-
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formance.  This enables us to identify and characterize the class distribution that is best 

for learning. 

This chapter is organized as follows.  It begins by providing a brief overview of classi-

fier induction and decision tree induction, focusing on those aspects of learning that are 

essential to the thesis.  The motivations for studying small disjuncts and class distribution 

are then discussed.  This is followed by a summary of the main contributions of the the-

sis.  An outline of the remainder of the thesis is then presented. 

1.1 Overview of Classifier Induction 

Inductive learning involves forming generalizations from specific examples.  Classifier 

induction, also referred to as classifier learning, is a type of inductive learning that takes a 

set of labeled training examples and induces a classifier that can classify unlabeled train-

ing examples.  Classifier induction plays a central role in machine learning and has many 

practical and diverse applications—it can be used to identify fraudulent transactions 

(Fawcett & Provost, 1997), predict telecommunication faults (Weiss & Hirsh, 1998) and 

automatically categorize news articles (Glover, Tsioutsiouliklis, Lawrence, Pennock & 

Flake, 2002). 

The goal of classifier induction is to learn the true, or target, concept that underlies the 

data. Except for artificially generated data sets, the target concept is generally not known.  

A simple example will be used to demonstrate the basics of classifier induction.  This ex-

ample has to do with classifying an animal into one of two classes: bird or not-a-bird.  In 

this example, the target concept bird might be defined by an ornithologist and hence be 

known.  This target concept could be represented in many ways. A rule-based representa-

tion is used to represent the target concept in Figure 1.1.  The rules are executed in order 
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and classification is made based on the first rule for which the left side evaluates to true.  

The third rule is a default rule that classifies the animal as not-bird. 

 
1) flies(x) ∧ feathers(x) ∧ has-beak(x) ∧ lays-eggs(x) => bird(x) 

2) wings(x) ∧ IOLHV�[��∧ has-beak(x) ∧ lays-eggs(x) => bird(x) 

3) not-bird(x) 

Figure 1.1: Target Concept for bird 

One might be given a classified list of animals, with descriptions, and asked to gener-

ate a classifier for the concept bird based only on these training examples.  Such a list of 

examples is provided in Table 1.1, where each column represents an attribute that de-

scribes the animal.  Note that in this case the animals are represented using attribute-

value pairs rather than predicates, but for our purposes these two methods are equivalent.  

Note, however, that several additional pieces of information are introduced in Table 1.1: 

name, milk (i.e., produces milk), hair/fur, and air (i.e., breathes air).  The last column 

specifies the classification.  In this case the class value is not restricted to bird or not-

bird, but we will assume that all values not equal to bird will be replaced with not-bird. 

name flies milk lays-eggs hair/fur air feathers wings class 
pigeon yes no yes no yes yes yes bird 
wasp yes no yes no yes no yes insect 
lion no yes no yes yes no no mammal 
eagle yes no yes no yes yes yes bird 
catfish no no yes no no no no fish 
cardinal yes no yes no yes yes yes bird 
ostrich no no yes no yes yes yes bird 

Table 1.1: Training data for Concept “Bird” 
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The training data described in Table 1.1 might lead to the classifier in Figure 1.2.  This 

classifier is represented using a decision tree.  Examples are labeled by starting at the root 

node of the decision tree and proceeding to a leaf, which contains the class label.  The 

path that is taken is determined by evaluating the conditions at the internal nodes, using 

the data associated with the example.  This classifier correctly classifies all of the training 

examples in Table 1.1.  Note that there are many possible decision trees that could be 

formed from the data in Table 1.1 and that the classifier shown in Figure 1.2 is by no 

means the simplest, or best.  In fact, the entire right sub-branch could be pruned, since all 

animals that do not breathe air belong to not-bird. 

 

 

 

 

 

 

 

 

 

Figure 1.2: Classifier for Concept “Bird” 

In general, the learned concept and the target concept are not the same—the learned 

concept is only an approximation of the target concept.  To see this for the example just 

described, note that if the presence or absence of a beak were necessary to distinguish 

between bird and not-bird, then the classifier would yield an incorrect classification. 
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One way to categorize classifier induction systems is by the structure, or language, 

used to represent the induced classifier.  The above example uses a decision tree, but 

other common learners represent the learned classifier using sets of classification rules, a 

neural network, or, in the case of instance-based learning, a set of labeled examples with 

an associated similarity metric. 

Many classifiers operate by explicitly partitioning the instance space into regions and 

associating a class with that region.  Thus, any examples that fall into that region are as-

signed the designated class.  Decision tree learners and rule learners are two types of 

learners that generate classifiers that operate in this manner.  For a given class, each re-

gion associated with that class can be considered a subconcept of the concept associated 

with that class.  For example, the concept bird in Figure 1.2 can be expressed as: 

bird = (air:yes ∧ flies:yes ∧ feathers:yes) ∨ (air:yes ∧ flies:no ∧ wings:yes) 

  This concept is formed from two subconcepts, which could be assigned the descrip-

tive names flying-bird and grounded-bird, respectively, since the first represents birds 

that fly and the second one represents birds that do not fly.  Each of these subconcepts 

may be viewed as a disjunct.  Similarly, each leaf in a decision tree may be considered a 

disjunct.  Throughout this thesis we use the term disjunct exclusively to refer to subcon-

cepts defined by the learned classifier, not the target concept. 

One can talk about the size of a subconcept based on the number, or proportion, of ex-

amples that is covers, given some distribution of examples, D.  We call subconcepts that 

will cover many examples (i.e., define a region in the instance space that covers many 

examples from the distribution D) a large subconcept while we call subconcepts that will 

cover relatively few examples a small subconcept.  One subconcept is smaller than an-
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other if, based on D, it is expected to cover fewer examples.  Note that the size of a sub-

concept is determined not only by the size of the region it covers, but also by D.  

Holte, Acker & Porter (1989) define the size of a disjunct as the number of training 

examples that the disjunct correctly classifies.  Given the discussion of the size of a sub-

concept, there are two important things to note.  First, the size of a disjunct is defined in 

terms of the training data, rather than the distribution D.  This is required because D is 

typically not known.  Secondly, the size of a disjunct is defined in terms of the number of 

correctly classified training examples, not the total number of training examples classi-

fied. This definition of disjunct size is used in previous research on small disjuncts and is 

used throughout this thesis. 

Applying this definition of disjunct size to the bird example, we see that the disjunct 

representing flying-bird in Figure 1.2 has a disjunct size of three, since it correctly classi-

fies pigeon, cardinal, and eagle, while the disjunct representing grounded-bird has a dis-

junct size of one, since it only classifies ostrich.   

Previous research has shown that large subconcepts in a target concept will often re-

sult in large disjuncts in the learned classifier, just as small subconcepts in the target con-

cept will often result in small disjuncts in the learned classifier (Weiss, 1995).  However, 

the correspondence is not normally as clear as it is in the simple example presented.  As 

we show in Chapter 3, the bias and expressive power of a learner affects the formation of 

small disjuncts.  Previous research (Weiss, 1995; Weiss & Hirsh, 1998) also suggests that 

other factors, such as noise and training-set size may affect the formation of small dis-

juncts. 
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Every data set, or domain, has an associated class distribution, which measures the 

proportion of examples belonging to each class.  In the training data in Table 1.1, the 

class distribution is 4 examples of class bird to 3 examples of class not-bird.   In this 

case, the classes are relatively well balanced.  However, in many real-world data sets 

classes are often highly unbalanced.  In such a situation classes we refer to classes that 

are severely underrepresented as rare classes. 

We can also talk about the class distribution of a domain, rather than the distribution 

of a specific data set.  In the bird example, based on other information we might know 

that the underlying, or naturally occurring, class distribution is actually 1:1 instead of 4:3.  

If this were the case, the training data would not be representative of the true, underlying, 

distribution.  Given that most induction algorithms assume by default that the training 

data mimics the naturally occurring distribution, this will cause a problem.  As we show 

later on, such differences in distribution must be taken into account. 

1.2 Motivation 

There are a variety of reasons for studying small disjuncts and class distribution.  While 

some of these reasons were briefly mentioned toward the beginning of this chapter, the 

benefits of studying small disjuncts and class distribution are more fully discussed in this 

section. 

1.2.1 Why Study Small Disjuncts? 

A number of studies (Holte, Acker & Porter, 1989; Ali & Pazzani, 1992; Danyluk & Pro-

vost, 1993; Weiss, 1995; Weiss & Hirsh, 1998; Carvalho & Freitas, 2000) have shown 

that small disjuncts have a much higher error rate than large disjuncts, cover a significant 
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portion of the test examples and contribute a significant, and disproportionate, percentage 

of all test errors.  This phenomenon has been referred to as “the problem with small dis-

juncts”.   Therefore, as discussed earlier, one reason to study small disjuncts is because 

they largely determine—and limit—the performance of the induced classifier. 

A second, but related reason for studying small disjuncts is to provide a better under-

standing of how they affect learning.  Factors such as pruning, training-set size, noise and 

class distribution are each analyzed to see how they impact small disjuncts, and, more 

generally, the distribution of errors with respect to disjunct size.  The reasons for studying 

how these factors affect small disjuncts is not only to better understand small disjuncts 

and their role in learning, but to gain insight into each of these factors and how they af-

fect learning.  Thus, in this thesis small disjuncts are used as a lens through which to view 

machine learning. 

The final motivation for studying small disjuncts is to learn how to address the prob-

lem with small disjuncts.  That is, can a better understanding of small disjuncts lead to a 

method for reducing the error rate of the examples that would normally be classified by 

the small disjuncts?  This better understanding appears to be necessary since past efforts 

to address the problem with small disjuncts, which are described in Chapter 5, have 

largely failed.  

1.2.2 Why Study Class Distribution? 

There are two major reasons for studying the effect that the class distribution of the train-

ing data has on classifier learning.  The first reason is to provide a better understanding of 

the role of class distribution in learning.  The improved understanding provided in this 
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thesis will permit us to answer the following important questions, many of which are of 

direct, practical, importance: 

• How does class imbalance affect learning?  

• Does class imbalance make learning more difficult or easier?  

• Why are minority class examples harder to classify than majority class examples? 

• What are the implications of changing the class distribution of the training data?  

Also, how does one account for alterations made to the class distribution of the 

training data? 

• What distribution is best for learning?  Can we characterize such an “optimal” 

distribution?  If so, can we provide useful guidelines? 

The second motivation for studying class distribution concerns how to choose the 

class distribution of the training data, when the amount of training data must be limited 

due to costs associated with procuring the data or learning from the data.  In this case, the 

questions addressed in this thesis are: 

• When the amount of training data must be limited to n examples, what is the best 

class distribution for learning? 

• Given that only n training examples are permitted, how does one go about choos-

ing n examples such that the resulting class distribution performs well (i.e., near 

optimally)? 
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1.3 Contributions 

This thesis makes several major contributions.  First, existing studies on small disjuncts 

and class distribution and their effect on classifier learning has been ad-hoc and has con-

sidered only a few data sets.  Because of this, general conclusions were not possible and 

the impact of small disjuncts and class distribution on learning, in general, could not be 

assessed.  Thus, one contribution of this thesis is that it provides a thorough empirical 

study of small disjuncts and class distribution that analyzes a large number of data sets in 

a principled manner.  This makes it possible, for the first time, to quantify the impact that 

small disjuncts and class distribution have on learning.  For small disjuncts, this analysis 

is greatly facilitated by the introduction of a new metric, error concentration, which 

makes it feasible, for the first time, to compare the distribution of errors (by disjunct size) 

across classifiers. 

Another contribution of this thesis is that it provides an understanding of small dis-

juncts and class distribution and how they affect learning.  This understanding includes 

explanations for why small disjuncts are more error prone than large disjuncts, why mi-

nority-class predictions are more error prone than majority-class predictions, and why 

minority-class test examples are misclassified more often than their majority-class coun-

terparts. 

This thesis also uses small disjuncts to provide a better understanding of decision-tree 

learning. In particular, the focus on small disjuncts provides insight into how pruning, 

noise, training-set size and class imbalance affect decision-tree learning.  Some of these 

insights yield practical suggestions of how to improve learning. 
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This thesis also discusses the impact of changing the class distribution of the training 

data and shows that such changes will improperly bias the learner and seriously degrade 

classifier performance, unless the change in distribution is explicitly taken into account.  

This is quite significant because previous research on the effect of class distribution on 

learning (Catlett, 1991; Chan & Stolfo, 1998; Japkowicz, 2002) has not accounted for 

these changes.  Consequently this thesis addresses a serious methodological issue with 

previous research. 

Finally, this thesis addresses the issue of data cost and shows that when the amount of 

training data must be limited, the impact on classifier performance can be minimized by 

carefully selecting the class distribution of the reduced training set.  A budget-sensitive 

progressive-sampling strategy is described that intelligently selects training examples 

based on their class.  This sampling algorithm is shown to form a class distribution that is 

nearly optimal for learning.  Thus, this thesis makes a major contribution by showing 

how to select training data when training examples are costly. 

1.4 Dissertation Outline 

The remainder of this dissertation is organized as follows.  First, in Chapter 2, we de-

scribe the induction programs, metrics for evaluating classifier performance, and data sets 

that are used throughout this dissertation.  The remainder of the dissertation is then or-

ganized into two main parts.  Chapters 3 through 5 are dedicated to small disjuncts while 

Chapters 6 through 9 are dedicated to the effect of class distribution, and costly training 

data, on learning. 

Chapter 3 introduces the problem associated with small disjuncts and then quantifies 

the problem with small disjuncts by analyzing the classifiers induced from thirty data 
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sets.  Chapter 4 investigates how pruning, training-set size, noise and class imbalance af-

fect small disjuncts, and, more generally, the distribution of errors with respect to disjunct 

size.  Chapter 5 described previous research on small disjuncts. 

Chapter 6 introduces the issues related to the study of class distribution and analyzes 

the classifiers induced from twenty-six large data sets, with respect to differences in per-

formance between the minority class and majority class.  Explanations for the observed 

differences are also provided.  Chapter 7 then shows how varying the class distribution of 

the training data affects classifier performance and analyzes the relationship between 

training-set size, class distribution and classifier performance.  Chapter 8 describes and 

evaluates a budget-sensitive progressive-sampling algorithm for intelligently selecting 

training data.  Chapter 9 described research related to the role of class distribution on 

learning. 

Chapter 10 concludes the thesis.  It summarizes the main conclusions and contribu-

tions of the thesis, describes limitations with this research and suggests several avenues 

for future research. 
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Chapter 2 

Background 

Don’t be too timid and squeamish about 
 your actions.  All life is an experiment. 

The more experiments you make the better. 

- Ralph Waldo Emerson 

This chapter provides background information that is assumed throughout the remainder 

of the thesis.  In particular, this chapter introduces the classifier induction programs em-

ployed in this thesis, describes how classifier performance is to be evaluated, and pro-

vides a brief description of the data sets used to study the effect of small disjuncts and 

class distribution on decision-tree learning. 

2.1 Classifier Induction Programs 

A classifier induction program takes as input a set of labeled training examples and gen-

erates a classifier capable of classifying unlabeled examples.  Two such programs are 

employed in this thesis: C4.5 (Quinlan, 1993) and Ripper (Cohen, 1995).  Both induction 

programs employ pruning to reduce the complexity of the classifier and to improve pre-

dictive accuracy.  These pruning strategies will be studied to see how they affect learning, 

and, in particular, how they affect the formation of small disjuncts. 

The analysis of small disjuncts and class distribution provided in this thesis requires 

that the learners record some basic descriptive statistics related to disjunct size and class 
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distribution.  Software scripts then use these descriptive statistics to generate higher-level 

summary statistics.  These summary statistics describe the distribution of errors with re-

spect to disjunct size, the accuracy of minority-class and majority-class predictions, and 

the accuracy with which the classifier can classify minority-class and majority-class test 

examples.  Both C4.5 and Ripper provide the necessary descriptive statistics for class dis-

tribution, but only Ripper supplies sufficient information to track classifier performance 

with respect to disjunct size.  Consequently the C4.5 source code was modified to provide 

the necessary disjunct-related descriptive statistics. 

Other than this one innocuous change to C4.5, which does not affect the classifier that 

is generated, no changes were made to the source code of either learner.  However, as 

described later, in some cases each learner’s pruning strategy is disabled.  Also, as de-

scribed in Chapter 6, for the class distribution experiments the generated classifiers are 

often modified after the induction programs complete, to take into account changes made 

to the class distribution of the training data. 

2.1.1 C4.5 

C4.5 is a popular classifier induction program for learning decision trees (Quinlan, 1993).  

Given a set of examples described by a fixed number of pre-defined attributes and a class 

variable with a fixed number of values, C4.5 generates a decision tree capable of assign-

ing one of these class values to each example.  The algorithm for generating the tree is 

described as follows.  At every step in the tree-building process, if the remaining exam-

ples are all of the same class, a terminal leaf is generated and labeled with that class.  

Otherwise, the current tree node is split based on the attribute with the highest informa-

tion gain (Quinlan, 1993).  Information gain is an entropy-based metric that measures the 
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change in impurity of examples in partition E versus examples in partition E1, E2, …, En, 

where E1, E2, …, En is a partition of  E.  In the case of a decision tree, partition E repre-

sents a node in the decision tree and E1, E2, …, En represent the children nodes.  Infor-

mally speaking, information gain is used to determine the attribute that will yield a parti-

tion of E that yields the most “pure” sub-partitions (i.e., child leaves).  Ideally, an attrib-

ute will be chosen that yields child nodes that contain homogeneous examples—

examples that all belong to a single class.  Once the attribute to split on is chosen, the ex-

amples are split into one subset per discrete value, or into two subsets for continuous at-

tributes.  This procedure continues recursively. 

Once the decision tree is generated, C4.5 prunes the tree to avoid overfitting, using 

Quinlan’s pessimistic error pruning (Quinlan, 1987).  This pruning strategy works as fol-

lows.  For a node n, all examples covered by n (passed down from the root node to n) are 

used to estimate the error rate if n were a leaf node, labeled with the majority class at n.  

The estimated error rate assumes a binomial distribution and with 75% probability is an 

upper bound on the true error.  This upper bound, a pessimistic estimate of the true error, 

is then used in the pruning process.  C4.5 prunes the tree bottom-up considering two 

types of pruning.  Specifically, for each node n, C4.5 computes 1) the total estimated er-

ror of all of n’s children, 2) the estimated error if n is made a leaf, and 3) the estimated 

error if n is replaced by the branch that covers the most examples.  The alternative with 

the lowest estimated error is chosen and the tree is modified accordingly, such that 1) the 

tree remains unchanged, 2) the node n is pruned to become a leaf, or 3) the node n is re-

placed by the largest branch (known as sub-tree raising). 
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The C4.5 source code was modified to provide statistics related to disjunct size.  Dur-

ing the training phase each disjunct/leaf is assigned a disjunct size based on the number 

of training examples it correctly classifies.  During the testing phase the number of cor-

rectly and incorrectly classified examples associated with each disjunct is recorded.  

Then, when the program terminates, the distribution of correctly and incorrectly classi-

fied test examples is printed out, for each disjunct size.  For example, the enhanced ver-

sion of C4.5 might record the fact that disjuncts of size three collectively classify five test 

examples correctly and three test examples incorrectly. 

2.1.2 Ripper 

Ripper is a program for inducing sets of classification rules (Cohen, 1995).  Each rule is a 

conjunction of conditions on attribute values.  Rules are returned as an ordered list and 

the first rule that evaluates to true is used to assign the classification.  One distinguishing 

characteristic of Ripper is that it allows attributes to take on sets as values, in addition to 

nominal and continuous values. 

Ripper forms rules as follows: it splits uncovered examples (i.e., those not currently 

covered by a rule) into a growing set and a pruning set.  Rules are grown by adding con-

ditions one at a time until the rule covers only a single example in the growing set.  As-

suming that PrunePos refers to the set of positive examples in the pruning set and Prun-

eNeg to the set of negative examples in the pruning set, the rule is then immediately 

pruned by deleting any final sequence of conditions in the rule that maximize the func-

tion: 

v*(Rule, PrunePos, PruneNeg)  =  
np

np

+
−

, 



18 

 

where p is the number of examples covered by Rule in PrunePos and n is the number of 

examples covered by Rule in PruneNeg.  Once a rule is created, the examples covered by 

it are removed from the training data.  Ripper continues to generate rules until its stop-

ping criterion is met.  The stopping criterion is based on calculating the description length 

(Barron, Rissanen, & Yu, 1998) of the rule set and stopping if this is more than d bits lar-

ger than the smallest description length found thus far. 

Ripper then performs an optimization step.  Considering each rule in the rule set in the 

order they were generated, Ripper considers two alternatives.  The first alternative is re-

placing the rule by growing and pruning a new rule from scratch, where pruning is done 

to minimize the error rate of the overall rule set.  The second alternative involves revising 

the existing rule by growing it (i.e., starting with the rule rather than the empty rule) and 

then pruning it back. In this case pruning uses minimum description length to decide 

whether to use the original rule, replacement rule, or revised rule.  Finally, rules are 

added to cover positive examples not covered by the optimized rule set.  Ripper then re-

peats this optimization step one more time, since this has been shown to improve classi-

fier performance. 

Ripper as described is for a two-class learning problem.  Multi-class learning problems 

are normally handled as follows.  First, classes are ordered in terms of increasing levels 

of prevalence, such that in the sequence C1, C2, …, Ck, C1 is the least frequently occur-

ring class and Ck is the most frequently occurring class.  Ripper first finds a rule set to 

separate C1 from the remaining classes.  Then, all of the examples covered by the rule set 

are removed from the training data and Ripper is used to separate C2 from the remaining 
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classes, etc.  This process is repeated until only the last class, Ck, is left.  A default rule is 

used to cover this entire class. 

Ripper, using the “-a unordered” option, can also be used to produce a set of rules 

where the classification is not depended on the order of the rules.  In this case Ripper will 

separate each class from the previous class such that a non-overlapping set of rules is 

generated for each class.  Conflicts between classes are resolved by selecting the class 

with the lowest accuracy on the training data.  

2.2 Evaluating Classifier Performance 

Empirical studies of classifier induction, such as the ones described in this thesis, require 

a means of measuring, or evaluating, classifier performance.  In some situations, such as 

when deciding which class distribution yields the best performing classifier, it is impor-

tant to evaluate the overall performance of the classifier.  In this thesis overall classifier 

performance is measured using accuracy, described in Section 2.2.2, and the area under 

the ROC curve, which is described in Section 2.2.3.  In other situations it may be neces-

sary to evaluate some specific aspect of classifier performance, such as the performance 

of a specific disjunct or of minority-class predictions.  In all cases it is essential to have 

an appropriate evaluation metric—the choice of evaluation metric will affect the results 

and the conclusions drawn from these results. 

In order to analyze exactly how class distribution affects learning, it is necessary to 

measure classifier performance with respect to each class.  In order to simplify the pres-

entation and the analysis of results, only two-class learning problems are studied in this 

thesis.  The less frequently occurring class is referred to as the minority class while the 

more frequently occurring class is referred to as the majority class.  Because machine 
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learning generally uses the term positive class and negative class for two class problems, 

in some circumstances we use these terms instead of minority class and majority class.  

However, throughout this thesis the positive class will always correspond to the minority 

class and the negative class to the majority class.   These associations reflect the tendency 

to refer to the positive class as the primary class of interest; in this research we consider 

the minority class to be the more interesting class.  This association between the positive 

class and minority class also reflects how these terms are most often applied in practice.  

For example, in medical diagnosis “a positive” generally reflects the presence of a dis-

ease, which typically is detected less frequently than the absence of a disease. 

So, to understand the role of class distribution in learning requires that we track—and 

compare and contrast—the performance of minority-class and majority-class predictions, 

as well as the ability of a classifier to correctly classify minority-class and majority-class 

test examples.  The evaluation metrics for doing this are described in Section 2.2.1. 

We also use an additional metric specifically designed to measure the impact of small 

disjuncts on learning.  This metric, error concentration, measures the distribution of er-

rors with respect to disjunct size.  Because this metric is new and is a contribution in it-

self, its description is deferred until Chapter 3, where we discuss small disjuncts in detail.   

2.2.1 Basic Metrics for Measuring Performance for Two-Class Problems 

The basic building blocks for measuring classifier performance for two-class problems 

are defined in the confusion matrix, shown in Table 2.1.  A classifier t is a mapping from 

instances x to classes {p, n} and is an approximation of c, which represents the true, but 

unknown, classification function.  For notational convenience, let t(x) ∈ {P, N} and c(x)  

∈ {p, n} so that it is always clear whether a class value is an actual value (lower case) or 
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predicted (upper case) value.  A true positive (true negative) refers to the case where a 

positive (negative) example is classified correctly.  A false positive corresponds to the 

case where a negative example is misclassified as a positive example while a false nega-

tive corresponds to the case where a positive example is misclassified as a negative ex-

ample. 

                                                                       t(x) 
  Positive Prediction Negative Prediction 

Actual Positive  tp (true positive)  fn (false negative) 

Actual Negative  fp (false positive)  tn (true negative) 

Table 2.1: Confusion Matrix for a Two-Class Problem 

The terms defined in Table 2.1 are used to define the higher-level performance metrics 

in Table 2.2.  The metrics described in the first two rows of Table 2.2 measure the ability 

of a classifier to classify positive and negative examples correctly, while the metrics de-

scribed in the last two rows of the table measure the effectiveness of the predictions made 

by a classifier. 

TP = Pr(P|p)   § 
fntp

tp

+
 True Positive Rate 

(recall or sensitivity) 
FN = Pr(N|p)    § 

fntp

fn

+
 False Negative Rate 

TN = Pr(N|n)  § 
fptn

tn

+
 True Negative Rate 

(specificity) 
FP = Pr(P|n)     § 

fptn

fp

+
 False Positive Rate 

PPV = Pr(p|P) § 
fptp

tp

+
 Positive Predictive Value 

(precision) 
PPV = Pr(n|P) §�

fptp

fp

+
  

NPV = Pr(n|N) § 
fntn

tn

+
 Negative Predictive Value NPV =Pr(y|N) §�

fntn

fn

+
  

Table 2.2: Classifier Performance Metrics for Two-Class Problems 

The true positive rate, TP, or recall, is the likelihood that a positive example is classi-

fied correctly, while the true negative rate, TN, or specificity, is the likelihood that a 

c(x) 
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negative example is classified correctly.  The positive predictive value (PPV), or preci-

sion, of a classifier is the likelihood that a positive prediction is correct, while the nega-

tive predictive value, NPV, is the likelihood that a negative prediction is correct.  Finally, 

the metrics in the second column of Table 2.2 are the complements of the corresponding 

metrics in the first column, and can alternatively be computed by subtracting the value in 

the first column from 1.  For example, the false negative rate, FN, is the likelihood that a 

positive example is classified as a negative example, or, alternatively, is 1 – TP.  Because 

error rate is defined as 1 – accuracy, FN can also be interpreted as the error rate associ-

ated with the positive examples.  Note that in two cases we are aware of no generally ac-

cepted terms for the metrics—these metrics will be referred to using the complement of 

the names that appear in the first column (e.g., PPV  and NPV ).   

The metrics in Table 2.2 can be summarized succinctly as follows.  Proceeding from 

row 1 through 4, the metrics in column 1 (column 2) represent: 

1) The accuracy (error rate) when classifying positive/minority examples 

2) The accuracy (error rate) when classifying negative/minority examples 

3) The accuracy (error rate) of the positive/minority predictions 

4) The accuracy (error rate) of the negative/majority predictions. 

When describing the experimental results in Chapter 6 we use the terms in column 2 

rather than those in column 1, since it is more revealing to compare error rates than accu-

racies.  For example, an increase in error rate from 1% to 2% corresponds to a relative 

increase in error rate of 100% but a relative decrease in accuracy of only about 1% (i.e., 

from 99% to 98%). 
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2.2.2 Accuracy 

Classification accuracy is often used to measure the overall performance of a classifier.  

It is defined as the fraction of examples classified correctly, or, using the terms from the 

confusion matrix in Table 2.1, as (tp + fp)/(tp + fp + tn + fn).  Equivalently, classifier per-

formance can be specified in terms of error rate, which is defined as 1 – accuracy.  The 

benefits of using accuracy to measure classifier performance are that it is simple to calcu-

late and understand and is the most common evaluation metric in machine-learning re-

search. 

Unfortunately there are a number of problems with accuracy—problems that are get-

ting more attention now that research is focusing on increasingly complex, real world, 

problems.  First, accuracy assumes that the target (marginal) class distribution is known 

and unchanging and, more importantly, that the error costs—the costs of a false positive 

and false negative—are equal.  These assumptions are unrealistic in many domains (Pro-

vost et al. 1998).  Accuracy is particularly suspect as a performance measure when study-

ing the effect of class distribution on learning since, as we discuss in Chapter 3, it is 

heavily biased to favor the majority class.  Furthermore, highly unbalanced data sets typi-

cally have highly non-uniform error costs that favor the minority class, which, as in the 

case of medical diagnosis and fraud detection, is the class of primary interest.  Classifiers 

that optimize for accuracy for these problems are of questionable value since they rarely 

predict the minority class. 

For the reasons just listed, we do not rely solely on accuracy to measure classifier per-

formance.  Instead, classifier performance is also measured using ROC analysis, which 

addresses the problems with accuracy.  Accuracy-related results are included so that this 
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research can be related to past and future research that may only utilize accuracy—and to 

highlight the differences that arise when using these two different performance metrics. 

2.2.3 ROC Analysis 

Receiver Operating Characteristic (ROC) analysis is a method for evaluating classifier 

performance (Swets et al., 2000).  ROC analysis represents the false-positive rate (FP) on 

the x-axis of a graph and the true-positive rate (TP) on the y-axis (these terms are defined 

in Table 2.2).  Many classifiers, including C4.5, produce not only a classification but also 

a probability estimate of class membership.  ROC curves are produced by varying the 

threshold on the class-probability estimates (described in detail in Chapter 6).  For exam-

ple, for a decision-tree learner one point on an ROC curve may correspond to the case 

where the leaves of a decision tree are labeled with the minority class only if the prob-

ability of an example at a leaf belonging to the minority class is greater than .5; another 

point on the curve may correspond to a probability threshold of .1.  The use of ROC 

analysis for machine learning is described in detail elsewhere (Bradley, 1997; Provost & 

Fawcett, 2001).  One advantage of ROC analysis over accuracy is that it evaluates the 

performance of a classifier independent of the class distribution of the test set or of the 

error costs. 

Several sample ROC curves are shown in Figure 2.1.  In this particular example, 

which is analyzed in detail in Chapter 7, each of the four curves correspond to classifiers 

induced from the same data set, but using different class distributions for training.  In 

ROC space, the point (0,0) corresponds to the strategy of never making a posi-

tive/minority prediction and the point (1,1) to always predicting the positive/minority 

class.  Points to the “northwest” indicate improved performance. 
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Figure 2.1: Sample ROC Curves 

Figure 2.1 shows that different ROC curves may perform better in different areas of 

ROC space (for this example this indicates that one class distribution does not always 

lead to the best performance).   To assess the overall quality of a classifier we measure 

AUC, the fraction of the total area that falls under the ROC curve, which is equivalent to 

several statistical measures for evaluating classification and ranking models (Hand, 

1997).  Larger AUC values indicate generally better classifier performance and, in par-

ticular, indicate a better ability to rank cases by likelihood of class membership.  It should 

be kept in mind that if one ROC curve does not dominate the rest, then for specific cost 

and class distributions the best model may not be the one that maximizes AUC.  If there 

is not a single dominating ROC curve, as the case in Figure 2.1, then multiple classifiers 

can be combined to form a classifier that performs optimally for all costs and distributions 

(Provost & Fawcett, 2001). 
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2.3 Data Sets 

This thesis provides an empirical study of small disjuncts and class distribution.  So that 

valid conclusions may be drawn, a large number of data sets are analyzed.  This section 

describes the data sets used throughout this thesis.  Because, as described shortly, the 

study of class distribution requires larger data sets than the study of small disjuncts, two 

different, but overlapping, groups of data sets are described. 

The thirty data sets used to study small disjuncts are described in Table 2.3.  The de-

scription includes the name of the data set, the number of features and the total number of 

examples.  Nineteen of these data sets are from the UCI repository (Blake & Merz, 1998) 

while the remaining eleven, denoted in Table 2.3 by a “+”, were contributed from re-

searchers at AT&T (Cohen, 1995; Cohen & Singer, 1999).  Except for the soybean-large 

data set, all of the data sets have exactly two classes (we have a two-class version of the 

splice-junction data set). 

# Data Set Features Size # Data Set Features Size
1 adult 14 21,280 16 market1+ 10 3,180
2 bands 39 538 17 market2+ 10 11,000
3 blackjack+ 4 15,000 18 move+ 10 3,028
4 breast-wisc 9 699 19 network1+ 30 3,577
5 bridges 7 101 20 network2+ 35 3,826
6 coding 15 20,000 21 ocr+ 576 2,688
7 crx 15 690 22 promoters 57 106
8 german 20 1,000 23 sonar 60 208
9 heart-hungarian 13 293 24 soybean-large 35 682
10 hepatitis 19 155 25 splice-junction 60 3,175
11 horse-colic 23 300 26 ticket1+ 78 556
12 hypothyroid 25 3,771 27 ticket2+ 53 556
13 kr-vs-kp 36 3,196 28 ticket3+ 61 556
14 labor 16 57 29 vote 16 435
15 liver 6 345 30 weather+ 35 5,597  

Table 2.3: Data Sets used to Study Small Disjuncts 
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The experiments involving class distribution alter the class distribution of the training 

data.   The methodology for altering the class distribution, described in detail in Chapter 

6, involves discarding training examples so that the desired class distribution is achieved.  

To ensure that there are sufficient training examples for learning even after these exam-

ples are discarded, extremely small data sets are excluded from the study of class distri-

bution. 

Table 2.4 provides a brief description of the twenty-six data sets used to study class 

distribution.  Twenty of these data sets are from the UCI repository and five data sets, 

again identified with a “+”, were contributed by researchers from AT&T.  The phone data 

set was supplied by the author.  The descriptions in Table 2.4 also specify the class distri-

bution for each data set, in terms of the percentage of minority-class examples contained 

within the data set.  The data sets are listed in the table in order of decreasing class im-

balance, a convention used throughout this thesis for experiments concerning class distri-

bution. 

 
# Data Set % Minority Features  Size # Data Set % Minority Features  Size 
1  letter-a* 3.9 17 20,000 14  network2 27.9 35 3,826
2  pendigits* 8.3 16 13,821 15  yeast* 28.9 8 1,484
3  abalone* 8.7 8 4,177 16  network1+ 29.2 30 3,577
4  sick-euthyroid 9.3 25 3,163 17  car* 30.0 6 1,728
5  connect-4* 9.5 42 11,258 18  german 30.0 20 1,000
6  optdigits* 9.9 64 5,620 19  breast-wisc 34.5 9 699
7  covertype* 14.8 54 581,102 20  blackjack+ 35.6 4 15,000
8  solar-flare* 15.7 10 1,389 21  weather+ 40.1 35 5,597
9  phone 18.2 13 652,557 22  bands 42.2 39 538
10  letter-vowel* 19.4 17 20,000 23  market1+ 43.0 10 3,181
11  contraceptive* 22.6 9 1,473 24  crx 44.5 15 690
12  adult 23.9 14 48,842 25  kr-vs-kp 47.8 36 3,196
13  splice-junction* 24.1 60 3,175 26  move+ 49.9 10 3,029  

Table 2.4: Data Sets used to Study Class Distribution 
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In order to simplify the presentation and the analysis of results, for the class distribu-

tion experiments data sets with more than two classes are mapped to two-class problems.  

This is accomplished by designating one of the original classes, typically the least fre-

quently occurring class, as the minority class and then mapping the remaining classes into 

the majority class.  The data sets that originally contained more than two classes are iden-

tified with an asterisk (*) in Table 2.4.  The letter-a and letter-vowel data sets were cre-

ated from the letter-recognition data set by assigning those examples labeled with either 

the letter “a”, or with a vowel, to the minority class. 

2.4 Summary 

This chapter summarizes the basic background material needed to understand the ex-

periments described in this thesis.  It describes the two classifier induction programs used 

in this thesis, C4.5 and Ripper, the metrics used to evaluate the performance of the classi-

fiers induced using these programs, and the data sets used to study the effect of small dis-

juncts and class distribution on learning.  Because of deficiencies with accuracy, classi-

fier performance is measured using both accuracy and the area under the ROC curve. 
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Chapter 3 

The Problem with Small Disjuncts 

"The best way to escape from a problem is to solve it."  

- Alan Saporta 

"Challenges are what make life interesting; 
overcoming them is what makes life meaningful." 

- Joshua J. Marine  
 

Small disjuncts and their impact on learning are investigated in this and the following 

chapter.  Results from previous research studies indicate that classification errors tend to 

be concentrated heavily in the small disjuncts (Holte et al., 1989; Ali & Pazzani, 1992; 

Danyluk & Provost, 1993; Ting, 1994; Weiss, 1995; Weiss & Hirsh, 1998; Carvalho & 

Freitas, 2000).  These studies, however, only analyze one or two data sets in detail.  In 

this chapter the problem with small disjuncts is measured much more comprehensively, 

by measuring the degree to which errors are concentrated toward the small disjuncts for 

classifiers induced from thirty data sets, using both C4.5 and Ripper.  The results show 

that most classifiers exhibit the problem with small disjuncts, albeit to different degrees. 

Chapter 4 then analyzes how factors such as pruning, training-set size, noise and class 

imbalance each affect small disjuncts and the distribution of errors across disjuncts.  This 

analysis will also provide a better understanding of how each of these factors affects 

learning.  Finally, Chapter 5 discusses related research. 
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3.1 The Formation of Small Disjuncts in Classifier Learning 

We begin this chapter by providing important background concerning the formation of 

small disjuncts.  In particular, we discuss two reasons why small disjuncts are formed and 

suggest reasons for why they may be more error prone than large disjuncts.  This section 

therefore is useful in providing a context in which to interpret the results from the empiri-

cal study of small disjuncts, presented in this chapter and Chapter 4. 

3.1.1 An Inability to Express the Target Concept 

Small disjuncts may be formed because the classifier cannot readily express the target 

concept.  In this thesis the study of small disjuncts relies primarily on C4.5, a decision 

tree learner, so we begin by examining the expressive power of such a learner.  Decision 

tree learners test (i.e., branch on) one attribute at a time and hence form decision bounda-

ries by making axis-parallel cuts in the instance space.  Thus, decision tree learners can 

only approximate concepts that are not expressible using only axis-parallel cuts.  This 

situation is depicted graphically in Figure 3.1. 
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Figure 3.1: A Concept that cannot be Perfectly Learned by a Decision Tree Learner 

The target concept in Figure 3.1 is a square that is centered about the point (1, 1) and 

rotated forty-five degree with respect to the x-axis.  The region covered by each disjunct 

in the induced classifier is represented by a rectangle.  The largest of these rectangles, is 

labeled LD, indicating it is the largest disjunct.  The points labeled “+” and “-“ represent 

examples belonging to the positive and negative classes.  A total of 200 examples were 

randomly selected (using a random-number generator) over the entire instance space. 

Figure 3.1 makes it clear that no rectangle parallel to the x-axis can cover the target 

concept.  The largest disjunct covers most, but not all, of the target concept.  In a very 

real sense the remaining disjuncts are formed in an attempt to learn the non-axis parallel 
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boundaries of the target concept.  As can be seen, these disjuncts tend to be smaller dis-

juncts.  It would take an infinite number of rectangles to perfectly learn the true bounda-

ries of the target concept. 

The disjuncts shown in Figure 3.1 correctly classify all of the training examples.  Most 

of the decision boundaries associated with the disjuncts have some “play”—they could be 

moved in or out without misclassifying any training examples.  These boundaries were 

generally set to fall about halfway between the closest positive and negative classes.  

Note that in this example the learned concept does not cover the entire target concept.  

Given the assumption that the examples are uniformly distributed over the space, the er-

ror rate for each disjunct is the percentage of its area that falls outside of the target con-

cept.  Based on this, it is clear that largest disjunct has a very low error rate, while the 

small disjuncts have a high error rate.  In general, those disjuncts that are centered near 

the decision boundary of the target concept will tend to have a higher error rate.  This 

provides one explanation for why small disjuncts may have a higher error rate than large 

disjuncts. 

3.1.2 A Target Concept With Small Subconcepts 

A target concept with small subconcepts may also lead to the formation of small dis-

juncts.  To see this, consider the target concept in Figure 3.2, which has nine subconcepts.  

The examples are again assumed to be uniformly distributed over the space and the 1,000 

examples that are displayed in the figure were randomly generated (the positive examples 

are represented by a shaded box to make them more noticeable).  Eight of the subclasses 

are defined by squares where each side is 0.2 units long (1/10 the length of the entire 

space).  Consequently, each of these eight small subconcepts is expected to cover 1% of 
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the examples.  The large subconcept is defined by a square with length 0.6 and hence is 

expected to cover 9% of all examples.  These squares are all axis-parallel, so the inability 

of a decision tree learner to form decision boundaries that are not axis-parallel is not an 

issue.  

0

1

2

0 1 2   
Figure 3.2: A Target Concept with Many Small Subclasses 

The disjuncts that might be formed to cover the target concept are not shown in Figure 

3.2, but it should be clear that each subconcept could be learned using a single disjunct.  

In this case there would be one large disjunct and eight small disjuncts, where the small 

disjuncts would tend to have similar sizes (the differences would be due to the exact loca-

tion of the learned decision boundaries).  Thus, small subconcepts represent a second rea-
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son that small disjuncts are formed.  Note that this scenario applies to any learner that 

forms disjunctive concepts—not just decision tree learners. 

The small disjuncts that are formed to cover the eight small subconcepts in Figure 3.2 

will tend to have a higher error rate than the disjunct formed to cover the large subcon-

cept.  To see this, first assume that for any of the subconcepts, the learned boundary LV� �

DZD\�IURP�WKH�WUXH�ERXQGDU\���)RU�VLPSOLFLW\��ZH�DVVXPH�WKDW�WKH�YDOXH�RI� �LV�WKH�VDPH�

IRU�DOO�IRXU�VLGHV�RI�WKH�OHDUQHG�GHFLVLRQ�ERXQGDU\���7KH�YDOXH�RI� �GHWHUPLQHV�KRZ�ZHOO�

WKH�VXEFRQFHSW�LV�OHDUQHG���,I�ZH�DVVXPH�WKDW� �LV��RQ�DYHUDJH��WKH�VDPH�Ior the large dis-

junct (learned to cover the large subconcept) as for the small disjuncts (learned to cover 

the small subconcepts), then the large disjunct will have a much lower error rate—

because it covers a much larger region that is correctly learned. 

The only way the error rate for the small disjuncts would not be greater than the error 

UDWH�IRU�WKH�ODUJH�GLVMXQFW�LV�LI� �ZHUH�VPDOOHU�IRU�WKH�VPDOO�GLVMXQFWV���+RZHYHU��WKHUH�LV�

no reason to believe that this would be so.  In fact, there is some reason tR�EHOLHYH�WKDW� �

would be smaller for the large disjunct.  To see this, consider the task of learning the bot-

tom-most decision boundary (or any boundary) for each of the subconcepts.  Given that 

there is no noise and the subconcepts can be learned perfectly, the disjunct should cover 

no minority-class training examples.  Thus, the bottom-most boundary is determined by 

the negative and positive example that is nearest, vertically, to the target subconcept’s 

bottom boundary.  Since the boundary is three times longer for the large subconcept, 

given the assumption that examples are uniformly distributed over the space, we expect 

the closest positive and negative examples to generally be closer to the true boundary for 

the large subconcept. 
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3.2 An Example of the Problem with Small Disjuncts 

We next turn to the problem with small disjuncts.  The problem with small disjuncts is 

that they generally have a much higher error rate than large disjuncts and contribute a 

substantial percentage of all classification errors.  In order to demonstrate the problem 

with small disjuncts, a simple example is presented in Figure 3.3.  This figure shows the 

performance of classifiers induced by C4.5 from the Vote data set.  This figure shows 

how the correctly and incorrectly classified examples are distributed across the disjuncts 

in the induced classifier. 
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Figure 3.3: Distribution of Examples for Vote Data Set 

The x-axis in Figure 3.3 specifies the size of a disjunct while the y-axis specifies the 

number of correctly and incorrectly classified test examples covered by disjuncts with 

that size.  Because there are typically no disjuncts associated with each specific disjunct 

size, the x-values are placed into bins, in order to make the results more comprehensible.  

Each bin in the histogram in Figure 3.3 covers ten sizes of disjuncts.  Thus, the leftmost 
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bin shows that those disjuncts that correctly classify 0-9 training examples cover 9.5 test 

examples, of which 7.1 are classified correctly and 2.4 classified incorrectly (fractional 

values occur because the results are averaged over 10 cross-validated runs). 

Figure 3.3 shows that the test examples from the vote data set are covered by disjuncts 

with a variety of sizes.  The results in Figure 3.3 indicate that the smaller disjuncts have a 

much higher error rate than the larger disjuncts and that the small disjuncts contribute 

most of the total test errors.  An examination of the detailed data underlying Figure 3.3 

shows that the errors are skewed even more toward the smallest disjuncts than suggested 

by the figure—75% of the errors in the leftmost bin come from disjuncts of size 0 and 1 

(disjuncts of size 0 occur because when C4.5 splits a node N using a feature f, the split 

will branch on all possible values of f).  One may also be interested in the distribution of 

disjuncts by disjunct size.  The classifier associated with Figure 3.1 is made up of fifty 

disjuncts, of which forty-five are associated with the leftmost bin (i.e. have a disjunct size 

less than 10).  The error rate of the classifier is 6.9%.  The error concentration (EC) for 

this classifier is .848 (this metric is described in the next section). 

The vote data set is used throughout Chapter 4 to show how pruning, training-set size 

and noise affect small disjuncts.  Thus, the distribution of errors in Figure 3.3 serves as a 

baseline for future comparison. 

3.3 Error Concentration  

The study of small disjuncts requires the ability to measure and represent classification 

performance with respect to disjunct size.  The graphical representation in Figure 3.3 is 

commonly used in research on small disjuncts.  However, there are two problems with 

the way information is represented in the figure.  First, the degree to which errors are 
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concentrated toward the small disjuncts is not clear.  That is, while Figure 3.3 shows that 

the errors are heavily concentrated in the smaller disjuncts, how do we quantify this con-

centration of errors?  Secondly, how do we compare the distribution of errors between 

different classifiers? 

The inadequacies with the representation in Figure 3.3 can be addressed by plotting 

the percentage of total test errors versus the percentage of correctly classified test exam-

ples contributed by a set of disjuncts.  The curve in Figure 3.4 is generated by starting 

with the smallest disjunct from the classifier and progressively adding larger disjuncts.  

This curve shows, for example, that disjuncts with size 0-4 cover 5.1% of the correctly 

classified test examples but 73% of the total test errors.  The line Y=X represents a classi-

fier in which classification errors are distributed throughout the disjuncts without regard 

to the size of the disjunct.  Since the “error concentration” curve in Figure 3.4 falls above 

the line Y=X, the errors produced by this classifier are more concentrated toward the 

smaller disjuncts than to the larger disjuncts. 
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Figure 3.4: An Error Concentration Curve 
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To make it easy to compare the degree to which errors are concentrated toward the 

smaller disjuncts for different classifiers, we introduce error concentration.  The error 

concentration (EC) of a classifier is defined as the fraction of the area above the line Y=X 

that falls below its error concentration curve.  Using this scheme, the higher the error 

concentration, the more concentrated the errors are toward the smaller disjuncts.  Error 

concentration may range from a value of +1, which indicates that the smallest disjunct(s) 

covers all test errors, before even a single correctly classified test example is covered, to 

a value of –1, which indicates that the largest disjunct(s) covers all test errors, after all 

correctly classified test examples have been covered.  The error concentration for the 

classifier described in Figure 3.4 is .848, which indicates that the errors are highly con-

centrated toward the small disjuncts. 

Based on previous research, which indicates that small disjuncts have higher error 

rates than large disjuncts, one would expect the error concentration of most classifiers to 

be greater than 0.  This is investigated in detail later in this chapter, by measuring the er-

ror concentration of classifiers induced from thirty data sets. 

3.4 Experimental Methodology 

Some of the experimental methodology was described in Chapter 2, which included a de-

scription of the classifier induction programs, the data sets to be studied and the metrics 

for evaluating classifier performance.  In this section we briefly describe some of the 

methodology that is specific to the study of small disjuncts.  

All experiments related to small disjuncts utilize C4.5, while many, but not all ex-

periments are repeated using Ripper to ensure the generality of the results.  All experi-

ments for studying small disjuncts employ ten-fold cross validation.  The associated ex-
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perimental results, presented later in this chapter and in Chapter 4, are therefore based on 

averages over ten runs. 

Pruning tends to eliminate most small disjuncts and, for this reason, research on small 

disjuncts generally disables pruning (Holte, et al., 1989; Danyluk & Provost, 1993; 

Weiss, 1995; Weiss & Hirsh, 1998).  If this were not done, then pruning would mask the 

problem with small disjuncts.  While this means that the analyzed classifiers are not the 

same as the ones that would be generated using the learners in their standard configura-

tions, these results are nonetheless important, since the performance of an unpruned clas-

sifier constrains the performance of a pruned classifiers.  However, in this thesis both un-

pruned and pruned classifiers are analyzed, for both C4.5 and Ripper.  This makes it pos-

sible to analyze the effect that pruning has on small disjuncts and to evaluate pruning as a 

strategy for addressing the problem with small disjuncts.  As the results for pruning in 

Chapter 4 will show, the problem with small disjuncts is still evident after pruning, al-

though to a lesser extent. 

Except where specifically noted, all results are based on the use of C4.5 and Ripper 

with their pruning strategies disabled.  For C4.5, when pruning is disabled the –m 1 op-

tion is also used, to ensure that C4.5 does not stop splitting a node before the node con-

tains examples belonging to a single class (the default is –m 2).  Ripper is configured to 

produce unordered rules so that it does not produce a single default rule to cover the ma-

jority class. 

3.5 Measuring the Impact of Small Disjuncts: Results and Analysis 

This section investigates the impact that small disjuncts have on learning.  This is accom-

plished by describing and analyzing the performance of the classifiers induced by C4.5 
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and Ripper from the thirty data sets listed in Table 2.3, using error concentration to 

measure the distribution of errors by disjunct size in the induced classifiers.  This study of 

the distribution of errors in the induced classifiers is much more thorough than previous 

studies (Holte et al., 1989; Ali & Pazzani, 1992; Danyluk & Provost, 1993; Weiss, 1995; 

Weiss & Hirsh, 1998; Carvalho & Freitas, 2000), which analyzed only one or two data 

sets and had no measure equivalent to error concentration that could be used to compare 

the distribution of error across classifiers. 

3.5.1 Experimental Results 

The performance of the classifiers induced by C4.5 and Ripper are described in Table 3.1 

and Table 3.2, respectively.  The results are listed in order of decreasing error concentra-

tion, so that the data sets near the top of the tables have the errors most heavily concen-

trated toward the small disjuncts. 

Tables 3.1 and 3.2 provide several pieces of information in addition to the error con-

centration of the induced classifier.  The tables first list the EC rank of the classifier and 

the name of the data set.  This is followed by the size of the data set and the size of the 

largest disjunct in the induced classifier.  The next three columns then provide some very 

specific information about how the errors are distributed based on disjunct size.  This in-

cludes the percentage of the total test errors that are contributed by the smallest disjuncts 

that collectively cover 10% (20%) of the correctly classified test examples, followed by 

the percentage of all correctly classified examples that are covered by the smallest dis-

juncts that collectively cover half of the total errors. These last three values are reported 

because error concentration is a summary statistic, and as such, may be somewhat ab-

stract and difficult to interpret.  The next two columns describe the overall performance 
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of the classifier, first using error rate and then AUC, the area under the ROC curve (the 

AUC value is not computed for the soybean-large data set because it contains more than 

two classes).  Finally, the last column specifies the error concentration.  Recall that larger 

AUC values indicate improved classifier performance. 

 

Table 3.1: Error Concentration Results for C4.5 

EC Data Set Data Set Largest % Errors at % Errors at % Correct at Error Error
Rank Name        Size Disjunct 10% Correct 20% Correct 50% Errors Rate AUC Conc.

1 kr-vs-kp 3,196 669 75.0 87.5 1.1 0.3 .987 .874

2 hypothyroid 3,771 2,697 85.2 90.7 0.8 0.5 .934 .852

3 vote 435 197 73.0 94.2 1.9 6.9 .947 .848

4 splice-junction 3,175 287 76.5 90.6 4.0 5.8 .885 .818

5 ticket2 556 319 76.1 83.0 2.7 5.8 .816 .758

6 ticket1 556 366 54.8 90.5 4.4 2.2 .964 .752

7 ticket3 556 339 60.5 84.5 4.6 3.6 .870 .744

8 soybean-large 682 56 53.8 90.6 9.3 9.1 N/A .742

9 breast-wisc 699 332 47.3 63.5 10.7 5.0 .945 .662

10 ocr 2,688 1,186 52.1 65.4 8.9 2.2 .825 .558

11 hepatitis 155 49 30.1 58.0 17.2 22.1 .717 .508

12 horse-colic 300 75 31.5 52.1 18.2 16.3 .776 .504

13 crx 690 58 32.4 61.7 14.3 19.0 .818 .502

14 bridges 101 33 15.0 37.2 23.2 15.8 .693 .452

15 heart-hungarian 293 69 31.7 45.9 21.9 24.5 .793 .450

16 market1 3,180 181 29.7 48.4 21.1 23.6 .783 .440

17 adult 21,280 1,441 28.7 47.2 21.8 16.3 .805 .424

18 weather 5,597 151 25.6 47.1 22.4 33.2 .715 .416

19 network2 3,826 618 31.2 46.9 24.2 23.9 .702 .384

20 promoters 106 20 32.8 48.7 20.6 24.3 .608 .376

21 network1 3,577 528 26.1 44.2 24.1 24.1 .697 .358

22 german 1,000 56 17.8 37.5 29.4 31.7 .593 .356

23 coding 20,000 195 22.5 36.4 30.9 25.5 .632 .294

24 move 3,028 35 17.0 33.7 30.8 23.5 .658 .284

25 sonar 208 50 15.9 30.1 32.9 28.4 .649 .226

26 bands 538 50 65.2 65.2 54.1 29.0 .592 .178

27 liver 345 44 13.7 27.2 40.3 34.5 .562 .120

28 blackjack 15,000 1,989 18.6 31.7 39.3 27.8 .683 .108

29 labor 57 19 33.7 39.6 49.1 20.7 .673 .102

30 market2 11,000 264 10.3 21.6 45.5 46.3 .540 .040
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Table 3.2: Error Concentration Results for Ripper 

As an example of how to interpret the results in these tables, consider the entry for the 

kr-vs-kp data set in Table 3.1.  The error concentration for the classifier induced from this 

data set is .874.  Furthermore, the smallest disjuncts that collectively cover 10% of the 

correctly classified test examples contribute 75% of the total test errors, while the small-

est disjuncts that contribute half of the total errors cover only 1.1% of the total correctly 

classified examples.  These measurements indicate that the errors are very highly concen-

trated toward the smaller disjuncts. 

EC C4.5 Data Set Data Set Largest % Errors at % Errors at % Correct at Error Error
Rank Rank Name      Size Disjunct 10% Correct 20% Correct 50% Errors Rate AUC Conc.

1 2 hypothyroid 3,771 2,696 96.0 96.0 0.1 1.2 .980 .898

2 1 kr-vs-kp 3,196 669 92.9 92.9 2.2 0.8 .999 .840
3 6 ticket1 556 367 69.4 95.2 1.6 3.5 .985 .802

4 7 ticket3 556 333 61.4 81.5 5.6 4.5 .976 .790

5 5 ticket2 556 261 71.0 91.0 3.2 6.8 .920 .782
6 3 vote 435 197 75.8 75.8 3.0 6.0 .983 .756

7 4 splice-junction 3,175 422 62.3 76.1 7.9 6.1 .975 .678
8 9 breast-wisc 699 355 68.0 68.0 3.6 5.3 .973 .660

9 8 soybean-large 682 61 69.3 69.3 4.8 11.3 N/A .638

10 10 ocr 2,688 804 50.5 62.2 10.0 2.6 .979 .560
11 17 adult 21,280 1,488 36.9 56.5 15.0 19.7 .812 .516

12 16 market1 3,180 243 32.2 57.8 16.9 25.0 .839 .470
13 12 horse-colic 300 73 20.7 47.2 23.9 22.0 .858 .444

14 13 crx 690 120 32.5 50.3 19.7 17.0 .914 .424

15 15 hungarian-heart 293 67 25.8 44.9 24.8 23.9 .828 .390
16 26 bands 538 62 25.6 36.9 29.2 21.9 .845 .380

17 25 sonar 208 47 32.6 41.2 23.9 31.0 .793 .376
18 23 coding 20,000 206 22.6 37.6 29.2 28.2 .794 .374

19 18 weather 5,597 201 23.8 42.1 24.8 30.2 .781 .356

20 24 move 3,028 45 25.9 44.5 25.6 32.1 .708 .342
21 14 bridges 101 39 41.7 41.7 35.5 14.5 .755 .334

22 20 promoters 106 24 20.0 50.6 20.0 19.8 .871 .326
23 11 hepatitis 155 60 19.3 47.7 20.8 20.3 .725 .302

24 22 german 1,000 99 12.1 31.2 35.0 30.8 .711 .300
25 19 network2 3,826 77 25.6 45.9 22.9 23.1 .646 .242

26 27 liver 345 28 28.2 37.4 32.0 34.0 .708 .198

27 28 blackjack 15,000 1,427 12.3 24.2 42.3 30.2 .695 .108
28 21 network1 3,577 79 18.9 29.7 46.0 23.4 .657 .090

29 29 labor 57 21 0.0 55.6 18.3 24.5 .620 -.006
30 30 market2 11,000 55 10.4 21.1 49.8 48.8 .516 -.018
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The results for C4.5 and Ripper show that although the error concentration values are, 

as expected, almost always positive, the values vary widely, indicating that the induced 

classifiers suffer from the problem of small disjuncts to varying degrees.  In particular, 

note that for a few data sets, such as the labor and market2 data sets, the error concentra-

tion is near zero—and for Ripper the error concentration for these data sets is actually 

negative.  This shows something new—that the problem with small disjuncts is not ob-

served for all classifiers. 

3.5.2 Comparison of Results for Classifiers Induced using C4.5 and Ripper 

The classifiers induced using Ripper have a slightly smaller average error concentration 

than those induced using C4.5 (.445 vs. .471), indicating that the classifiers induced by 

Ripper have the errors spread slightly more uniformly across the disjuncts.  Overall, Rip-

per and C4.5 tend to generate classifiers with similar error concentration values.  This can 

be seen by comparing the EC rank in Table 3.2 for Ripper (column 1) with the EC rank 

for C4.5 (column 2). 

This relationship between C4.5’s and Ripper’s error concentrations can be seen even 

more clearly using the scatter plot in Figure 3.5, where each point represents the error 

concentration for a single data set.  Since the points in Figure 3.5 are clustered around the 

line Y=X, both learners tend to produce classifiers with similar error concentrations and 

hence tend to suffer from the problem with small disjuncts to similar degrees.  The 

agreement is especially close for the most interesting cases, where the error concentra-

tions are large—the largest ten error concentration values in Figure 3.5, for both C4.5 and 

Ripper, are generated by the same ten data sets. The Spearman rank correlation  (Kendall 

& Gibbons, 1990) can be used to summarize the correlation between the error concentra-
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tions of the two learners.  In this case the rank correlation is .87, indicating that the values 

are highly correlated (the closer to 1 the greater the correlation).  
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Figure 3.5: Comparison of C4.5 and Ripper Error Concentrations 

We can also compare the performance of the classifiers induced by C4.5 and Ripper.  

With respect to classification accuracy, the two learners perform similarly, although C4.5 

performs slightly better.  In particular, C4.5 outperforms Ripper on 18 of the 30 data sets, 

with an average error rate of 18.4% vs. 19.0% (the results in the next chapter will show 

that Ripper slightly outperforms C4.5 when pruning is used).  However, when AUC is 

used to compare classifier performance, the results indicate that Ripper consistently out-

performs C4.5.  In this case Ripper outperforms C4.5 in 25 of 29 cases, with an average 

AUC of .820 vs. .754 for C4.5. 

3.5.3 Analysis of Results 

The results in Table 3.1 and Table 3.2 indicate that, for both C4.5 and Ripper, there is a 

relationship between the error concentration (EC) of the induced classifier and its error 
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rate (ER) and AUC.  For example, these results show that, for the thirty data sets, when 

the induced classifier has an error rate less than 12%, then the error concentration is al-

ways greater than .50.  More generally, error concentration is positively correlated with 

classifier performance.  This can be seen by computing the Spearman rank correlation 

between error concentration and classifier performance.  The Spearman rank correlation 

between error concentration and accuracy (i.e., 1 – error rate) is .86 for C4.5 and .80 for 

Ripper, while the Spearman rank correlation between error concentration and AUC is .91 

for C4.5 and .94 for Ripper.   These results indicate “good” correlation in all cases.  AUC 

may correlate better with EC than accuracy due to the fact that AUC, as described in Sec-

tion 2.2.3, is not affected by the underlying class distribution (Perlich, Provost & 

Siminoff). 

Based on error concentration and classifier performance, the induced classifiers can be 

placed into the following three categories (the boundaries between each category are 

somewhat arbitrary): 

1. High-EC  includes data sets 1-10 for C4.5 and Ripper 

2. Medium-EC includes data sets 11-22 for C4.5 and 11-24 for Ripper 

3. Low-EC  includes data sets 23-30 for C4.5 and 25-30 for Ripper 

The classifiers in the high-EC category generally outperform those in the medium-EC 

category, which in turn generally outperform those in the low-EC category.  It is interest-

ing to note that for those data sets in the high-EC category, the largest disjunct generally 

covers a very large portion of the total training examples.  As an example, consider the 

hypothyroid data set.  Of the 3,394 examples (90% of the total data) used for training, 

nearly 2,700 of these examples, or 79%, are covered by the largest disjunct induced by 
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C4.5 and Ripper.  To see that these large disjuncts are extremely accurate, consider the 

vote data set, which falls within the same category.  The data used to generate the distri-

bution of errors for the vote data set, shown previously in Figure 3.3, indicate that the 

largest disjunct, which covers 23% of the total training examples, does not contribute a 

single error when used to classify the test data.  These observations lead us to speculate 

that target concepts that can be learned well (i.e., the induced classifier has a low error 

rate) are often made up of “large” subconcepts that cover many examples that lead to 

highly accurate large disjuncts—and therefore to classifiers with very high error concen-

trations. Target concepts that are difficult to learn, on the other hand, either are not made 

up of large subconcepts, or, due to limitations with the expressive power of the learner, 

these large subconcepts cannot be represented using large disjuncts.  This leads to classi-

fiers without very large, highly accurate, disjuncts and with many small disjuncts.  These 

classifiers tend to have much smaller error concentrations and high error rates. 

3.6 Summary 

This chapter began with a discussion of why small disjuncts are formed and why they 

might be expected to be more error prone than large disjuncts.  This was followed by a 

simple example that demonstrates that small disjuncts are much more error prone than 

large disjuncts and are responsible for many of the test errors.  A new metric, error con-

centration, was then introduced, which summarizes the degree to which errors are con-

centrated toward the small disjuncts.  After some methodological issues were addressed, 

error concentration was measured for classifiers induced by C4.5 and Ripper.  The results 

indicate that errors are highly concentrated in the small disjuncts in many cases—but that 

this is not true in all cases. 
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Analysis of the results showed some obvious patterns.   In particular, the results indi-

cate that classifiers with low error rates and large AUC values tend to have high error 

concentrations while classifiers with high error rates and low AUC values tend to have 

low error concentrations.  These results and the underlying data indicate that well-learned 

concepts generally include highly accurate, very large disjuncts.  We conclude that in 

many cases those target concepts that can be well learned include subconcepts that cover 

many examples.  
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Chapter 4 

Factors Affecting Small Disjuncts and 

Error Concentration 

The pure and simple truth is rarely pure and never simple. 

- Oscar Wilde 

This chapter analyzes how factors such as pruning, training-set size, noise, and class im-

balance affect the formation of small disjuncts and the distribution of errors in the learned 

classifiers.   In addition to shedding light into how small disjuncts affect learning, this 

analysis will also yield a better understanding of these important factors and the mecha-

nism by which they influence learning.  Some of the more striking results in this chapter 

involve pruning.  Pruning is shown to disproportionately eliminate small disjuncts.  Be-

cause this causes the errors to be distributed more uniformly throughout the disjuncts, 

pruning is shown to hurt the accuracy of large disjuncts.  However, pruning is shown to 

be quite effective at combating the effects of noise. 

4.1 Pruning 

Consistent with prior research on small disjuncts, the experimental results in Chapter 3 

were generated using C4.5 and Ripper with their pruning strategies disabled.  Pruning is 

not used when studying small disjuncts because of the belief that it disproportionately 

eliminates small disjuncts from the induced classifier and thereby obscures the very phe-



49 

 

nomenon to be studied.  However, because pruning is employed by many classifier in-

duction programs, it is worthwhile to understand how it affects small disjuncts and the 

distribution of errors across disjuncts—as well as how effective it is at addressing the 

problem with small disjuncts. 

4.1.1 A Simple Example 

The analysis of pruning begins with a simple, illustrative, example.  The distribution of 

errors for the classifiers induced by C4.5 from the vote data set are shown in Figures 4.1 

and 4.2, without pruning and with pruning, respectively.  A comparison of these two fig-

ures shows how pruning affects the distribution of errors with respect to disjunct size. 
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Figure 4.1: Distribution of Errors without Pruning 
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Figure 4.2: Distribution of Errors with Pruning 

A visual comparison of the figures shows that with pruning the errors are less concen-

trated toward the small disjuncts—which is confirmed by the reduction in error concen-

tration from .848 to .712.  By comparing the two left-most bins in each figure it is also 

apparent that with pruning far fewer examples are classified by disjuncts with size 0-9 

and 10-19.  The reason for this is that the distribution of disjuncts has changed.  The un-

derlying data indicate that without pruning the induced classifiers typically (i.e., over the 

10 cross-validated runs) contain 48 disjuncts, of which 45 are of size 10 or less, while 

with pruning only 10 disjuncts remain, of which 7 have size 10 or less.  So, in this case 

pruning eliminates 38 of the 45 disjuncts with size 10 or less.  This confirms the assump-

tion that pruning eliminates many, if not most, small disjuncts.  Most of the emancipated 

examples—those examples that would have been classified by the eliminated disjuncts—

are now classified by larger disjuncts.  Because a comparison of Figures 4.1 and 4.2 



51 

 

shows that, with pruning, the large disjuncts have more errors, we conclude that by 

eliminating many small disjuncts, pruning degrades the classification performance of the 

highly accurate large disjuncts. 

It is important to note that even with pruning the error concentration of the induced 

classifiers is still quite positive (.712), indicating that errors are still heavily concentrated 

toward the small disjuncts.  Also note that in this case pruning causes the overall error 

rate of the classifier to decrease from 6.9% to 5.3%. 

4.1.2 The Effect of Pruning on Classifiers Induced from Thirty Data Sets 

The performance of the classifiers induced from the thirty data sets, using C4.5 and Rip-

per with their default pruning strategies, is presented in Table 4.1 and Table 4.2, respec-

tively.  The induced classifiers are again placed into three categories, although in this 

case the patterns that were previously observed are not nearly as evident.  This change 

can be measured by comparing the rank correlation coefficients.  Pruning causes the 

Spearman rank correlation between accuracy and error concentration to drop from .86 to 

.68 for C4.5 from .80 to .47 for Ripper.  Similarly, pruning causes the rank correlation 

between AUC and error concentration to drop from .91 to .75 for C4.5 and to drop from 

.94 to .61 for Ripper.  Thus, with pruning, the values are only marginally correlated.  We 

can also look at some specific examples.  With pruning some classifiers continue to have 

low error rates but no longer have large error concentrations (e.g., ocr, soybean-lg, and, 

for C4.5 only, ticket3).  In these cases pruning has caused the classification errors to be 

distributed much more uniformly throughout the disjuncts. 
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Table 4.1: Error Concentration Results for C4.5 with Pruning 

 EC Dataset Data Set Largest % Errors at % Errors at % Correct at Error Error
Rank Name        Size Disjunct 10% Correct 20% Correct 50% Errors Rate AUC Conc.

1 hypothyroid 3,771 2,732 90.7 90.7 0.7 0.5 .984 .818
2 ticket1 556 410 46.7 94.4 10.3 1.6 .936 .730
3 vote 435 221 68.7 74.7 2.9 5.3 .952 .712
4 breast-wisc 699 345 49.6 78.0 10.0 4.9 .943 .688
5 kr-vs-kp 3,196 669 35.4 62.5 15.6 0.6 .663 .658
6 splice-junction 3,175 479 41.6 45.1 25.9 4.2 .954 .566
7 crx 690 267 45.2 62.5 11.5 15.1 .856 .516
8 ticket2 556 442 48.1 55.0 12.8 4.9 .845 .474
9 weather 5,597 573 26.2 46.0 22.2 31.1 .931 .442

10 adult 21,280 5,018 36.6 53.2 17.6 14.1 .827 .424
11 german 1,000 313 29.6 46.8 21.9 28.4 .674 .404
12 soybean-large 682 61 48.0 57.3 14.4 8.2 N/A .394
13 network2 3,826 1,685 30.8 48.2 21.2 22.2 .885 .362
14 ocr 2,688 1,350 40.4 46.4 34.3 2.7 .544 .348
15 market1 3,180 830 28.4 44.6 23.6 20.9 .757 .336
16 network1 3,577 1,470 24.4 43.4 27.2 22.4 .801 .318
17 ticket3 556 431 37.0 49.7 20.9 2.7 .847 .310
18 horse-colic 300 137 35.8 50.4 19.3 14.7 .721 .272
19 coding 20,000 415 17.2 31.6 34.9 27.7 .702 .216
20 sonar 208 50 15.1 28.0 34.6 28.4 .624 .202
21 heart-hungarian 293 132 19.9 37.7 31.8 21.4 .678 .198
22 hepatitis 155 89 24.2 46.3 26.3 18.2 .586 .168
23 liver 345 59 17.6 31.8 34.8 35.4 .661 .162
24 promoters 106 26 17.2 31.1 37.0 24.4 .676 .128
25 move 3,028 216 14.4 24.4 42.9 23.9 .649 .094
26 blackjack 15,000 3,053 16.9 29.7 44.7 27.6 .624 .092
27 labor 57 24 14.3 18.4 40.5 22.3 .568 .082
28 bridges 101 67 14.9 28.9 50.1 15.8 .669 .064
29 market2 11,000 426 12.2 23.9 44.7 45.1 .706 .060
30 bands 538 279 0.8 4.7 58.3 30.1 .545 -.184
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Table 4.2: Error Concentration Results for Ripper with Pruning 

The results in Tables 4.1 and 4.2, when compared to the results without pruning in Ta-

bles 3.1 and 3.2, show that pruning tends to reduce the error concentration of most classi-

fiers.  This comparison is shown graphically in Figure 4.3.  In this figure, the x-axis 

represents the error concentration of the unpruned classifier while the y-axis represents 

the error concentration of the pruned classifier.  Each point corresponds to the classifiers 

(unpruned and pruned) associated with a single data set.  Since most of the points fall be-

low the line Y=X, we conclude that for both C4.5 and Ripper, pruning, as expected, tends 

to reduce error concentration.  However, the results in Figure 4.3 makes it clear that prun-

ing has a more dramatic impact on the error concentration for classifiers induced using 

EC C4.5  Dataset Data Set Largest % Errors at % Errors at % Correct at Error Error
Rank Rank   Name       Size Disjunct 10% Correct 20% Correct 50% Errors Rate AUC Conc.

1 1  hypothyroid 3,771 2,732 97.2 97.2 0.6 0.9 .973 .930
2 5  kr-vs-kp 3196 669 56.8 92.6 5.4 0.8 .999 .746
3 2  ticket1 556 410 41.5 95.0 11.9 1.6 .988 .740
4 6  splice-junction 3,175 552 46.9 75.4 10.7 5.8 .966 .690
5 3  vote 435 221 62.5 68.8 2.8 4.1 .976 .648
6 8  ticket2 556 405 73.3 74.6 7.8 4.5 .926 .574
7 17  ticket3 556 412 71.3 71.3 9.0 4.0 .944 .516
8 14  ocr 2,688 854 29.4 32.6 24.5 2.7 .967 .306
9 20  sonar 208 59 23.1 27.8 25.4 29.7 .725 .282

10 30  bands 538 118 22.1 39.5 24.0 26.0 .797 .218
11 9  weather 5,597 1,148 18.8 31.2 35.4 26.9 .851 .198
12 23  liver 345 69 13.6 33.2 34.7 32.1 .655 .146
13 12  soybean-large 682 66 17.8 26.6 47.4 9.8 N/A .128
14 11  german 1,000 390 14.7 32.5 32.4 29.4 .665 .128
15 4  breast-wisc 699 370 14.4 39.2 31.4 4.4 .977 .124
16 15  market1 3,180 998 19.0 34.5 43.4 21.3 .839 .114
17 7  crx 690 272 16.4 31.9 39.1 15.1 .880 .108
18 13  network2 3,826 1,861 15.3 34.4 39.5 22.6 .749 .090
19 16  network1 3,577 1,765 16.0 34.4 42.0 23.3 .741 .090
20 18  horse-colic 300 141 13.8 20.5 36.6 15.7 .833 .086
21 21  hungarian-heart 293 138 17.9 29.3 42.6 18.8 .812 .072
22 19  coding 20,000 894 12.7 21.7 46.5 28.3 .767 .052
23 26  blackjack 15,000 4,893 16.8 22.1 45.3 28.1 .681 .040
24 22  hepatitis 155 93 25.5 28.3 57.2 22.3 .663 -.004
25 29  market2 11,000 2,457 7.7 17.7 50.2 40.9 .600 -.016
26 28  bridges 101 71 19.1 22.2 55.0 18.3 .735 -.024
27 25  move 3,028 320 10.9 19.5 63.1 24.1 .810 -.094
28 10  adult 21,280 9,293 9.8 29.5 67.9 15.2 .865 -.146
29 27  labor 57 25 0.0 3.6 70.9 18.2 .600 -.228
30 24  promoters 106 32 0.0 0.0 54.1 11.9 .928 -.324
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Ripper than those induced using C4.5.  Pruning causes the error concentration to decrease 

for 23 of the 30 data sets for C4.5 and for 26 of the 30 data sets for Ripper.  More signifi-

cant, however, is the magnitude of the changes in error concentration.  On average, prun-

ing causes the error concentration for classifiers induced using C4.5 to drop from .471 to 

.375, while the corresponding drop when using Ripper is from .445 to .206.  These results 

indicate that the pruned classifiers produced by Ripper have the errors much less concen-

trated toward the small disjuncts than those produced by C4.5.  Given that Ripper is gen-

erally known to produce very small rule sets, this larger decrease in error concentration is 

likely due to the fact that Ripper has a more aggressive pruning strategy than C4.5. 
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Figure 4.3: Effect of Pruning on Error Concentration 

The results in Table 4.1 and Table 4.2 and in Figure 4.3 indicate that, even with prun-

ing, the “problem with small disjuncts” is still quite evident for both C4.5 and Ripper.  
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For both learners the error concentration, averaged over the thirty data sets, is still decid-

edly positive.  Furthermore, even with pruning both learners produce many classifiers 

with error concentrations greater than .500.  However, it is certainly worth noting that the 

classifiers associated with seven of the data sets induced by Ripper with pruning have 

negative error concentrations. 

Comparing the error concentration values for Ripper with and without pruning reveals 

one particularly interesting example.  For the adult data set, pruning causes the error con-

centration to drop from .516 to -.146.  This large change indicates that many error-prone 

small disjuncts are eliminated. This is supported by the fact that the size of the largest 

disjunct in the induced classifier changes from 1,488 without pruning to 9,293 with prun-

ing.  Thus, pruning seems to have an enormous effect on the classifier induced by Ripper 

from the adult data set.  This may be explained by the fact that the adult data set is quite 

large (over 20,000 examples) and without pruning the learners will generate complex 

classifiers with an enormous number of rules. 

For completeness, the effect that pruning has on error rate and AUC is shown graphi-

cally in Figures 4.4 and 4.5, respectively.  Because most of the points in Figure 4.4 fall 

below the line Y=X, we conclude that pruning tends to reduce the error rate for both C4.5 

and Ripper.  However, the figure also makes it clear that pruning improves the perform-

ance of Ripper more than it improves the performance of C4.5.  In particular, for C4.5 

pruning causes the error rate to drop for 19 of the 30 data sets while for Ripper pruning 

causes the error rate to drop for 24 of the 30 data sets.  Over the 30 data sets pruning 

causes C4.5’s error rate to drop from 18.4% to 17.5% and Ripper’s error rate to drop 

from 19.0% to 16.9%.  Note that with pruning Ripper generally outperforms C4.5. 
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Figure 4.4: Effect of Pruning on Error Rate 

The results in Figure 4.5 do not show any consistent pattern with respect to the effect of 

pruning on AUC.  In some cases pruning reduces AUC and in other cases it increases the 

AUC.  Pruning causes the average AUC for C4.5 to drop slightly, from .754 to .752, 

while pruning causes the average AUC value for Ripper to improve slightly, from .822 to 

.825.  Thus, these results indicate that when AUC is used to measure performance, prun-

ing is not very effective at improving classifier performance, for either C4.5 or Ripper.  

This result may warrant further study and suggests the need for pruning methods that are 

geared toward improving AUC. 

The data underlying Figure 4.5 does indicate that Ripper consistently generates classi-

fiers with better AUC values than C4.5—just as it did when pruning was not used.  In this 
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case the classifiers induced by Ripper have higher AUC values than those induced by 

C4.5 in all but three cases. 
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Figure 4.5: Effect of Pruning on AUC 

4.1.3 Is Pruning More Effective for Classifiers with Large Error Concentrations? 

Given that pruning tends to affect small disjuncts more than large disjuncts, a natural 

question that arises is whether pruning is more helpful when the errors in the unpruned 

classifier are most highly concentrated in the small disjuncts.  Figure 4.6 addresses this 

by plotting the relative reduction in error rate due to pruning versus the error concentra-

tion rank of the unpruned classifier (those classifiers with the highest error concentration 

appear toward the left). 
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Figure 4.6: Improvement in Error Rate versus Error Concentration Rank 

With few exceptions, the data sets with high and medium error concentrations show a 

decrease in error rate when pruning is used.  However, most of the classifiers in the Low-

EC category show an increase in error rate (the absolute change in error rate is fairly sub-

stantial for these classifiers because of the relatively high error rate without pruning).  

These results suggest that pruning is most beneficial when the errors are most highly con-

centrated in the small disjuncts—and may actually hurt when this is not the case. 

4.1.4 Pruning as a Strategy for Addressing the Problem with Small Disjuncts 

The results thus far show that pruning disproportionately eliminates small disjuncts and 

generally leads to a reduction in error rate.  Hence, pruning can be considered a strategy 

for addressing the problem with small disjuncts.  One can gauge the effectiveness of 

pruning as a strategy for addressing the problem with small disjuncts by comparing it to 

an “ideal” strategy that causes the error rate of the small disjuncts to equal the error rate 

of the other, larger, disjuncts. 
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Table 4.3 shows the average error rates of the classifiers induced by C4.5 for the thirty 

data sets, without pruning, with pruning, and with two variants of the idealized strategy.  

The error rates for the idealized strategies are computed by first identifying the smallest 

disjuncts that collectively cover 10% (20%) of the training examples; the error rate of the 

classifier is then recomputed assuming that the error rate of these disjuncts on the test set 

equals the error rate of the remaining disjuncts on the test set. 

Strategy No Pruning Pruning Idealized (10%) Idealized (20%)
Average Error Rate 18.4% 17.5% 15.2% 13.5%

Relative Improvement 4.9% 17.4% 26.6%  

Table 4.3: Comparison of Pruning to Idealized Strategy 

The results in Table 4.3 show that the idealized strategy yields much more dramatic 

improvements in error rate than pruning, even when it is only applied to the disjuncts that 

cover 10% of the training examples.  This indicates that there is still significant room for 

improvement in how small disjuncts are handled. 

4.1.5 The Negative Impact of Pruning on Large Disjuncts 

A consequence of pruning eliminating error-prone small disjuncts is that the large dis-

juncts will become more error prone.  To investigate this further, we reverse our focus in 

this section and concentrate on the performance of the large disjuncts, with and without 

pruning.  Our methodology is to form a classifier by starting with the largest disjunct and 

then progressively add smaller disjuncts, measuring the accuracy (i.e., precision) of the 

classifier at each step. 

In addition to measuring the effect of pruning on large disjuncts, this process has an 

additional benefit.  In many real-world situations one need not classify all examples, but 
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instead can be selective in choosing which examples to classify.  As an example, consider 

a company that plans to initiate a direct-mail campaign promoting some of its products, 

in order to increase sales.  In order to focus the campaign, the company would like to 

segment potential customers based on their buying preferences (e.g., book-buyers, dvd-

buyers, etc.) and only promote the type of product (books, dvds, etc.) that the customer is 

most likely to purchase.  The company has a classifier for segmenting customers, gener-

ated from past purchasing behavior and the results of past marketing campaigns.  The 

company wants to target a subset of the customers for which it has purchasing informa-

tion, in order to limit the budget of the direct-mail campaign.  The company would like to 

contact only those customers for which it is most confident about the product that should 

be targeted. 

Ideally, the company should select those rules (i.e., disjuncts) that are deemed “best” 

according to some combination of factors, such as training accuracy and the number of 

examples classified (since this affects the reliability of the estimated accuracy).  Our re-

sults about the correlation between disjunct size and predictive accuracy suggests one 

possible strategy.  This strategy, which we now explore, is to prefer classification rules 

that classify many training examples.  Thus, those examples that are covered by these 

rules would be classified first.  We also consider the effect that pruning has on this strat-

egy. 

Table 4.4 shows our results.  The accuracy (i.e., precision) of the disjuncts in the clas-

sifier is shown both with and without pruning, at various points.  For example, the first 

column after the data set name shows the performance of the largest disjuncts that collec-

tively cover 10% of the training examples, when evaluated on the test data.  Note that a 
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negative difference indicates that pruning leads to an improvement (i.e., a reduction) in 

error rate, while a positive difference indicates that pruning leads to an increase in error 

rate. Results are reported for classifiers with disjuncts that collectively cover 10%, 30%, 

50%, 70% and 100% of the training examples. 

Dataset
Name prune none ' prune none ' prune none ' prune none ' prune none '

kr-vs-kp 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.6 0.3 0.3
hypothyroid 0.1 0.3 -0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.5 0.5 0.0
vote 3.1 0.0 3.1 1.0 0.0 1.0 0.9 0.0 0.9 2.3 0.7 1.6 5.3 6.9 -1.6
splice-junction 0.3 0.9 -0.6 0.2 0.3 -0.1 0.3 0.2 0.1 2.4 0.6 1.8 4.2 5.8 -1.6
ticket2 0.3 0.0 0.3 2.7 0.8 1.9 2.5 0.7 1.8 2.5 1.0 1.5 4.9 5.8 -0.9
ticket1 0.1 2.1 -1.9 0.3 0.6 -0.3 0.4 0.4 0.0 0.3 0.3 0.0 1.6 2.2 -0.5
ticket3 2.1 2.0 0.1 1.7 1.2 0.5 1.4 0.7 0.6 1.5 0.5 1.0 2.7 3.6 -0.9
soybean-large 1.5 0.0 1.5 5.4 1.0 4.4 5.3 1.6 3.7 4.7 1.3 3.5 8.2 9.1 -0.9
breast-wisc 1.5 1.1 0.4 1.0 1.0 0.0 0.6 0.6 0.0 1.0 1.4 -0.4 4.9 5.0 -0.1
ocr 1.5 1.8 -0.3 1.9 0.8 1.1 1.3 0.6 0.7 1.9 1.0 0.9 2.7 2.2 0.5
hepatitis 5.4 6.7 -1.3 15.0 2.2 12.9 15.0 9.1 5.9 12.8 12.1 0.6 18.2 22.1 -3.9
horse-colic 20.2 1.8 18.4 14.6 4.6 10.0 11.7 5.3 6.3 10.7 10.6 0.1 14.7 16.3 -1.7
crx 7.0 7.3 -0.3 7.9 6.5 1.4 6.3 7.3 -0.9 7.8 9.3 -1.6 15.1 19.0 -3.9
bridges 10.0 0.0 10.0 17.5 0.0 17.5 16.8 2.0 14.9 14.9 9.4 5.4 15.8 15.8 0.0
heart-hungarian 15.4 6.2 9.2 18.4 11.4 7.0 15.6 10.9 4.7 16.0 16.4 -0.4 21.4 24.5 -3.1
market1 16.6 2.2 14.4 12.2 7.8 4.4 12.7 12.1 0.6 14.5 15.9 -1.4 20.9 23.6 -2.6
adult 3.9 0.5 3.4 3.6 4.9 -1.3 8.9 8.1 0.8 8.3 10.6 -2.3 14.1 16.3 -2.2
weather 5.4 8.6 -3.2 10.6 14.0 -3.4 16.4 19.4 -3.1 22.7 24.6 -1.9 31.1 33.2 -2.1
network2 10.8 9.1 1.7 12.5 10.7 1.8 12.7 14.7 -2.0 15.1 17.2 -2.1 22.2 23.9 -1.8
promoters 10.2 19.3 -9.1 10.9 10.4 0.4 14.1 15.7 -1.6 19.6 16.8 2.8 24.4 24.3 0.1
network1 15.3 7.4 7.9 13.1 11.8 1.3 13.2 15.5 -2.3 16.7 17.3 -0.6 22.4 24.1 -1.7
german 10.0 4.9 5.1 11.1 12.5 -1.4 17.4 19.1 -1.8 20.4 25.7 -5.3 28.4 31.7 -3.3
coding 19.8 8.5 11.3 18.7 14.3 4.4 21.1 17.9 3.2 23.6 20.6 3.1 27.7 25.5 2.2
move 24.6 9.0 15.6 19.2 12.1 7.1 21.0 15.5 5.6 22.6 18.7 3.8 23.9 23.5 0.3
sonar 27.6 27.6 0.0 23.7 23.7 0.0 19.2 19.2 0.0 24.4 24.3 0.1 28.4 28.4 0.0
bands 13.1 0.0 13.1 34.3 16.3 18.0 34.1 25.0 9.1 33.8 26.6 7.2 30.1 29.0 1.1
liver 27.5 36.2 -8.8 32.4 28.1 4.3 28.0 30.1 -2.2 30.7 31.8 -1.2 35.4 34.5 0.9
blackjack 25.3 26.1 -0.8 25.1 25.8 -0.8 24.8 26.7 -1.9 26.1 24.4 1.7 27.6 27.8 -0.2
labor 25.0 25.0 0.0 17.5 24.8 -7.3 23.6 20.3 3.2 24.4 17.5 6.9 22.3 20.7 1.6
market2 44.1 45.5 -1.4 43.1 44.3 -1.2 42.5 44.2 -1.7 43.3 45.3 -2.0 45.1 46.3 -1.2
Average 11.6 8.7 2.9 12.5 9.7 2.8 12.9 11.4 1.5 14.2 13.4 0.8 17.5 18.4 -0.9

 50% covered  70% covered  100% covered10% covered  30% covered
Error Rate with Error Rate withError Rate with Error Rate with Error Rate with

 

Table 4.4: Effect of Pruning when Classifier Generated using Largest Disjuncts 

The last row in Table 4.4 shows the error rates averaged over the thirty data sets.  

These results clearly show that, over the thirty data sets, pruning only helps for the last 

column—when all disjuncts are included in the evaluated classifier.  Note that these re-
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sults, which correspond to the accuracy results presented earlier, are typically the only 

results that are reported.  The results from the last row of Table 4.4 are displayed graphi-

cally in Figure 4.7, which plots the error rates, with and without pruning, averaged over 

the thirty data sets.  Note, however, that unlike the results in Table 4.4, Figure 4.7 shows 

classifier performance at each 10% increment. 
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Figure 4.7: The Impact of Pruning on Large Disjuncts 

Figure 4.7 shows that pruning degrades the performance of the highly accurate large 

disjuncts and that if disjunct size is used to select the best rules, then pruning will degrade 

classifier performance in most situations when all examples need not be classified.  These 

results confirm the hypothesis that when pruning eliminates some small disjuncts, the 

emancipated examples cause the error rate of the more accurate large disjuncts to de-

crease.  The overall error rate is reduced only because the error rate associated with the 
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emancipated examples is lower than their original error rate.  Thus, pruning redistributes 

the errors such that the errors are more uniformly distributed than without pruning.  This 

net decrease in accuracy is only overcome, on average, when the classifier includes dis-

juncts that cover at least 80% of the training examples.  

4.2 Training-Set Size 

The amount of training data is known to affect the structure of a classifier and its per-

formance.  For example, providing additional training data typically leads to a more 

complex model (e.g., more leaves, rules, etc.) with improved classification performance.  

In this section we analyze the effect that training-set size has on small disjuncts and error 

concentration. 

This section, like the previous section, begins with a simple example based on the vote 

data set.  The distribution of errors for the vote data set is displayed (again) in Figure 4.8.  

Figure 4.9 shows the distribution of errors when the training set is limited to use only 

10% of the total data.  Since the results in Figure 4.8 are based on 10-fold cross valida-

tion, which uses 90% of the data for training, the classifier described in Figure 4.9 uses 

one-ninth the training data as the one described in Figure 4.8.  Note that the size of the 

bins, and consequently the scale of the x-axis, has been reduced in Figure 4.9. 
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Figure 4.8: Distribution of Errors Using the Full Training Set 
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Figure 4.9: Distribution of Errors using One-Ninth the Training Data 

Comparing the relative distribution of errors between Figure 4.8 and Figure 4.9 shows 

that errors are more concentrated toward the smaller disjuncts in Figure 4.8, which has a 

higher error concentration (.848 vs. .628).  This indicates that increasing the amount of 

training data increases the degree to which the errors are concentrated toward the small 

disjuncts. Like the results in Figure 4.8, the results in Figure 4.9 show that there are three 
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groupings of disjuncts, which one might be tempted to refer to as small, medium, and 

large disjuncts. The size of the disjuncts within each group differs between the two fig-

ures, due to the different number of training examples used to generate each classifier 

(note the change in scale of the x-axis). 

Because error concentration is a relative measure, it is meaningful to compare the er-

ror concentrations for classifiers induced using different training-set sizes.  Table 4.5 

shows the error rate and error concentration for the classifiers induced from each of the 

thirty data sets using three different training set sizes. 

Data Set Name ER EC ER EC ER EC ER EC
kr-vs-kp 3.9 .742 0.7 .884 0.3 .874 -3.6 .132
hypothyroid 1.3 .910 0.6 .838 0.5 .852 -0.8 -.058
vote 9.0 .626 6.7 .762 6.9 .848 -2.1 .222
splice-junction 8.5 .760 6.3 .806 5.8 .818 -2.7 .058
ticket2 7.0 .364 5.7 .788 5.8 .758 -1.2 .394
ticket1 2.9 .476 3.2 .852 2.2 .752 -0.7 .276
ticket3 9.5 .672 4.1 .512 3.6 .744 -5.9 .072
soybean-large 31.9 .484 13.8 .660 9.1 .742 -22.8 .258
breast-wisc 9.2 .366 5.4 .650 5.0 .662 -4.2 .296
ocr 8.9 .506 2.9 .502 2.2 .558 -6.7 .052
hepatitis 22.2 .318 22.5 .526 22.1 .508 -0.1 .190
horse-colic 23.3 .452 18.7 .534 16.3 .504 -7.0 .052
crx 20.6 .460 19.1 .426 19.0 .502 -1.6 .042
bridges 16.8 .100 14.6 .270 15.8 .452 -1.0 .352
heart-hungarian 23.7 .216 22.1 .416 24.5 .450 0.8 .234
market1 26.9 .322 23.9 .422 23.6 .440 -3.3 .118
adult 18.6 .486 17.2 .452 16.3 .424 -2.3 -.062
weather 34.0 .340 32.7 .380 33.2 .416 -0.8 .076
network2 27.8 .354 24.9 .342 23.9 .384 -3.9 .030
promoters 36.0 .108 22.4 .206 24.3 .376 -11.7 .268
network1 28.6 .314 25.1 .354 24.1 .358 -4.5 .044
german 34.3 .248 33.3 .334 31.7 .356 -2.6 .108
coding 38.4 .214 30.6 .280 25.5 .294 -12.9 .080
move 33.7 .158 25.9 .268 23.5 .284 -10.2 .126
sonar 40.4 .028 27.3 .292 28.4 .226 -12.0 .198
bands 36.8 .100 30.7 .152 29.0 .178 -7.8 .078
liver 40.5 .030 36.4 .054 34.5 .120 -6.0 .090
blackjack 29.4 .100 27.9 .094 27.8 .108 -1.6 .008
labor 30.3 .114 17.0 .044 20.7 .102 -9.6 -.012
market2 47.3 .032 45.7 .028 46.3 .040 -1.0 .008
Average 23.4 .347 18.9 .438 18.4 .471 -5.0 .124

10% to 90%
Change  from

50%10% 90%
Amount of Total Data Used for Training

 

Table 4.5: The Effect of Training-Set Size on Error Concentration 
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The last two columns in Table 4.5 highlight the impact that training-set size has on er-

ror rate and error concentration.  The values in these two columns show how the error 

rate and error concentration change when the training set size is increased by a factor of 

nine.  As expected, the error rate tends to decrease with additional training data.  The er-

ror concentration, consistent with the results associated with the vote data set, shows a 

consistent increase—for 27 of the 30 data sets the error concentration increases when the 

amount of training data is increased by a factor of nine. 

The observed change in error concentration can be explained.  First note that the larg-

est disjunct in Figure 4.8 does not cover a single error and that the medium-sized dis-

juncts, with sizes between 80 and 109, cover only a few errors.  Their counterparts in 

Figure 4.9, with size between 20 and 27 and 10 to 15, have higher error rates.  Thus, in 

this case an increase in training data leads to more accurate large disjuncts and a higher 

error concentration. 

One potential explanation for the increase in error concentration has to do with the po-

tential inability of the learner to perfectly express the target concept.  Consider the exam-

ple in Figure 3.1 of Chapter 3, where the target concept is a square rotated forty-five de-

gree with respect to the x-axis.  The large disjunct covers most of the target concept—the 

part that can be learned using axis-parallel cuts of the space, while the small disjuncts are 

an attempt to learn the decision boundaries that are not expressible with axis-parallel de-

cision boundaries. As more training data becomes available, the error rate of the large 

disjunct should decrease, since the decision boundaries associated with the portion of the 

concept that can be learned using axis-parallel cuts will move closer to the boundaries of 

the target concept (in Figure 3.1 they will move inward so they do not extend as far out-
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side of the target concept).  However, even with more data the classifier cannot learn the 

decision boundary of the target concept that is not axis-parallel, and hence there will still 

be errors associated with the small disjuncts.  In fact, the additional training data may 

cause more, error prone, small disjuncts to be formed, in an attempt to better approximate 

this surface.  The net effect will be that the error concentration will increase.  

 Next consider the second scenario, shown previously in Figure 3.2, where there are 

large subconcepts and small subconcepts within the target concept.  Additional training 

data will generally improve the ability to learn the large subconcepts.   It will also tend to 

improve the ability to learn the small subconcepts, but the increased amount of training 

data may now make it possible to sample points within some of these small subconcepts 

for the first time.  This will lead to new small disjuncts, which will be error prone due to 

the small number of examples that are available for learning (i.e., the learned decision 

boundary is likely to deviate significantly from the true decision boundary).   In addition, 

the increased amount of training data may also cause some small disjuncts to be formed 

erroneously, due to noise and other similar real-world issues.   These effects will also 

tend to increase the error concentration of the learned concept. 

In this section we show that additional training data reduces the error rate of induced 

classifiers and increases their error concentration.  These results help to explain the pat-

tern, described in Chapter 3, that classifiers with low error rates tend to have higher error 

concentrations that those with high error rates.  That is, if we imagine that additional 

training data were made available to those data sets where the associated classifier has a 

high error rate, we would expect the error rate to decline and the error concentration to 

increase.  This would tend to move classifiers into the High-EC category, which includes 



68 

 

classifiers with relatively low error rates.  Thus, to a large extent, the pattern that was es-

tablished in Chapter 3 between classifier performance and error concentration reflects the 

degree to which a concept has been learned—concepts that have been well-learned tend 

to have very large disjuncts which are extremely accurate and hence have low error con-

centrations. 

4.3 Noise 

Noise plays an important role in classifier learning.  Both the structure and performance 

of a classifier is affected by noisy data.  In particular, noisy data may cause many errone-

ous small disjuncts to be induced.  Danyluk and Provost (1993) speculated that the classi-

fiers they induced from (systematic) noisy data performed poorly because of an inability 

to distinguish between these erroneous consistencies and correct ones. Weiss (1995) and 

Weiss and Hirsh (1998) explored this hypothesis using, respectively, two artificial data 

sets and two real-world data sets and showed that noise can make small subconcepts 

within the target concept (i.e., the so-called true exceptions) difficult to learn. 

The research presented in this section further investigates the role of noise in learning, 

and, in particular, shows how noisy data affects classifiers and the distribution of errors 

within these classifiers.  The experiments described in this section involve applying ran-

dom class noise and random attribute noise to the data.  The following experimental sce-

narios are explored: 

Scenario 1: Random class noise is applied to the training data 

Scenario 2: Random attribute noise is applied to the training data 

Scenario 3: Random attribute noise is applied to both the training and test data 
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Class noise is only applied to the training set since the uncorrupted class label in the 

test set is required to properly measure classifier performance.  The second scenario, in 

which random attribute noise is applied only to the training set, permits us to measure the 

sensitivity of the learner to noise (if attribute noise were applied to the test set then even 

if the correct concept were learned there would be classification errors).  The third sce-

nario, in which attribute noise is applied to both the training and test set, corresponds to 

the real-world situation where errors in measurement affect all examples. 

Noise is defined as follows.  A level of n% random class noise means that for n% of 

the examples the class label is replaced by a randomly selected class value (possibly the 

same as the original value).  Attribute noise is defined similarly, except that for numerical 

attributes a random value is selected between the minimum and maximum values that 

occur within the data set.  Note that only when the noise level reaches 100% is all infor-

mation contained within the original data lost. 

The vote data set is used to illustrate the effect that noise has on the distribution of ex-

amples, by disjunct size.  The results are shown in Figure 4.10, with the graphs in the left 

column corresponding to the case when there is no pruning and the graphs in the right 

column corresponding to the case when pruning is used.  Figures 4.10a and 4.10b, which 

have been displayed previously, show the results without any noise and are provided for 

comparison purposes.  Figures 4.10c and 4.10d correspond to the case where 10% attrib-

ute noise is applied to the training data and Figures 4.10e and 4.10f correspond to the 

case where 10% class noise is applied to the training data. 
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Figure 4.10a: No Noise 
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Figure 4.10c: 10% Attribute Noise 
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Figure 4.10e: 10% Class Noise 
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Figure 4.10b: No Noise 
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Figure 4.10d: 10% Attribute Noise 
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Figure 4.10f: 10% Class Noise 

 

 

Figure 4.10: Effect of Noise on the Distribution of Errors 
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A comparison of Figure 4.10a with Figures 4.10c and 4.10e shows that without prun-

ing both attribute and class noise cause more test examples to be covered by small dis-

juncts and less to be covered by the large disjuncts.  This shift is much more dramatic for 

class noise than for attribute noise, and, as is indicated by the error rates, the class noise 

has a greater impact on classifier performance.  The underlying data indicate that this 

shift occurs because noisy data causes many more small disjuncts to be formed.  This 

comparison also shows that the error concentration remains fairly stable when attribute 

noise is added but decreases significantly when class noise is added. 

Pruning reduces the shift in the distribution of correctly and incorrectly classified ex-

amples just described.  This can be seen by comparing the classifiers induced from noisy 

data, without and then with pruning.  Specifically, the distributions in Figures 4.10d and 

4.10f are much more similar to the distribution in Figure 4.10b than the distributions in 

Figures 4.10c and 4.10e are to the distribution in Figure 4.10a.  A comparison of the error 

rates for classifiers with and without pruning also shows that pruning is able to combat 

the effect of noise on the ability of the classifier to learn the concept.  Surprisingly, when 

pruning is used, classifier accuracy for the vote data set actually improves when 10% at-

tribute noise is added—the error rate decreases from 5.3% to 4.6%.  This phenomenon, 

which is discussed in more detail shortly, is actually observed for many of the thirty data 

sets, but only when low (e.g., 10%) levels of attribute noise are added.  The error concen-

tration results also indicate that even with pruning, noise causes the errors to be distrib-

uted more uniformly throughout the disjuncts than when no noise is applied. 
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The results presented in the remainder of this section are based on averages over 

twenty-seven of the thirty data sets listed in Table 2.3. 1  The next three figures show, re-

spectively, how noise affects the number of leaves, the error rate and the error concentra-

tion of the induced classifiers.  Measurements are taken at the following noise levels: 0%, 

5%, 10%, 20%, 30%, 40%, and 50%.  The curves in these figures are labeled to identify 

the type of noise that is applied, whether it is applied to the training set or training and 

test set and whether pruning is used.  The labels are interpreted as follows: the “Class” 

and “Attribute” prefix indicate the type of noise, the “-Both” term, if included, indicates 

that the noise is applied to the training and test sets rather than to just the training set, and 

the “-Prune” suffix is used to indicate that the results are with pruning. 
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Figure 4.11: The Effect of Noise on Classifier Complexity 

                                                           
1 The coding, ocr and bands data sets were excluded because of resource limitations in the program used to 

apply the noise model to the data.  These limitations had to do with the maximum number of allowed at-
tributes and attribute values. 
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The results in Figure 4.11 show that without pruning the number of leaves in the in-

duced decision trees increase dramatically with increasing levels of noise, but that prun-

ing effectively eliminates this increase.  This indicates that pruning is able to prevent 

noise from generating large numbers of additional small disjuncts. 

The effect that noise has on error rate is shown in Figure 4.12.  The error rate of the 

induced classifiers increases with increasing levels of noise, with one exception.  When 

attribute noise is applied to only the training data and pruning is used, the error rate de-

creases slightly from 17.7% with 5% noise to 17.5% with 10% noise.  This decrease is no 

anomaly, since it occurs for most of the data sets.  This decrease in error rate may be due 

to the fact that attribute noise leads to more small disjuncts and consequently more ag-

gressive pruning, which turns out to be beneficial.  A comparison of the results in Figure 

4.12 for class noise with and without pruning (Class-Prune and Class) with the results for 

attribute noise with and without pruning (Attribute and Attribute-Prune) shows that prun-

ing is far more effective at handling class noise than attribute noise. 
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Figure 4.12: The Effect of Noise on Error Rate 
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Figure 4.13 shows the effect of noise on error concentration.  When pruning is not 

employed, increasing the amount of noise leads to a decrease in error concentration, indi-

cating that errors become more uniformly distributed based on disjunct size.  This helps 

explain why we find a high-EC group of classifiers with good classifier performance and 

a medium-EC group of classifiers with worse classifier performance: adding noise to 

classifiers in the former increases their error rate and decreases their error concentration, 

making them look more like classifiers in the latter group.  The results in Figure 4.13 also 

show, however, that when there is noise only in the training set (Class-Prune, Attribute-

Prune), pruning causes the error concentration to remain relatively constant.  This is the 

same thing that was observed for the vote data set in Figures 4.10d and 4.10e—pruning 

prevents noisy data from breaking down the highly accurate large disjuncts (i.e., pruning 

prunes back the newly formed small disjuncts, reconstituting the large disjuncts). 
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Figure 4.13: The Effect of Noise on Error Concentration 
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The results in this section demonstrate that pruning enables the learner to combat 

noisy training data. Specifically, pruning removes many of the disjuncts that are caused 

by the noise (Figure 4.11) and this results in a much smaller increase in error rate than if 

pruning were not employed (Figure 4.12).  Because pruning eliminates many of the erro-

neous small disjuncts, the errors are not nearly as concentrated in the small disjuncts 

(Figure 4.13).  We believe that the increase in error rate that comes from noisy training 

data when pruning is employed is at least partly due to the inability of the learner to dis-

tinguish between small subconcepts in the target concept and apparent subconcepts that 

are due to noise. 

The detailed results associated with the individual data sets show that for class noise 

there is a trend for data sets with high error concentrations to experience a large increase 

in error rate from class noise and for those with low error concentrations to experience a 

much smaller increase in error rate.  The most striking observation is that the induced 

classifiers with very low error concentrations are extremely tolerant of class noise, while 

none of the other classifiers exhibit this property.  For example, the blackjack and labor 

data sets, both of which have low error concentrations (.108 and .102, respectively using 

C4.5), are so tolerant of noise that when 50% random class noise is added to the training 

set, the error rate on the induced classifier on the test data increases by less than 1%. 

These results are explained if noise makes learning difficult because of an inability to 

distinguish between small subconcepts of the target concept and noisy data.  Classifiers 

with a high error concentration already show an inability to properly learn the small sub-

concepts in the target concept (based on the assumption that small disjuncts correspond to 

small subconcepts)—the addition of noise simply worsens the situation.  Concepts with 
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very large subconcepts that can be learned well without noise tend to form classifiers 

with highly accurate large disjuncts.  These target concepts should be less susceptible to 

class noise.  To see this, observe that corrupting the class labels for a few examples that 

are covered by a very large disjunct is unlikely to change the class label learned for that 

disjunct. 

4.4 Class Imbalance 

A data set exhibits class imbalance if the number of examples belonging to each class is 

not identical.  This section investigates the relationship between class imbalance and er-

ror concentration by altering the class distribution of a group of data sets and then meas-

uring the impact that this has on the error concentration of the induced classifiers.  The 

connection between class imbalance and error concentration is suggested by some of the 

results from the study of class distribution in Chapter 6.  For simplicity, we look at only 

two class distributions for each data set: the naturally occurring class distribution and a 

perfectly balanced class distribution, in which each class is represented in equal propor-

tions.  By comparing the error concentrations for these two class distributions, one can 

also determine how much of the “problem with small disjuncts” is due to class imbalance 

in the data set. 

The experiments described in this section require that the class distribution of the data 

sets be modified.  Thus, these experiments utilize the experimental methodology associ-

ated with the class distribution experiments.  This means that the twenty-six data sets de-

scribed in Table 2.4 are used in this section, rather than the thirty data sets that were em-

ployed in earlier sections.  The balanced version of the data set is formed using the meth-
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odology described later in Section 6.5.1; however, in this case the distribution of the test 

set is also altered to form a balanced distribution. 

  Figure 4.14 shows the error concentration for the classifiers induced by C4.5, using 

the natural and balanced versions of the data sets listed in Table 2.4.  Since the error con-

centrations are all greater than zero when there is no class imbalance, we conclude that 

even with a balanced data set, errors tend to be concentrated toward the smaller disjuncts.  

However, by comparing the error concentrations associated with the classifiers induced 

from the balanced and natural class distributions, we see that when there is class imbal-

ance, with few exceptions, the error concentration increases. The differences tend to be 

larger when the data set has greater class imbalance (the leftmost data set has the most 

natural class imbalance and the class imbalance decreases from left to right). 
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Figure 4.14: The Effect of Class Distribution on Error Concentration 
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The average error concentration of the classifiers induced from the balanced versions 

of the data sets is .396 while the average error concentration associated with the naturally 

occurring class distributions is .496.  This corresponds to a 20% reduction in error con-

centration when class imbalance is removed.  If we restrict our attention to the first 18 

data sets that contain at most 30% minority-class examples, then the differences in error 

concentration are 28% (.387 for the balanced data sets versus .537 for the data sets with 

the natural class distributions). 

We therefore conclude that for data sets with class imbalance, part of the reason why 

small disjuncts have a higher error rate than the large disjuncts is due to class imbalance.  

This is the first empirical evidence that class imbalance is partly responsible for the prob-

lem with small disjuncts.  A complete explanation for this behavior requires a better un-

derstanding of class distribution and therefore is deferred until Chapter 6.  However, a 

brief explanation is provided here.  As we shall see in Chapter 6, minority-class predic-

tions (i.e., minority-labeled leaves, rules, etc.) tend to be formed from fewer training ex-

amples than majority-class predictions and hence are more often associated with small 

disjuncts.  Because of the test-distribution effect to be described in Chapter 6, minority-

class examples are more difficult to classify than majority-class examples.  Therefore, 

part of the reason why small disjuncts have a higher error rate than large disjuncts is that 

they are disproportionately labeled with the minority class—the class harder to classify 

correctly.   

4.5 Summary 

This chapter investigated how pruning, training-set size, noise, and class imbalance affect 

error concentration, and, more generally, affect learning.  In particular, a great deal of 
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attention was devoted to pruning.  The results in this chapter show that pruning dispro-

portionately eliminates small disjuncts.  This causes the errors to be distributed much 

more uniformly throughout the disjuncts.  As a consequence, the results in this chapter 

show that while pruning generally leads to an overall decrease in error rate, it leads to an 

increase in error rate of the larger disjuncts, which tend to be the most accurate.  This 

may lead to poorer classification performance when it isn’t necessary to classify all ex-

amples.  Pruning was also shown to be ineffective at improving classifier performance 

when the unpruned classifier has a low error concentration (i.e., when the errors are 

spread somewhat uniformly across the disjuncts).   Finally, pruning was also evaluated as 

a method for addressing the problem with small disjuncts and shown to be only partly 

effective. 

The analysis of training-set size shows that an increase in the amount of training data 

almost always leads to an increase in error concentration.  This change occurs because as 

more training data is made available, the large disjuncts, which may cover the areas in the 

target concept that are expressible using axis-parallel cuts in the instance space, can be 

learned more accurately.  In contrast, small disjuncts, which may be used to approximate 

the portions of the target concept that cannot be expressed using axis-parallel cuts (and 

generally lie close to the decision boundary), will still contain some errors.  Furthermore, 

the additional training data may cause some small subconcepts to be sampled for the first 

time, resulting in small disjuncts.  These disjuncts will tend to be error prone because 

with few training examples, it will be difficult to accurately determine the correct 

boundaries of the subconcept. 
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The section on noise shows that noisy training data leads to the formation of many ad-

ditional, erroneous, small disjuncts, and the breakdown of many of the highly accurate 

large disjuncts.  Pruning dramatically reduces the number of small disjuncts that are 

formed due to the noisy training data, which proves to be quite effective; pruning greatly 

diminishes the reduction in classifier accuracy that accompanies noise.  The results also 

indicate that classifiers with high error concentrations are much more sensitive to class 

noise than those with low error concentrations.  This suggests that the increase in error 

rate that comes from noisy training data when pruning is employed is at least partly due 

to the inability of the learner to distinguish between small subconcepts in the target con-

cept and noisy data that appear similar, or identical to, such subconcepts. 

Class imbalance is shown to affect error concentration.  Increasing the amount of class 

imbalance, or skew, is shown to increase the error concentration of the induced classifier.  

This directly ties some of the research into small disjuncts with the research into class 

distribution.  Although a complete explanation is provided in Chapter 6, the reason that 

class imbalance affects error concentration is that minority-class examples are more diffi-

cult to classify than majority-class examples, and small disjuncts are disproportionately 

labeled with the minority class.  Thus class imbalance, and in particular the minority 

class, is partly responsible for the problem with small disjuncts.  
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Chapter 5 

Research Related to Small Disjuncts 

There have been a number of research papers that specifically address the topic of small 

disjuncts.  This research is summarized in this section.  Rather than describing the re-

search chronologically, research into small disjuncts is divided into three areas and the 

research associated with each area is described in separate subsections.  Research into 

small disjuncts can be placed into the following categories, based on the purpose of the 

research (the research in this thesis focuses on the first two categories): 

• Research to measure the role and impact of small disjuncts on learning. 

• Research to provide a better understanding of small disjuncts (such as why they 

are more error prone than large disjuncts). 

• Research into how to address the problem of small disjuncts by building better 

learners. 

5.1 Measuring Small Disjuncts 

Prior research into small disjuncts did not focus on providing a thorough empirical analy-

sis of the role small disjuncts play in learning.  As stated earlier in this thesis, previous 

research efforts fully analyze only one or two data sets.   In particular, Holte et al. (1989) 

analyze two data sets, Ali and Pazzani (1992) one data set, Danyluk and Provost (1993) 
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one data set, Weiss (1995) two data sets, Weiss and Hirsh (1998) two data sets, and Car-

valho and Freitas (2000) two data sets. 

Of these research studies, only the study by Danyluk and Provost (1993) was focused 

primarily on assessing the impact of small disjuncts on learning.  In this research, one 

domain was studied in detail, to show that when inductive learning is used to form a 

knowledge base of rules for diagnosing telecommunication problems, small disjuncts are 

necessary for high accuracy even though they have a relatively high error rate.  Chapter 3 

extended this research by measuring the impact of small disjuncts on classifiers induced 

from thirty data sets. 

5.2 Understanding Small Disjuncts 

Danyluk and Provost (1993) observed that in the telecommunication domain they were 

studying, when they trained using noisy data, classifier accuracy suffered severely.  They 

speculated that this occurred because: 1) it is difficult to distinguish between noise and 

true exceptions and, 2) in their domain, errors in measurement and classification often 

occur systematically rather than randomly.  Thus, they speculated that it was difficult to 

distinguish between erroneous consistencies and correct ones.2    

This speculation formed the basis for the research by Weiss (1995) and Weiss and 

Hirsh (1998).  Weiss (1995) investigated the interaction between noise, rare cases and 

small disjuncts using synthetic datasets, for which the target concept is known and can be 

manipulated.  Some synthetic data sets were generated based on concepts that included 

many rare cases (small subconcepts) while others were constructed from concepts that 

                                                           
2 Throughout this thesis we use the term  “small subconcepts” in place of the terms “rare cases”, “true ex-

ceptions” and “correct exceptions” and the term “large subconcept” in place of  “common cases” or “gen-
eral cases”.  We believe this terminology is more precise and less prone to confusion.   
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included only general cases (large subconcepts).  The research showed that the rare cases 

tended to form small disjuncts in the induced classifier.  It further showed that systematic 

attribute noise, class noise and missing attributes can each cause small disjuncts to have 

higher error rates than large disjuncts and that those test examples associated with rare 

cases are misclassified more often than the test examples associated with common cases.  

Explanations for these observations were provided.  For example, the impact of attribute 

noise was explained by noting that attribute noise can cause common cases in the training 

data to appear identical to rare cases, thus "overwhelming" the rare cases and causing the 

wrong class label to be assigned to the small disjuncts.  This research was followed up by 

additional research that analyzed the impact of noise on learning and small disjuncts us-

ing two real-world data sets (Weiss & Hirsh, 1998).  This research yielded conclusions 

similar to those found by Weiss (1995). 

5.3 Addressing The Problem with Small Disjuncts 

The majority of research on small disjuncts focuses on ways to address the problem with 

small disjuncts.  Holte et al. (1989) evaluate several strategies for improving learning in 

the presence of small disjuncts.  First, they show that the strategy of eliminating all small 

disjuncts is ineffective, because the emancipated examples are still likely to be misclassi-

fied.  They then argue that while a maximum generality bias, which is used by systems 

such as ID3, is appropriate for large disjuncts, it is not appropriate for small disjuncts.  

Thus, they focus on a strategy for making small disjuncts highly specific.  To test this 

claim, they run experiments where a maximum generality bias is used for the large dis-

juncts and a maximum specificity bias is used for the small disjuncts (for a maximum 

specificity bias all conditions satisfied by the training examples covered by a disjunct are 
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added to the disjunct).  The experimental results show that with the maximum specificity 

bias, the resulting disjuncts cover fewer cases and have much lower error rates.  Unfortu-

nately, the emancipated examples increase the error rate of the large disjuncts, to the ex-

tent that the overall error rates remain roughly the same. Although the authors also ex-

periment with a more selective bias that produces interesting results, it does not demon-

strably improve classifier performance. 

Ting (1994) evaluates a method for improving the performance of small disjuncts that 

also employs a maximum specificity bias.  However, unlike the method employed by 

Holte et al., this method does not affect—and therefore cannot degrade—the performance 

of the large disjuncts.  The basic approach is to first use C4.5 to determine if an example 

is covered by a small or large disjunct.  If the example is covered by a large disjunct, then 

C4.5 is used to classify the example; otherwise an instance-based learner, IB1, is used to 

classify the example.  Instance-based learning is used in this case because it is an extreme 

example of the maximum specificity bias. 

In order to use Ting’s hybrid learning method, there must be a specific criterion for 

deciding whether a disjunct is a small disjunct.  Ting evaluated several criteria.  These 

criteria used a threshold value, which was applied to 1) the absolute size of the disjunct, 

2) the relative size of the disjunct, and 3) the error rate of the disjunct.  For each criterion, 

only the best result, produced using the best threshold, was reported.  Because the thresh-

old values were selected using the test data rather than an independent hold-out set, the 

results are overly optimistic.  Thus, although the observed results are encouraging, it can-

not be claimed that the composite learner successfully addresses the problem with small 

disjuncts. 
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Carvalho and Freitas (2000) employ a hybrid method similar to that used by Ting.  

They also use C4.5 to build a decision tree and then, for each training example, use the 

size of the leaf covering that example to determine if the example is covered by a small 

or large disjunct.  The training examples that fall into each small disjunct are then fed to-

gether into a genetic-algorithm based learner that forms rules to specifically cover the 

examples that fall into that individual disjunct.  Test examples that fall into leaves corre-

sponding to large disjuncts are then assigned a class label based on the decision tree; test 

examples that fall into a small disjunct are classified by the rules learned by the genetic 

algorithm for that particular disjunct.  The experimental results are also encouraging, but 

because only a few data sets are analyzed, and because the improvements in classifier 

performance are only seen for certain specific definitions of “small disjunct”, it cannot be 

concluded that this research substantially addresses the problem with small disjuncts. 

Several other approaches have been proposed for addressing the problem with small 

disjuncts.  Quinlan (1991) tries to minimize the problem by improving the probability 

estimates used to assign a class label to a disjunct.  A naive estimate of the error rate of a 

disjunct is the proportion of the training examples that it misclassifies.  However, this es-

timate performs quite poorly for small disjuncts, due to the small number of examples 

used to form the estimate. Quinlan describes a method for improving the accuracy esti-

mates of the small disjuncts by taking the class distribution into account.  The motivation 

for this work is that for unbalanced class distributions one would expect the disjuncts that 

predict the majority class to have a lower error rate than those predicting the minority 

class (this is the test distribution effect described in Chapter 6).  Quinlan incorporates 

these prior probabilities into the error rate estimates.  However, instead of using the over-
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all class distribution as the prior probability, Quinlan generates a more representative 

measure by calculating the class distribution only on those training examples that are 

"close" to the small disjunct—that is, fail to satisfy at most one condition in the disjunct.  

The experimental results demonstrate that Quinlan's error rate estimation model outper-

forms the naive method, most significantly for skewed distributions.  Note that this re-

search describes a connection between the problem with small disjuncts and the class dis-

tribution of the data set.  This connection was investigated further in Chapter 4, Section 4. 

Van den Bosch, Weijters, Van den Herik and Daelemans (1997) advocate the use of 

instance-based learning for domains with many small disjuncts.  They are mainly inter-

ested in language learning tasks, which they claim result in many small disjuncts, or 

“pockets of exceptions”.  They focus on the problem of learning word pronunciations.  

Although instance-based learners may not appear to form disjunctive concepts, they do 

since they partition the instance space into disjoint regions. The authors compute cluster 

sizes, which they view as analogous to disjunct size.  They determine cluster sizes by re-

peatedly selecting examples from the data and then form a ranked list of the 100 nearest 

neighbors.  They then determine the rank of the nearest neighbor with a different class 

value—this value minus one is considered to be the cluster size.  This method, as well as 

the more conventional method of measuring disjunct size via a decision tree, shows that 

the word pronunciation domain has many small disjuncts.  The authors also try an infor-

mation-theoretic weighted similarity matching function, which effectively re-scales the 

feature space so that "more important" features have greater weight.  When this is done, 

the size of the average cluster increases from 15 to 25.  Unfortunately, error rates were 
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not specified for the various clusters and hence one cannot measure how effective this 

strategy is for dealing with the problem with small disjuncts. 
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Chapter 6 

The Role of Class Distribution in Learning 

“…it’s like finding a needle in a haystack.”  

- unknown 

 
Class distribution plays a central role in learning.  As we shall see, the class distribution 

of the training data affects a classifier’s ability to classify minority-class examples and 

majority-class examples, as well as the overall performance of the induced classifier.   

This chapter begins with a discussion of why training data is often costly and how this 

motivates the research in this thesis on class distribution.  Basic terminology related to 

class distribution is then introduced.  Next, the implications of altering the class distribu-

tion of the training data are discussed, as is a method for adjusting the induced classifier 

to account for these changes, so that the induced classifier is not improperly biased.  The 

experimental methodology associated with the class distribution experiments is then de-

scribed.  The main experimental results for the chapter are then presented.  These results 

analyze the differences in classifier performance, with respect to the minority and major-

ity classes.  The reasons for these differences are also discussed. 

The analysis of class distribution and its effect on learning then continues in Chapter 

7, which shows how varying the class distribution of the training data affects classifier 

performance.  These results are used to identify and characterize the best class distribu-

tion for learning.  Chapter 8 then provides a budget-sensitive progressive-sampling algo-
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rithm for selecting examples, such that the resulting class distribution will yield classifi-

ers with near optimal performance.  Related research is described in Chapter 9. 

It should be noted up front that this study of class distribution only utilizes C4.5, a de-

cision-tree learner, and therefore, strictly speaking, the conclusions only apply to this 

class of learners.  However, in Chapter 10 we describe why our results may hold for other 

learners as well. 

6.1 Learning from Costly Data 

As described in Chapter 1, there are two main motivations for studying the effect of class 

distribution on learning.  The first reason concerns the need to provide a better under-

standing of class distribution and how it affects learning.  The second reason has to do 

with selecting the class distribution carefully when the training data must be limited, so 

that classifier performance is not unnecessarily degraded.  In this section we describe in 

much greater detail the reasons why the amount of training data may need to be limited—

and how this relates to the study of class distribution. 

In real world situations the amount of training data must often be limited because ob-

taining data in a form suitable for learning may be costly and/or learning from large 

amounts of data may be costly.  The costs associated with forming a useful training set 

include the costs of obtaining the raw data, cleaning the data, transporting/storing the 

data, and transforming the data into a representation suitable for learning.  The costs as-

sociated with learning from the data involve the cost of computer hardware, the “cost” 

associated with the time it takes to learn from the data, and the “opportunity cost” associ-

ated with suboptimal learning from extremely large data sets due to limited computa-

tional resources.  Turney (2000) provides a more complete description of these costs. 
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When the costs of preparing or learning from the data are substantial, so that it is nec-

essary to limit the amount of training data, an important question, investigated in this the-

sis is: in what proportion should the classes be represented in the training data?  Some 

practitioners believe that the naturally occurring marginal class distribution should be 

used for learning, so that new examples will be classified using a model built from the 

same underlying distribution.  Other practitioners believe that the training set should con-

tain an increased percentage of minority-class examples.  This viewpoint is supported by 

the following quote, “if the sample size is fixed, a balanced sample will usually produce 

more accurate predictions than an unbalanced 5%/95% split” (SAS, 2001).  However, we 

are aware of no thorough empirical study of the relationship between the class distribu-

tion of the training set and classifier performance, so neither of these views has been 

validated and the choice of class distribution often is made arbitrarily—and with little 

understanding of the consequences.  We remedy this in this thesis. 

As just described, there are two basic scenarios where the amount of training data may 

need to be limited.  The first scenario is when the cost of learning from the data (e.g., 

computation costs) is costly.  In this case the research presented in this thesis will help 

determine which existing training examples to discard, so that the resulting class distribu-

tion yield a classifier that performs well.  The second scenario is when it is costly to ob-

tain usable training examples.  In this situation the research in this thesis will help deter-

mine the proportion of examples belonging to each class to procure, again so that the in-

duced classifier will perform well.  However, this assumes that one can select examples 

belonging to a specific class—and only incur the acquisitions costs for examples belong-

ing to this class.  There are many real world situations where this is the case.  This occurs 
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when the examples belonging to each class come from separate sources or are generated 

by separate processes, or when the cost of procuring the example is due to the cost of 

forming a useful training example rather than the cost of obtaining the raw, labeled, data. 

Telecommunication fraud detection (Fawcett & Provost, 1997) provides an example 

where data can be obtained from separate sources.  In this domain, any transactions stated 

to be fraudulent by the customer are first verified to ensure they are not legitimate and 

then are stored separately from the valid transactions.  Because of this, fraudulent trans-

actions can be procured independently of non-fraudulent transactions. 

In other situations labeled raw data can be obtained very cheaply, but it is the process 

of forming usable training examples from the raw data that is expensive.  For example, 

consider the phone data set, one of the twenty-six data sets used in this thesis to study 

class distribution.  This data set is constructed from low-level call-detail records that de-

scribe a phone call, where each call-detail record includes the originating and terminating 

phone numbers, the connection time, the day of week and duration of each call.  The 

learning task is to determine whether a phone line, based on its pattern of usage, belongs 

to a business or a residence.  Each phone line may have hundreds or even thousands of 

call-detail records associated with it, and all of these must be aggregated/summarized to 

form a single training example.  Billions of call-detail records, covering hundreds of mil-

lions of phone lines, potentially are available for learning.  Because of the effort associ-

ated with loading data from dozens of computer tapes, disk-space limitations, and the 

enormous processing time required to summarize the raw data, it is not feasible to con-

struct a data set using all available raw data.  Consequently, the number of training ex-

amples must be limited.  Since the class label associated with each phone line is known 
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for the training data, it is straightforward to select training examples (i.e., phone lines) 

based on the class.  Because of the costs just described, the phone data set was limited to 

approximately 650,000 training examples, which were generated from approximately 600 

million call-detail records (a small fraction of the call-detail records available).  Given the 

number of large transaction-oriented databases in existence, this need to limit the number 

of usable (i.e., summarized) training examples surely is not uncommon. 

6.2 A Quick Example—Why Does Class Distribution Matter? 

To provide some initial insight to why one might want to choose the class distribution of 

the training data carefully, given a fixed amount of training data, consider Figure 6.1.  In 

addition to displaying a traditional learning curve, which shows how the overall accuracy 

of the induced classifier varies in response to changes in training-set size, this figure also 

includes learning curves that show the ability of the classifier to correctly classify minor-

ity-class and majority-class test examples. 
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Figure 6.1: Learning Curves for the Letter-Vowel Data Set 
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Figure 6.1 demonstrates that providing additional training examples affects the per-

formance of the minority and majority classes differently (i.e., the slopes of the corre-

sponding learning curves are different).  While this does not necessarily tell us from 

which class to choose additional examples (because the two classes are not learned inde-

pendently), it does indicate that adding examples from each class in a proportion that is 

different from the naturally occurring class distribution will lead to classifiers with differ-

ent performance characteristics.  It seems reasonable to expect that some class distribu-

tion may yield a classifier that outperforms the one induced from the naturally occurring 

class distribution. 

6.3 Terminology 

This section introduces some additional terminology for two class learning problems, es-

pecially as it relates to class distribution.  This terminology will help with the analysis of 

how class distribution affects learning.  In the following, recall that the positive class cor-

responds to the minority class and that the negative class corresponds to the majority 

class. 

Formally, let x be an instance drawn from some fixed distribution D.  Every instance x 

is mapped (perhaps probabilistically) to a class C ∈{p, n} by a function c, where c repre-

VHQWV�WKH�WUXH��EXW�XQNQRZQ��FODVVLILFDWLRQ�IXQFWLRQ���/HW� �EH�WKH�PDUJLQDO�SUREDELOLW\�RI�

membership of x in the positive class.  The marginal probability of membership in the 

negative class equals 1 –� ���7KHVH�PDUJLQDO�SUREDELOLWLHV�VRPHWLPHV�DUH�UHIHUUHG�WR�DV�WKH�

“class priors” or the “base rate”. 

A classifier t is a mapping from instances x to classes {p, n} and is an approximation 

of c.  For notational convenience, let t(x) ∈  {P, N} so that it is always clear whether a 
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class value is an actual (lower case) or predicted (upper case) value. The expected accu-

racy of a classifier t�� t, is defined aV� t = Pr(t(x) = c(x)), or, equivalently as: 

� t � �  • Pr(t(x) = P | c(x) = p) + (1 –� ����Pr(t(x) = N | c(x) = n) [6.1] 

Many classifiers produce not only a classification, but also estimates of the probability 

that x will take on each class value.  Let Postt(x) be classifier t’s estimated (posterior) 

probability that for instance x, c(x)=p. Classifiers that produce class-membership prob-

abilities produce a classification by applying a numeric threshold to the posterior prob-

abilities.  For example, a threshold value of .5 may be used so that t(x) = P iff Postt (x) > 

.5; otherwise t(x) = N. 

A variety of classifiers function by partitioning the input space into a set  of disjoint 

regions (a region being defined by a set of potential instances).  For example, for a classi-

fication tree, the regions are described by conjoining the conditions leading to the leaves 

of the tree.  Each region L ∈  will �FRQWDLQ�VRPH�QXPEHU�RI�WUDLQLQJ�LQVWDQFHV�� L.  Let 

Lp�DQG� Ln be the numbers of positive and negative training instances in region L, such 

WKDW� L  � Lp + Ln.  Such classifiers often estimate Postt(x | x ∈  /��DV� Lp�� Lp+ Ln) and 

assign a classification for all instances x ∈  L based on this estimate and a numeric thresh-

old, as described earlier.  Now, let P and N be the sets of regions that predict the posi-

tive and negative classes, respectively, such that P �  N = .  For each region L∈ , t 

KDV�DQ�DVVRFLDWHG�DFFXUDF\�� L = Pr(c(x) = t(x) | x ∈  /��� �/HW� P represent the expected 

accuracy for x ∈  P�DQG� N  the expected accuracy for x ∈  N (for notational conven-
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ience we treat P and N as the union of the set of instances in the corresponding re-

gions). 

6.4 Correcting for Changes to the Class Distribution 

Many classifier induction algorithms assume that the training and test data are drawn 

from the same fixed, underlying, distribution D.  In particular, these algorithms assume 

that rtrain and rtest, the fractions of positive examples in the training and test sets, ap-

SUR[LPDWH� �� WKH�WUXH�³SULRU´�SUREDELOity of encountering a positive example.  These in-

duction algorithms use the estimated class priors based on rtrain, either implicitly or ex-

plicitly, to construct a model and to assign classifications.  If the estimated value of the 

class priors is not accurate, then the posterior probabilities of the model will be improp-

erly biased.  Specifically, “increasing the prior probability of a class increases the poste-

rior probability of the class, moving the classification boundary for that class so that more 

cases are classified into the class” (SAS, 2001).  Thus, if the training-set data are selected 

so that rtrain GRHV�QRW�DSSUR[LPDWH� �� WKHQ� WKH�SRVWHULRU�SUREDELOLWLHV�VKRXOG�EH�DGMXVWHG�

EDVHG�RQ�WKH�GLIIHUHQFHV�EHWZHHQ� �DQG�rtrain.  If such a correction is not performed, then 

the resulting bias will cause the classifier to classify the preferentially sampled class more 

accurately, but the overall accuracy of the classifier will almost always suffer (we show 

this later in this chapter).  Thus, it is critical that the classifier be adjusted to eliminate 

this bias.3 

                                                           
3 In situations where it is more costly to misclassify minority-class examples than majority-class examples, 

practitioners sometimes introduce this bias on purpose.  We would argue that in this case a more appro-
priate approach would be to use a probabilistic or cost-sensitive learning method, so that all available 
training data can be used for training. 
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In the remainder of this section we describe a method for adjusting the posterior prob-

abilities to account for the difference between rtrain�DQG� �VR�WKDW�WKLV�ELDV�LV�DYRLGHG���)RU�

concreteness, this method is described with respect to a decision tree classifier, but the 

description applies equally well to any classifier that operates by partitioning the input 

space into regions.  This method, previously documented (Weiss & Provost, 2001), is jus-

tified informally, using a simple, intuitive, argument.  Elkan (2001) presents an equiva-

lent method for adjusting the posterior probabilities and includes a formal derivation. 

Differences between rtrain� DQG� � ZLOO� QRUPDOO\� UHVXOW� LQ� ELDVHG� SRVWHULRU� FODVV-

probability estimates at the leaves of a decision tree.  To remove this bias, the probability 

estimates are adjusted to take these differences into account. Two common probability 

estimation formulas arH� GHVFULEHG� LQ� 7DEOH� ����� � )RU� HDFK�� OHW� Lp� � Ln) represent the 

number of minority-class (majority-class) training examples at a leaf L of a decision tree 

(or, more generally, within any partition L).  The uncorrected estimates, which are in 

common use, estimate the probability of seeing a minority-class (positive) example in L.  

These uncorrected estimates are based on the assumption that the training and test sets are 

drawn from the same population and therefore both approximate . The uncorrected fre-

quency-based estimate is straightforward and requires no explanation.  However, this es-

WLPDWH�GRHV�QRW�SHUIRUP�ZHOO�ZKHQ�WKH�VDPSOH�VL]H�� Lp� Ln, is small—and is not even 

defined when the sample size is 0.  For these reasons the Laplace estimate often is used 

instead. We consider a version based on the Laplace law of succession (Good, 1965).  

This probability estimate will always be closer to 0.5 than the frequency-based estimate, 

but the difference between the two estimates will be negligible for large sample sizes. 
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Estimate Name Uncorrected Corrected 

Frequency-Based  Lp�� Lp� Ln) � Lp�� Lp+o� Ln) 

Laplace (law of succession) � Lp����� Lp�� Ln+ 2) � Lp����� Lp+o Ln+ 2) 

Table 6.1: Probability Estimates for Observing a Minority-Class Example 

The corrected versions of the estimates in Table 6.1 account for differences between 

rtrain�DQG� �E\�IDFWRULQJ�LQ�WKH�RYHU-sampling ratio o, which measures the degree to which 

the minority class is over-sampled in the training set relative to the naturally occurring 

distribution.  The value of o is computed as the ratio of minority-class examples to major-

ity-class examples in the training set divided by the same ratio in the naturally occurring 

class distribution.  If the ratio of minority to majority examples were 1:2 in the training 

set and 1:6 in the naturally occurring distribution, then o would be 3.  A learner can ac-

count properly for differences between rtrain�DQG� �E\�XVLQJ�WKH�FRUUHFWHG�HVWLPDWHV�WR�FDl-

culate the posterior probabilities at L. 

As an example, if the ratio of minority-class examples to majority-class examples in 

the naturally occurring class distribution is 1:5 but the training distribution is modified so 

that the ratio is 1:1, then o is 1.0/0.2, or 5.  For L to be labeled with the minority class the 

probability must be greater than 0.5, so, using the corrected frequency-based estimate, 

Lp�� Lp�� Ln��!������RU�� Lp!��� Ln.  Thus, L is labeled with the minority class only if it 

covers o times as many minority-class examples as majority-class examples.  This result 

should make intuitive sense. 

Note that in calculating o class ratios are used instead of the fraction of examples be-

longing to the minority class (if we mistakenly used the latter in the above example, then 
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o would be one-half divided by one-sixth, or 3).  Using the class ratios substantially sim-

plifies the formulas and leads to more easily understood estimates.  Elkan (2001) pro-

vides a more complicated, but equivalent, formula that uses fractions instead of ratios. 

In this discussion we assume that a good approximation of the true base rate is known.  

In some real-world situations this is not true and different methods are required to com-

pensate for changes to the training set (Provost et al., 1998; Saerens et al., 2002). 

6.5 Experimental Methodology 

This section describes the experimental methodology associated with the class distribu-

tion experiments. First, the methodology for altering the class distribution of the training 

set is described.  Then the changes to C4.5 to account for changes to the class distribution 

of the training set are summarized.  Finally, the use of pruning is described.  

6.5.1 Methodology for Altering the Class Distribution of the Training Data 

In order to investigate the effect that different training-set class distributions have on 

classifier performance, it is necessary to have a method for generating training sets with a 

variety of class distributions.  So that the classifiers induced from these different distribu-

tions can be compared fairly, it is essential that all training sets associated with each data 

set contain the same number of examples.  Furthermore, examples should not be dupli-

cated in order to achieve the desired class distribution—this distorts the learning problem 

and makes it appear easier than it actually is.  For example, if a single example is copied 

twenty times, the learner might quite possibly form a disjunct to cover that one “distinct” 

example.  This overfitting would lead to good classification performance on the training 

data, but this would not carry over to new, unseen, examples.  
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The following procedure for creating the training and test sets will satisfy all of the re-

quirements just described.  First, the test set is formed by randomly selecting 25% of the 

minority-class examples and 25% of the majority-class examples from the original data 

set, without replacement.  The resulting test set therefore conforms to the original class 

distribution.  The remaining data are then available for training.  To ensure that all ex-

periments for a given data set have the same training-set size—no matter what the class 

distribution of the training set—the size of the training set, S, is made equal to the total 

number of minority-class examples still available for training (i.e., 75% of the original 

number).  This makes it possible, without replicating any examples, to generate any class 

distribution for training-set size S (i.e., from 100% minority-class examples to 100% ma-

jority-class examples).  The training set is then formed by stratified random sampling 

from the remaining data, without replacement, such that the desired class distribution is 

achieved. 

6.5.2 Classifier Modifications to Account for Changes in Class Distribution 

C4.5 always assumes that the training data approximate the true, underlying distribution, 

and hence uses the uncorrected frequency-based estimate to label the leaves of the deci-

sion tree.  When the class distribution of the training set altered, it is essential that the 

corrected version of the estimate be used to label the leaves of the induced decision tree. 

The C4.5 source code is not modified to use the corrected estimates to label the leaves 

of the classifier; instead, once C4.5 completes, a post-processing step is executed that re-

labels the leaves of the decision tree using the corrected estimate.  This post-processing 

step then recalculates all classifier performance statistics and records the percentage of 

leaves that are assigned a different class label due to the use of the corrected estimate.  
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The change in error rate that results from the relabeling process is also recorded.  This 

information is used in Section 6.6.3 to show that the use of the corrected probability es-

timates consistently yields a substantial improvement in classifier performance. 

The results presented in the remainder of the thesis, unless otherwise noted, are based 

on the use of the corrected versions of the frequency-based and Laplace estimates with a 

probability threshold of .5 to label the leaves of the induced decision trees.  The fre-

quency-based version is employed when accuracy is used to measure classifier perform-

ance.  The Laplace version is employed for generating the ROC curves when AUC is 

used to measure classifier performance, since in this situation the Laplace estimate has 

been shown to yield consistent improvements in performance (Provost & Domingos, 

2001). 

6.5.3 Issues with Pruning 

If C4.5’s pruning strategy, which attempts to minimize error rate, were allowed to exe-

cute, it would prune based on a false assumption (viz., that the test distribution matches 

the training distribution).  Since this may negatively affect the generated classifier, except 

where otherwise indicated, all results are based on C4.5 without pruning.  This decision is 

supported by recent research, which indicates that when target misclassification costs (or 

class distributions) are unknown then standard pruning should be avoided (Provost & 

Domingos, 2001; Zadrozny & Elkan, 2001; Bradford et al, 1998; Bauer & Kohavi, 1999).   

Indeed, Bradford et al. found that even if the pruning strategy is adapted to take misclas-

sification costs and class distribution into account, this does not generally improve the 

performance of the classifier.  Nonetheless, in order to justify the validity of the results 

when using C4.5 without pruning, we also present the results of C4.5 with pruning, when 
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the training set uses the natural distribution.  In this situation C4.5’s assumption about 

rtrain appro[LPDWLQJ� �LV�YDOLG�DQG�KHQFH�&���¶V�SUXQLQJ�VWUDWHJ\�ZLOO�IXQFWLRQ�DSSURSUi-

ately.  Looking forward, these results show that in this situation C4.5 without pruning 

performs competitively with C4.5 with pruning.  Based on this we conclude that C4.5 

without pruning is a reasonable learner. 

6.6 Measuring the Impact of Class Distribution on Classifier Performance  

We now are ready to analyze the classifiers induced from the twenty-six naturally unbal-

anced data sets described earlier in Table 2.4.  In this section the focus is on identifying 

and explaining any differences in classification performance between the minority and 

majority classes.  However, before addressing these differences, it is important to discuss 

an issue that may lead to confusion if left untreated.  Practitioners have noted that learn-

ing performance often is unsatisfactory when learning from data sets where the minority 

class is considerably underrepresented.  In particular, they observe that there is a large 

error rate for the minority class.  As should be clear from the evaluation metrics described 

in Table 2.2 and the associated discussion, there are two different notions of “error rate 

for the minority class”: the minority-class predictions could have a high error rate 

(largePPV ) or the minority-class test examples could have a high error rate (large FN).  

When practitioners observe that the error rate is unsatisfactory for the minority class, they 

are usually referring to the fact that the minority-class examples have a high error rate 

(large FN).  The analysis in this section will show that the error rate associated with the 

minority-class predictions and the minority-class test examples are both much larger than 

their majority class counterparts.  Explanations for these observed differences are pro-

vided.   
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6.6.1 Experimental Results 

The performance of the classifiers induced from the twenty-six, naturally unbalanced, 

data sets is described in Table 6.2. 

% Minority % Errors
Dataset Examples from  Min.  Min.  Maj.  Min.  Maj.  Min.  Maj.  Min.  Maj. 

(PPV) (NPV) (FN) (FP)
letter-a 3.9 58.3 11 138 2.2 4.3 32.5 1.7 41.5 1.2
pendigits 8.3 32.4 6 8 16.8 109.3 25.8 1.3 14.3 2.7
abalone 8.7 68.9 5 8 2.8 35.5 69.8 7.7 84.4 3.6
sick-euthyroid 9.3 51.2 4 9 7.1 26.9 22.5 2.5 24.7 2.4
connect-4 9.5 51.4 47 128 1.7 5.8 55.8 6.0 57.6 5.7
optdigits 9.9 73.0 15 173 2.9 2.4 18.0 3.9 36.7 1.5
covertype 14.8 16.7 350 446 27.3 123.2 23.1 1.0 5.7 4.9
solar-flare 15.7 64.4 12 48 1.7 3.1 67.8 13.7 78.9 8.1
phone 18.2 64.4 1008 1220 13.0 62.7 30.8 9.5 44.6 5.5
letter-vowel 19.4 61.8 233 2547 2.4 0.9 27.0 8.7 37.5 5.6
contraceptive 22.6 48.7 31 70 1.8 2.8 69.8 20.1 68.3 21.1
adult 23.9 57.5 627 4118 3.1 1.6 34.3 12.6 41.5 9.6
splice-junction 24.1 58.9 26 46 5.5 9.6 15.1 6.3 20.3 4.5
network2 27.9 57.1 50 61 4.0 10.3 48.2 20.4 55.5 16.2
yeast 28.9 58.9 8 12 14.4 26.1 45.6 20.9 55.0 15.6
network1 29.2 57.1 42 49 5.1 12.8 46.2 21.0 53.9 16.7
car 30.0 58.6 38 42 3.1 6.6 14.0 7.7 18.6 5.6
german 30.0 55.4 34 81 2.0 2.0 57.1 25.4 62.4 21.5
breast-wisc 34.5 45.7 5 5 12.6 26.0 11.4 5.1 9.8 6.1
blackjack 35.6 81.5 13 19 57.7 188.0 28.9 27.9 64.4 8.1
weather 40.1 50.7 134 142 5.0 7.2 41.0 27.7 41.7 27.1
bands 42.2 91.2 52 389 1.4 0.3 17.8 34.8 69.8 4.9
market1 43.0 50.3 87 227 5.1 2.7 30.9 23.4 31.2 23.3
crx 44.5 51.0 28 65 3.9 2.1 23.2 18.9 24.1 18.5
kr-vs-kp 47.8 54.0 23 15 24.0 41.2 1.2 1.3 1.4 1.1
move 49.9 61.4 235 1025 2.4 0.6 24.4 29.9 33.9 21.2
Average 25.8 56.9 120 426 8.8 27.4 33.9 13.8 41.4 10.1
Median 26.0 57.3 33 67 3.9 6.9 29.9 11.1 41.5 5.9

Leaves Coverage Prediction ER Actuals ER

 

Table 6.2: Behavior of Classifiers Induced from Unbalanced Data Sets 

This table warrants some explanation.  The first column specifies the data set name while 

the second column specifies the percentage of minority-class examples in natural class 

distribution.  The third column specifies the percentage of the total test errors that can be 

attributed to misclassified minority-class test examples.  By comparing the values in col-
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umns two and three we see that in all cases a disproportionately large percentage of the 

errors come from the minority-class examples.  For example, minority-class examples 

make up only 3.9% of the letter-a data set but contribute 58.3% of the errors.  Further-

more, for 22 of 26 data sets a majority of the errors can be attributed to minority-class 

examples. 

The fourth column in Table 6.2 specifies the number of leaves labeled with the minor-

ity and majority classes and shows that in all but two cases there are fewer leaves labeled 

with the minority class than with the majority class.  The fifth column, “Coverage,” 

specifies the average number of training examples that each minority-labeled or majority-

labeled leaf classifies (“covers”).  These results indicate that the leaves labeled with the 

minority class are formed from far fewer training examples than those labeled with the 

majority class. 

The “Prediction ER” column specifies the error rates associated with the minority-

class and majority-class predictions, based on the performance of these predictions at 

classifying the test examples.  The “Actuals ER” column specifies the classification error 

rates for the minority and majority class examples, again based on the test set.  These last 

two columns are also labeled using the terms defined in Table 2.2 (PPV , NPV , FN, and 

FP).  As an example, these columns show that for the letter-a data set the minority-

labeled predictions have an error rate of 32.5% while the majority-labeled predictions 

have an error rate of only 1.7%, and that the minority-class test examples have a classifi-

cation error rate of 41.5% while the majority-class test examples have an error rate of 

only 1.2%.  In each of the last two columns we underline the higher error rate. 
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The results in Table 6.2 clearly demonstrate that the minority-class predictions per-

form much worse than the majority-class predictions and that the minority-class exam-

ples are misclassified much more frequently than majority-class examples.  Over the 

twenty-six data sets, the minority predictions have an average error rate ( PPV ) of 33.9% 

while the majority-class predictions have an average error rate ( NPV ) of only 13.8%.  

Furthermore, for only three of the twenty-six data sets do the majority-class predictions 

have a higher error rate—and for these three data sets the class distributions are only 

slightly unbalanced.  Table 6.2 also shows us that the average error rate for the minority-

class test examples (FN) is 41.4% whereas for the majority-class test examples the error 

rate (FP) is only 10.1%.  In every one of the twenty-six cases the minority-class test ex-

amples have a higher error rate than the majority-class test examples. 

6.6.2 Discussion of Results 

So why do the minority-class predictions have a higher error rate (PPV ) than the major-

ity-class predictions (NPV )?  There are at least two reasons.  First, consider a classifier 

trandom where the partitions  are chosen randomly and the assignment of each L ∈   to 

P and N is also made randomly (recall that P and N represent the regions labeled 

with the positive and negative classes).  For a two-class learning problem the expected 

RYHUDOO�DFFXUDF\�� t, of this randomly generated and labeled classifier must be 0.5.  How-

ever, the expected accuracy of WKH�UHJLRQV�LQ�WKH�SRVLWLYH�SDUWLWLRQ�� P��ZLOO�EH� �ZKLOH�

WKH�H[SHFWHG�DFFXUDF\�RI�WKH�UHJLRQV�LQ�WKH�QHJDWLYH�SDUWLWLRQ�� N, will be 1 –� ���)RU�D�

KLJKO\�XQEDODQFHG�FODVV�GLVWULEXWLRQ�ZKHUH�  ����� P = ����DQG� N = .99.  Thus, in such 

a scenario the negative/majority predictions will be much more “accurate.”  While this 
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“test distribution effect” will be small for a well-learned concept with a low Bayes error 

rate (and non-existent for a perfectly learned concept with a Bayes error rate of 0), many 

learning problems are quite hard and have high Bayes error rates.4 

The results in Table 6.2 suggest a second explanation for why the minority-class pre-

dictions are so error prone.  According to the coverage results, minority-labeled predic-

tions tend to be formed from fewer training examples than majority-labeled predictions.  

Hence minority-labeled predictions are more often associated with small disjuncts than 

majority-labeled predictions.  Since small disjuncts, as shown in Chapter 3, have a much 

higher error rate than large disjuncts, rules/leaves labeled with the minority class have a 

higher error rate in part because they suffer more from this “problem of small disjuncts.”  

This helps to explain the results pertaining to the effect of class imbalance on small dis-

juncts, summarized earlier in Chapter 4, Figure 4.13.  These results showed that naturally 

unbalanced data sets yield classifiers with higher error concentrations than the balanced 

versions of the same data sets.  The explanation for this behavior is that because the test 

distribution effect makes the minority-class examples harder to learn, it also makes small 

disjuncts harder to learn for the unbalanced data sets—because the small disjuncts are 

disproportionately labeled with the minority class.  

Next, we consider why minority-class test examples are misclassified much more of-

ten than majority-class test examples (FN > FP)—a phenomenon that has also been ob-

served by others (Japkowicz & Stephen, 2002).  We begin by re-expressing the estimated 

                                                           
4 The (optimal) Bayes error rate, using the terminology from Chapter 2, occurs when t(.)=c(.).  Because c(.) 

may be probabilistic (e.g., when noise is present), the Bayes error rate for a well-learned concept may not 
always be low.  The test distribution effect will only be small when the concept is well learned and the 
Bayes error rate is low. 
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accuracy, at, of a classifier t, in terms of rtest (the fraction of positive examples in the test 

set), where the test set is drawn from the true, underlying distribution D: 

at  = TP • rtest + TN • (1 – rtest)  [6.2] 

Since the positive class corresponds to the minority class, rtest < .5 and for highly un-

balanced data sets rtest << .5.  Thus, TN, the true negative rate is weighted more than TP, 

the true positive rate.  Given the definitions of these terms in Table 2.2, this means that a 

strategy to maximize accuracy will place greater emphasis on maximizing the number of 

true negatives (tn) than maximizing the number of true positives (tp), and also more em-

phasis on minimizing the number of false positives (fp) than on minimizing the number 

of false negatives (fn).  An induction algorithm geared toward maximizing accuracy 

therefore should “prefer” false-negative errors over false-positive errors.  This will cause 

negative/majority examples to be predicted more often and hence will lead to a higher 

error rate for minority-class examples.  One straightforward example of how learning al-

gorithms exhibit this behavior is provided by the common-sense rule: if there is no evi-

dence favoring one classification over another, then predict the majority class.  This also 

explains why, when learning from data sets with a high degree of class imbalance, classi-

fiers rarely predict the minority class. 

A second reason why minority-class examples are misclassified more often than ma-

jority-class examples is that fewer minority-class examples are likely to be sampled from 

the distribution D.  Therefore, the training data are less likely to include (enough) in-

stances of all of the minority-class subconcepts in the concept space, and the learner may 

not have the opportunity to represent all truly positive regions in P.  Because of this, 
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some minority-class test examples will be mistakenly classified as belonging to the ma-

jority class. 

It is worth noting that PPV > NPV  does not imply that FN > FP.  That is, having more 

error-prone minority predictions does not imply that the minority-class examples will be 

misclassified more often than majority-class examples.  Indeed, a higher error rate for 

minority predictions means more majority-class test examples will be misclassified.  The 

reason we generally observe a lower error rate for the majority-class test examples (FN > 

FP) is because the majority class is predicted far more often than the minority class. 

Finally, these experiments were repeated with pruning.  The results showed the same 

general trends but the magnitudes of the differences were altered.  With pruning the error 

rate associated with the minority-class predictions ( PPV ) decreases dramatically while 

the average error rate of the majority-class predictions ( NPV ) decreases only slightly, so 

that even though PPV > NPV , the magnitude of the difference is, on average, cut in half.  

Pruning also causes the error rate for the minority-class test examples (FN) to increase 

and the error rate for the majority-class test examples (FP) to decrease, so that the aver-

age difference becomes slightly larger.  Both of these differences can be explained by the 

effect that pruning has on small disjuncts.  According to the results in Chapter 4, pruning 

eliminates many, if not most, small disjuncts and many of the emancipated examples are 

then classified by the larger disjuncts.  Because minority-class leaves tend to have 

smaller-sized disjuncts, pruning tends to eliminate minority-labeled leaves disproportion-

ately.  This further increases the error rate for the minority-class test examples and de-

creases the error rate of the majority-class test examples (since an increased number of 

examples will be classified as belonging to the majority class).  The error rate of the mi-
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nority-class predictions is reduced because the most error-prone of these predictions, 

which tend to be associated with the smallest disjuncts, are eliminated. 

6.6.3 The Impact of the Class Distribution Correction on Classifier Performance 

The experimental results presented in Section 6.6.1 are based on the use of the corrected 

frequency-based estimate to label the leaves of the induced decision trees.  This corrected 

estimate ensures that the decision trees are not improperly biased by the changes made to 

the class distribution of the training set.  Table 6.3 compares the performance of the deci-

sion trees labeled using the uncorrected frequency-based estimate (FB) with those labeled 

using the corrected frequency-based method (CT-FB). This comparison demonstrates the 

impact that the corrected estimate has on classifier performance.  The comparison is 

based on the scenario where the training set is altered so that it uses a balanced class dis-

tribution rather than the naturally occurring class distribution.  The results are based on 

30 runs and the data sets are listed in order of decreasing class imbalance. 

The error rates for the uncorrected and corrected frequency based estimates are dis-

played in the second and third columns of Table 6.3, respectively, and for each data set 

the lowest error rate is underlined.  The fourth column specifies the relative improvement 

that results from using the corrected frequency-based estimate.  The fifth column speci-

fies the percentage of the leaves in the decision tree that are assigned a different class la-

bel when the corrected estimate is used.  The last two columns specify, for each estimate, 

the percentage of the total errors that are contributed by the minority-class test examples. 
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% Rel. % Labels
Dataset FB CT-FB Improv. Changed FB CT-FB
letter-a 9.79 5.38 45.0 39.0 2.7 7.2
pendigits 4.09 4.02 1.7 3.2 5.6 7.8
abalone 30.45 22.97 24.6 5.6 8.5 19.1
sick-euthyroid 9.82 6.85 30.2 6.7 8.8 14.6
connect-4 30.21 27.57 8.7 14.7 8.5 10.4
optdigits 6.17 3.41 44.7 42.5 6.0 21.2
covertype 6.62 6.46 2.4 2.4 7.0 8.5
solar-flare 36.20 29.12 19.6 20.4 19.3 30.7
phone 17.85 14.81 17.0 3.2 25.2 44.4
letter-vowel 18.89 14.16 25.0 44.1 15.9 30.2
contraceptive 40.77 39.65 2.7 11.1 20.6 27.6
adult 22.69 20.05 11.6 30.7 19.6 36.8
splice-junction 9.02 8.74 3.1 14.1 20.1 28.4
network2 30.80 29.96 2.7 1.2 32.9 40.1
yeast 34.01 28.80 15.3 4.6 29.4 47.0
network1 31.99 30.99 3.1 1.3 32.9 38.2
car 8.26 7.92 4.1 5.3 25.9 33.8
german 38.37 37.09 3.3 16.1 30.8 35.8
breast-wisc 6.76 6.74 0.3 0.4 38.5 38.7
blackjack 33.02 28.71 13.1 17.1 42.9 76.2
weather 34.62 34.61 0.0 0.0 40.5 40.5
bands 32.68 32.68 0.0 0.6 90.2 90.2
market1 25.77 25.77 0.0 23.9 46.0 48.6
crx 20.84 21.48 -3.1 17.2 46.2 51.4
kr-vs-kp 1.22 1.22 0.0 0.2 58.5 58.5
move 28.24 28.24 0.0 20.8 52.6 60.7
Average 21.89 19.90 10.6 13.3 28.3 36.4

 Error Rate % Errors from Min.

 

Table 6.3: Impact of the Probability Estimates on Error Rate 

Table 6.3 shows that by employing the corrected frequency-based estimate instead of 

the uncorrected frequency-based estimate, there is, on average, a relative 10.6% reduction 

in error rate.  Furthermore, in only one case does the uncorrected frequency-based esti-

mate outperform the corrected frequency-based estimate.  The correction tends to yield a 

larger reduction for the most highly unbalanced data sets—in which cases it plays a larger 

role.  If we restrict ourselves to the first 13 data sets listed in Table 2.4, for which the mi-

nority-class makes up less than 25% of the examples, then the relative improvement over 

these data sets is 18.2%.  Note that because in this scenario the minority class is over-

sampled in the training set, the corrected frequency-based estimate can only cause a label 
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to change from the minority class to the majority class.  Consequently, as the last column 

in the table demonstrates, the corrected version of the estimate will cause more of the er-

rors to come from the minority-class test examples.   This generally yields an improve-

ment in accuracy because accuracy places greater weight on the ability to classify the 

more numerous majority-class examples. 

  These results demonstrate that it is critical to account for changes made to the class 

distribution of the training data.   Previous work on modifying the class distribution of the 

training set (Catlett, 1991; Chan & Stolfo, 1998; Japkowicz, 2002) did not take these dif-

ferences into account and this undoubtedly affected the results. 

6.7 Summary 

This chapter covered a great deal of material.  It began with a discussion of why training 

data may be costly and showed how this motivates the research in this thesis on class dis-

tribution.  Namely, we saw that when data is costly, choosing the class distribution care-

fully may allow one to compensate for a reduced amount of training data (Chapter 7 will 

show that this is actually achievable).  The implications of modifying the class distribu-

tion of the training set were discussed, as was a method for accounting for this change in 

distribution.  This method involved re-calculating the class-probability estimates gener-

ated by the classifier, using probability estimates that are sensitive to the changes made to 

the class distribution of the training data. 

The main experimental results for this chapter were then presented.  These results de-

scribed the performance of classifiers induced from twenty-six data sets, with respect to 

differences in the minority and majority classes.  The results showed that minority-class 

predictions consistently have a much higher error rate than majority-class predictions, 
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and that minority-class test examples are misclassified much more often than majority-

class test examples.  A detailed discussion of these results followed, along with an expla-

nation for the observed differences between the two classes.  Finally, the performance of 

the classifiers labeled using the corrected probability estimate was compared to the per-

formance of those classifiers labeled without the correction.  These results clearly showed 

it is essential to account for changes made to the class distribution of the training data—

not doing so consistently degrades classifier performance. 
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Chapter 7 

The Effect of Class Distribution 

on Classifier Performance 

If you choose not to decide—you still have made a choice! 

- Neal Peart 

In this chapter we turn to the central questions regarding class distribution: how does the 

class distribution of the training data affect classifier performance and what class distri-

bution produces the best classifier?   This chapter begins by describing how to determine 

which class distribution(s) yield the best classifier.  This is followed by the main experi-

mental results for the chapter, which measures classifier performance for twenty-six data 

sets using a variety of different training-set class distributions.  These results show that 

the best class distribution for learning generally is not the naturally occurring class distri-

bution.  Finally, the relationship between training-set size, class distribution, and classi-

fier performance is empirically investigated for three data sets.  These results show that 

the best class distribution for learning does not vary dramatically as the amount of train-

ing data grows and that improved classifier performance is possible with less training 

data if the class distribution is chosen carefully. 
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7.1 Methodology for Determining the Optimum Class Distribution 

In order to evaluate the effect of class distribution on classifier performance, the class 

distribution of the training data is varied for the twenty-six data sets using the methodol-

ogy described in Chapter 6.  The following twelve class distributions, expressed as the 

percentage of minority-class examples in the training data, are evaluated: 2%, 5%, 10%, 

20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, and 95%.  The naturally occurring class 

distribution for each data set is also evaluated. 

Before one can determine the “best” class distribution for learning, there are several 

issues that must be addressed.  First, because we do not evaluate every possible class dis-

tribution, we can only determine the best distribution among the 13 evaluated distribu-

tions.  Beyond this concern, however, is the issue of statistical significance and, because 

we generate classifiers for 13 training distributions, the issue of multiple comparisons 

(Jensen & Cohen, 2000).  Because of these issues we cannot always conclude that the 

distribution that yields the best performing classifiers is truly the best one for training. 

Several steps are taken to address the issues of statistical significance and multiple 

comparisons.  To enhance our ability to identify true differences in classifier performance 

with respect to changes in class distribution, all results presented in this chapter are based 

on 30 runs, rather than the 10 runs employed in Chapter 6.  Also, rather than trying to de-

termine the best class distribution, we take a more conservative approach, and instead 

identify an “optimal range” of class distributions—a range in which we are confident the 

best distribution lies. 

In order to identify the optimal range of class distributions, we begin by identifying, 

for each data set, the class distribution that yields the classifiers that perform best over the 
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30 runs.  Then t-tests are performed to compare the performance of these 30 classifiers 

with the 30 classifiers generated using each of the other twelve class distributions (i.e., 12 

t-tests each with n=30 data points).  If a t-test yields a probability ≤ .10 then we conclude 

that the “best” distribution is different from the “other” distribution (i.e., we are at least 

90% confident of this); otherwise we cannot conclude that the class distributions truly 

perform differently and therefore “group” the distributions together.  These grouped dis-

tributions collectively form the “optimal range” of class distributions.  As will be seen in 

the two tables that follow, in 50 of 52 cases the optimal ranges are contiguous, assuaging 

concerns that our conclusions are due to problems with multiple comparisons. 

7.2 The Effect of Class Distribution on Error Rate 

Table 7.1 displays the error rates of the classifiers induced for each of the twenty-six data 

sets using the thirteen class distributions.  The first column in Table 7.1 specifies the data 

set name and the next two columns specify the error rates that result from using the natu-

ral distribution, with and then without pruning.  The next 12 columns present the error 

rate values for the 12 fixed class distributions (without pruning).  The “best” class distri-

bution for each data set (i.e., the one that yields the lowest error rate) is highlighted by 

underlining it and displaying it in boldface.  The relative position of the natural distribu-

tion within the range of evaluated class distributions is denoted by the use of a vertical 

bar between columns.  For example, for the letter-a data set the vertical bar indicates that 

the natural distribution falls between the 2% and 5% distributions (from Table 2.4 we see 

it is 3.9%). 
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Dataset

Nat-Prune Nat 2 5 10 20 30 40 50 60 70 80 90 95 best vs. nat best vs. bal

letter-a 2.80  x 2.78 2.86 2.75 2.59 3.03 3.79 4.53 5.38 6.48 8.51 12.37 18.10 26.14 6.8 51.9

pendigits 3.65 + 3.74 5.77 3.95 3.63 3.45 3.70 3.64 4.02 4.48 4.98 5.73 8.83 13.36 7.8 14.2

abalone 10.68  x 10.46 9.04 9.61 10.64 13.19 15.33 20.76 22.97 24.09 26.44 27.70 27.73 33.91 13.6 60.6

sick-euthyroid 4.46  x 4.10 5.78 4.82 4.69 4.25 5.79 6.54 6.85 9.73 12.89 17.28 28.84 40.34 0.0 40.1

connect-4 10.68  x 10.56 7.65 8.66 10.80 15.09 19.31 23.18 27.57 33.09 39.45 47.24 59.73 72.08 27.6 72.3

optdigits 4.94  x 4.68 8.91 7.01 4.05 3.05 2.83 2.79 3.41 3.87 5.15 5.75 9.72 12.87 40.4 18.2

covertype 5.12  x 5.03 5.54 5.04 5.00 5.26 5.64 5.95 6.46 7.23 8.50 10.18 13.03 16.27 0.6 22.6

solar-flare 19.16  + 19.98 16.54 17.52 18.96 21.45 23.03 25.49 29.12 30.73 33.74 38.31 44.72 52.22 17.2 43.2

phone 12.63  x 12.62 13.45 12.87 12.32 12.68 13.25 13.94 14.81 15.97 17.32 18.73 20.24 21.07 2.4 16.8

letter-vowel 11.76  x 11.63 15.87 14.24 12.53 11.67 12.00 12.69 14.16 16.00 18.68 23.47 32.20 41.81 0.0 17.9

contraceptive 31.71  x 30.47 24.09 24.57 25.94 30.03 32.43 35.45 39.65 43.20 47.57 54.44 62.31 67.07 20.9 39.2

adult 17.42  x 17.25 18.47 17.26 16.85 17.09 17.78 18.85 20.05 21.79 24.08 27.11 33.00 39.75 2.3 16.0

splice-junction 8.30  + 8.37 20.00 13.95 10.72 8.68 8.50 8.15 8.74 9.86 9.85 12.08 16.25 21.18 2.6 6.8

network2 27.13  x 26.67 27.37 25.91 25.71 25.66 26.94 28.65 29.96 32.27 34.25 37.73 40.76 37.72 3.8 14.4

yeast 26.98  x 26.59 29.08 28.61 27.51 26.35 26.93 27.10 28.80 29.82 30.91 35.42 35.79 36.33 0.9 8.5

network1 27.57  + 27.59 27.90 27.43 26.78 26.58 27.45 28.61 30.99 32.65 34.26 37.30 39.39 41.09 3.7 14.2

car 9.51  x 8.85 23.22 18.58 14.90 10.94 8.63 8.31 7.92 7.35 7.79 8.78 10.18 12.86 16.9 7.2

german 33.76  x 33.41 30.17 30.39 31.01 32.59 33.08 34.15 37.09 40.55 44.04 48.36 55.07 60.99 9.7 18.7

breast-wisc 7.41  x 6.82 20.65 14.04 11.00 8.12 7.49 6.82 6.74 7.30 6.94 7.53 10.02 10.56 1.2 0.0

blackjack 28.14  + 28.40 30.74 30.66 29.81 28.67 28.56 28.45 28.71 28.91 29.78 31.02 32.67 33.87 0.0 1.1

weather 33.68  + 33.69 38.41 36.89 35.25 33.68 33.11 33.43 34.61 36.69 38.36 41.68 47.23 51.69 1.7 4.3

bands 32.26  + 32.53 38.72 35.87 35.71 34.76 33.33 32.16 32.68 33.91 34.64 39.88 40.98 40.80 1.1 1.6

market1 26.71  x 26.16 34.26 32.50 29.54 26.95 26.13 26.05 25.77 26.86 29.53 31.69 36.72 39.90 1.5 0.0

crx 20.99  x 20.39 35.99 30.86 27.68 23.61 20.84 20.82 21.48 21.64 22.20 23.98 28.09 32.85 0.0 5.1

kr-vs-kp 1.25  + 1.39 12.18 6.50 3.20 2.33 1.73 1.16 1.22 1.34 1.53 2.55 3.66 6.04 16.5 4.9

move 27.54  + 28.57 46.13 42.10 38.34 33.48 30.80 28.36 28.24 29.33 30.21 31.80 36.08 40.95 1.2 0.0

Error Rate when using Specified Training Distribution
(training distribution expressed as % minority)

Relative %
Improvement

 

Table 7.1: The Effect of Training-Set Class Distribution on Error Rate 

The error rate values that are not significantly different, statistically, from the lowest 

error rate (i.e., the comparison yields a t-test value > .10) are shaded.  Thus, for the letter-

a data set, the optimum range includes those class distributions that include between 2% 

and 10% minority-class examples—which includes the natural distribution.  The last two 

columns in Table 7.1 show the relative improvement in error rate achieved by using the 

best distribution instead of the natural and balanced distributions. When this improve-

ment is statistically significant (i.e., is associated with a t-test value ≤ .10) then the value 

is displayed in bold. 

The results in Table 7.1 show that for 9 of the 26 data sets we are confident that the 

natural distribution is not within the range of optimal class distributions.  For most of 
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these 9 data sets, using the best distribution rather than the natural distribution yields a 

remarkably large decrease in error rate.  This provides sufficient evidence to conclude 

that for accuracy, when the training-set size must be limited, it is not appropriate to as-

sume that the natural distribution is best for learning.  Inspection of the error-rate results 

in Table 7.1 also shows that the best distribution does not differ from the natural distribu-

tion in any consistent manner—sometimes it includes more minority-class examples 

(e.g., optdigits, car) and sometimes fewer (e.g., connect-4, solar-flare).  However, it is 

clear that for data sets with a substantial amount of class imbalance (the ones in the top 

half of the table), a balanced class distribution also is not the best class distribution for 

training, to minimize undifferentiated error rate.  More specifically, none of the top 12 

most skewed data sets have the balanced class distribution within their respective optimal 

ranges, and for these data sets the relative improvements over the balanced distributions 

are striking. 

Let us now consider the error-rate values for the remaining 17 data sets for which the 

t-test results do not permit us to conclude that the best observed distribution truly outper-

forms the natural distribution.  In these cases the error rate values for the 12 training-set 

class distributions usually form a unimodal, or nearly unimodal, distribution. This is the 

distribution one would expect if the accuracy of a classifier progressively degrades the 

further it deviates from the best distribution.  This suggests that “adjacent” class distribu-

tions may indeed produce classifiers that perform differently, but that our statistical test-

ing is not sufficiently sensitive to identify these differences.  Based on this, we suspect 

that many of the observed improvements shown in the last column of Table 7.1 that are 

not deemed to be significant statistically are nonetheless meaningful. 
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Figure 7.1 shows the behavior of the learned classifiers for the adult, phone, cover-

type, and letter-a data sets in a graphical form.  In this figure the natural distribution is 

denoted by the “X” tick mark and the associated error rate is noted above the marker.  

The error rate for the best distribution is underlined and displayed below the correspond-

ing data point (for these four data sets the best distribution happens to include 10% mi-

nority-class examples). 
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Figure 7.1: The Effect of Class Distribution on Error Rate 

Note that two of the curves are associated with data sets (adult, phone) for which we 

are >90% confident that the best distribution performs better than the natural distribution, 

while for the other two curves (covertype, letter-a) we are not.  Note that all four curves 

are perfectly unimodal. It is also clear that near the distribution that minimizes error rate, 

changes to the class distribution yield only modest changes in the error rate—far more 
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dramatic changes occur elsewhere.  This is also evident for most data sets in Table 7.1.  

This is a convenient property given the common goal of minimizing error rate.  This 

property would be far less evident if the corrected probability estimates, described in 

Chapter 6, were not used to label the classifier, since then classifiers induced from class 

distributions deviating from the naturally occurring distribution would be improperly bi-

ased. 

Finally, to assess whether pruning would yield improved performance, consider the 

second column in Table 7.1, which displays the error rates that result from using C4.5 

with pruning on the natural distribution.  Recall that this is the only situation for which 

C4.5’s pruning strategy will give unbiased results, since in this case the training and test 

sets both have the same class distribution.  A “+”/“x” in the second column indicates that 

C4.5 with pruning outperforms/underperforms C4.5 without pruning, when learning from 

the natural distribution.  Note that C4.5 with pruning underperforms C4.5 without prun-

ing for 17 of the 26 data sets, which leads us to conclude that C4.5 without pruning is a 

reasonable learner.  Furthermore, in no case does C4.5 with pruning generate a classifier 

within the optimal range when C4.5 without pruning does not also generate a classifier 

within this range. 

7.3 The Effect of Class Distribution on AUC 

The performance of the induced classifiers, using AUC as the performance measure, is 

displayed in Table 7.2.  When viewing these results, recall that for AUC larger values 

indicate improved performance.  The relative improvement in classifier performance is 

again specified in the last two columns, but now the relative improvement in performance 

is calculated in terms of the area above the ROC curve (i.e., 1 – AUC).  The area above 
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the ROC curve is used because it better reflects the relative improvement—just as in Ta-

ble 7.1 relative improvement is specified in terms of error rate rather than accuracy.  As 

before, the relative improvements are shown in bold only if we are more than 90% confi-

dent that they reflect a true improvement in performance (i.e., t-test value ������� 

Dataset

Nat-prune Nat 2 5 10 20 30 40 50 60 70 80 90 95 best vs. nat best vs. bal

letter-a .500  x .772 .711 .799 .865 .891 .911 .938 .937 .944 .951 .954 .952 .940 79.8 27.0

pendigits .962  x .967 .892 .958 .971 .976 .978 .979 .979 .978 .977 .976 .966 .957 36.4 0.0

abalone .590  x .711 .572 .667 .710 .751 .771 .775 .776 .778 .768 .733 .694 .687 25.8 0.9

sick-euthyroid .937  x .940 .892 .908 .933 .943 .944 .949 .952 .951 .955 .945 .942 .921 25.0 6.3

connect-4 .658  x .731 .664 .702 .724 .759 .763 .777 .783 .793 .793 .789 .772 .730 23.1 4.6

optdigits .659  x .803 .599 .653 .833 .900 .924 .943 .948 .959 .967 .965 .970 .965 84.8 42.3

covertype .982  x .984 .970 .980 .984 .984 .983 .982 .980 .978 .976 .973 .968 .960 0.0 20.0

solar-flare .515  x .627 .614 .611 .646 .627 .635 .636 .632 .650 .662 .652 .653 .623 9.4 8.2

phone .850  x .851 .843 .850 .852 .851 .850 .850 .849 .848 .848 .850 .853 .850 1.3 2.6

letter-vowel .806  + .793 .635 .673 .744 .799 .819 .842 .849 .861 .868 .868 .858 .833 36.2 12.6

contraceptive .539  x .611 .567 .613 .617 .616 .622 .640 .635 .635 .640 .641 .627 .613 7.7 1.6

adult .853  + .839 .816 .821 .829 .836 .842 .846 .851 .854 .858 .861 .861 .855 13.7 6.7

splice-junction .932  + .905 .814 .820 .852 .908 .915 .925 .936 .938 .944 .950 .944 .944 47.4 21.9

network2 .712  + .708 .634 .696 .703 .708 .705 .704 .705 .702 .706 .710 .719 .683 3.8 4.7

yeast .702  x .705 .547 .588 .650 .696 .727 .714 .720 .723 .715 .699 .659 .621 10.9 2.5

network1 .707  + .705 .626 .676 .697 .709 .709 .706 .702 .704 .708 .713 .709 .696 2.7 3.7

car .931  + .879 .754 .757 .787 .851 .884 .892 .916 .932 .931 .936 .930 .915 47.1 23.8

german .660  + .646 .573 .600 .632 .615 .635 .654 .645 .640 .650 .645 .643 .613 2.3 2.5

breast-wisc .951  x .958 .876 .916 .940 .958 .963 .968 .966 .963 .963 .964 .949 .948 23.8 5.9

blackjack .682  x .700 .593 .596 .628 .678 .688 .712 .713 .715 .700 .678 .604 .558 5.0 0.7

weather .748  + .736 .694 .715 .728 .737 .738 .740 .736 .730 .736 .722 .718 .702 1.5 1.5

bands .604  x .623 .522 .559 .564 .575 .599 .620 .618 .604 .601 .530 .526 .536 0.0 1.3

market1 .815  + .811 .724 .767 .785 .801 .810 .808 .816 .817 .812 .805 .795 .781 3.2 0.5

crx .889  + .852 .804 .799 .805 .817 .834 .843 .853 .845 .857 .848 .853 .866 9.5 8.8

kr-vs-kp .996  x .997 .937 .970 .991 .994 .997 .998 .998 .998 .997 .994 .988 .982 33.3 0.0

move .762  + .734 .574 .606 .632 .671 .698 .726 .735 .738 .742 .736 .711 .672 3.0 2.6

(training distribution expressed as % minority)
AUC when using Specified Training Distribution Relative %

Improv. (1-AUC)

 

Table 7.2: The Effect of Training-Set Class Distribution on AUC 

In general, the optimum ranges appear to be centered near, but slightly to the right, of 

the balanced class distribution.  For 12 of the 26 data sets the optimum range does not 

include the natural distribution (i.e., the third column is not shaded).   Note that for these 
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data sets, with the exception of the solar-flare data set, the class distributions within the 

optimal range contain more minority-class examples than the natural class distribution.  

Based on these results we conclude even more strongly for AUC (i.e., for cost-sensitive 

classification and for ranking) than for accuracy that it is not appropriate simply to 

choose the natural class distribution for training.  Table 7.2 also shows that, unlike for 

accuracy, a balanced class distribution generally performs very well, although it does not 

always perform optimally.  In particular, we see that for 19 of the 26 data sets the bal-

anced distribution is within the optimal range.  This result is not too surprising since 

AUC, unlike error rate, is unaffected by the class distribution of the test set, and effec-

tively factors in classifier performance over all class distributions. 

If we look at the results with pruning, we see that for 15 of the 26 data sets C4.5 with 

pruning underperforms C4.5 without pruning.  Thus, with respect to AUC, C4.5 without 

pruning is a reasonable learner.  However, note that for the car data set the natural distri-

bution with pruning falls into the optimum range, whereas without pruning it does not. 

Figure 7.2 shows how class distribution affects AUC for the adult, covertype, and let-

ter-a data sets (the phone data set is not displayed as it was in Figure 7.1 because it would 

obscure the adult data set). Again, the natural distribution is denoted by the “X” tick 

mark.  The AUC for the best distribution is underlined and displayed below the corre-

sponding data point.  In this case we also see that near the optimal class distribution the 

AUC curves tend to be flatter, and hence less sensitive to changes in class distribution. 
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Figure 7.2: The Effect of Class Distribution on AUC 

Figure 7.3 shows several ROC curves associated with the letter-vowel data set.  These 

curves each were generated from a single run of C4.5 (this is why the AUC values do not 

exactly match the values in Table 7.2). 
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Figure 7.3: ROC Curves for the Letter-Vowel Data Set 



122 

 

Observe that different training distributions perform better in different areas of ROC 

space.  Specifically note that the classifier trained with 90% minority-class examples per-

forms substantially better than the classifier trained with the natural distribution for high 

true-positive rates and that the classifier training with 2% minority-class examples per-

forms fairly well for low true-positive rates.  These results are easily explained.  With 

only a small sample of minority-class examples (2%) a classifier can identify only a few 

minority-labeled “rules” with high confidence.  However, with a much larger sample of 

minority-class examples (90%) it can identify many more such minority-labeled rules.  

However, for this data set a balanced distribution has the largest AUC and performs best 

overall. One interesting thing to note is that the curve generated using the balanced class 

distribution almost always outperforms the curve associated with the natural distribution 

(for low false-positive rates the natural distribution performs slightly better). 

7.4 The Interaction between Class Distribution and Training-Set Size 

Experiments were run to establish the relationship between training-set size, class distri-

bution and classifier performance for the phone, covertype, and adult data sets.  These 

three data sets were selected because they are all quite large, and hence the amount of 

training data can be dramatically reduced while still yielding meaningful results. 

The results are summarized in Table 7.3.  Classifier performance is again reported for 

thirteen class distributions, but this time also using the following nine training-set sizes, 

expressed in terms of the fraction of available training data: 1/128, 1/64, 1/32, 1/16, 1/8, 

1/4, 1/2, 3/4, and 1. The natural class distribution is denoted by an asterisk and, for each 

training-set size, the class distribution that yields the best performance is displayed in 

bold and is underlined. 
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Data Set Size Metric 2 5 10 18.2* 20 30 40 50 60 70 80 90 95
PHONE 1/128 .641 .737 .784 .793 .792 .791 .791 .789 .788 .786 .785 .774 .731

| 1/64 .707 .777 .784 .803 .803 .803 .801 .802 .801 .798 .799 .788 .744
| 1/32 .762 .794 .809 .812 .812 .811 .811 .811 .810 .812 .811 .805 .778
| 1/16 .784 .813 .816 .823 .823 .824 .818 .821 .822 .821 .822 .817 .805
| 1/8 AUC .801 .823 .828 .830 .830 .830 .830 .829 .830 .829 .831 .828 .818
| 1/4 .819 .835 .837 .839 .839 .837 .837 .836 .836 .836 .838 .836 .832
| 1/2 .832 .843 .846 .846 .845 .845 .843 .843 .843 .843 .844 .846 .844
| 3/4 .838 .847 .849 .849 .849 .848 .846 .847 .846 .847 .848 .851 .848
| 1 .843 .850 .852 .851 .851 .850 .850 .849 .848 .848 .850 .853 .850
| 1/128 17.47 16.42 15.71 16.10 16.25 17.52 18.81 21.21 22.87 26.40 30.43 33.26 37.27
| 1/64 17.01 15.75 15.21 15.12 15.20 16.39 17.59 19.60 22.11 24.80 27.34 30.21 26.86
| 1/32 16.22 15.02 14.52 14.50 14.75 15.41 16.81 18.12 20.02 21.77 24.86 25.31 28.74
| 1/16 Error 15.78 14.59 14.01 14.02 14.18 14.70 16.09 17.50 18.68 20.70 22.46 24.15 24.52
| 1/8 Rate 15.17 14.08 13.46 13.61 13.71 14.27 15.30 16.51 17.66 19.66 21.26 23.23 23.33
| 1/4 14.44 13.55 13.12 13.23 13.27 13.85 14.78 15.85 17.09 18.94 20.43 22.28 22.90
| 1/2 13.84 13.18 12.81 12.83 12.95 13.47 14.38 15.30 16.43 17.88 19.57 21.68 21.68
| 3/4 13.75 13.03 12.60 12.70 12.74 13.35 14.12 15.01 16.17 17.33 18.82 20.43 21.24
| 1 13.45 12.87 12.32 12.62 12.68 13.25 13.94 14.81 15.97 17.32 18.73 20.24 21.07

2 5 10 20 23.9* 30 40 50 60 70 80 90 95
ADULT 1/128 .571 .586 .633 .674 .680 .694 .701 .704 .723 .727 .728 .722 .708

| 1/64 .621 .630 .657 .702 .714 .711 .722 .732 .739 .746 .755 .752 .732
| 1/32 .638 .674 .711 .735 .742 .751 .755 .766 .762 .765 .772 .766 .759
| 1/16 .690 .721 .733 .760 .762 .778 .787 .791 .794 .787 .785 .780 .771
| 1/8 AUC .735 .753 .768 .785 .787 .793 .799 .809 .812 .816 .813 .803 .797
| 1/4 .774 .779 .793 .804 .809 .813 .820 .827 .831 .832 .834 .824 .811
| 1/2 .795 .803 .812 .822 .825 .829 .834 .838 .841 .847 .849 .847 .834
| 3/4 .811 .814 .823 .830 .833 .837 .843 .845 .849 .853 .856 .855 .848
| 1 .816 .821 .829 .836 .839 .842 .846 .851 .854 .858 .861 .861 .855
| 1/128 23.80 23.64 23.10 23.44 23.68 23.90 25.22 26.94 29.50 33.08 37.85 46.13 48.34
| 1/64 23.32 22.68 22.21 21.77 21.80 23.08 24.38 26.29 28.07 31.45 36.41 43.64 47.52
| 1/32 22.95 22.09 21.12 20.77 20.97 21.11 22.37 24.41 27.08 30.27 34.04 42.40 47.20
| 1/16 Error 22.66 21.34 20.29 19.90 20.07 20.37 21.43 23.18 25.27 28.67 33.41 40.65 46.68
| 1/8 Rate 21.65 20.15 19.13 18.87 19.30 19.67 20.86 22.33 24.56 27.14 31.06 38.35 45.83
| 1/4 20.56 19.08 18.20 18.42 18.70 19.12 20.10 21.39 23.48 25.78 29.54 36.17 43.93
| 1/2 19.51 18.10 17.54 17.54 17.85 18.39 19.38 20.83 22.81 24.88 28.15 34.71 41.24
| 3/4 18.82 17.70 17.17 17.32 17.46 18.07 18.96 20.40 22.13 24.32 27.59 33.92 40.47
| 1 18.47 17.26 16.85 17.09 17.25 17.78 18.85 20.05 21.79 24.08 27.11 33.00 39.75

2 5 10 14.8* 20 30 40 50 60 70 80 90 95
COVERTYPE 1/128 .767 .852 .898 .909 .916 .913 .916 .916 .909 .901 .882 .854 .817

| 1/64 .836 .900 .924 .932 .937 .935 .936 .932 .928 .922 .913 .885 .851
| 1/32 .886 .925 .942 .947 .950 .947 .948 .948 .944 .939 .930 .908 .876
| 1/16 .920 .944 .953 .957 .959 .959 .959 .957 .955 .951 .945 .929 .906
| 1/8 AUC .941 .955 .963 .965 .967 .968 .969 .968 .967 .963 .957 .948 .929
| 1/4 .953 .965 .970 .973 .975 .976 .975 .973 .972 .970 .965 .956 .943
| 1/2 .963 .972 .979 .981 .981 .980 .978 .977 .975 .972 .970 .961 .953
| 3/4 .968 .976 .982 .982 .983 .982 .980 .979 .976 .975 .971 .966 .958
| 1 .970 .980 .984 .984 .984 .983 .982 .980 .978 .976 .973 .968 .960
| 1/128 10.44 10.56 10.96 11.86 13.50 16.16 18.26 20.50 23.44 26.95 31.39 37.92 44.54
| 1/64 9.67 9.29 10.23 11.04 12.29 14.55 16.52 18.58 21.40 24.78 27.65 34.12 41.67
| 1/32 8.87 8.66 9.44 10.35 11.29 13.59 15.34 17.30 19.31 21.82 24.86 28.37 33.91
| 1/16 Error 8.19 7.92 8.93 9.67 10.37 11.93 13.51 15.35 17.42 19.40 22.30 25.74 28.36
| 1/8 Rate 7.59 7.32 7.87 8.65 9.26 10.31 11.63 13.06 14.68 16.39 18.28 22.50 26.87
| 1/4 6.87 6.44 7.04 7.49 8.01 9.05 9.86 10.56 11.45 12.28 14.36 18.05 22.59
| 1/2 6.04 5.71 5.97 6.45 6.66 7.14 7.53 8.03 8.80 9.94 11.44 14.85 18.37
| 3/4 5.81 5.31 5.48 5.75 5.87 6.25 6.57 6.89 7.58 8.72 10.69 13.92 16.29
| 1 5.54 5.04 5.00 5.03 5.26 5.64 5.95 6.46 7.23 8.50 10.18 13.03 16.27  

Table 7.3: The Effect of Training-Set Size and Class Distribution on Learning 
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The results in Table 7.3 show that while the position of the best class distribution varies 

somewhat with training-set size, in many cases, especially with error rate, the variation is 

small.  This gives support to the notion that there is a “best” marginal class distribution 

for a learning task.  The results also indicate that, for any fixed class distribution, increas-

ing the size of the training set always leads to improved classifier performance.  Note that 

classifier performance has not reached a plateau for any of the three data sets, for either 

error rate or AUC.  This is important because if a plateau had been reached (i.e., learning 

had stopped), then it would be possible to reduce the size of the training set without de-

grading classifier performance.  Because this is not the case, the results in Table 7.3 indi-

cate that, for these three data sets (and C4.5), it may be profitable to select the training 

examples carefully when forming the training set.  This provides one practical motivation 

for the research on class distribution described in this thesis. 

Six comparisons are highlighted in Table 7.3, by using a line to connect pairs of data 

points.  For each of these six cases, competitive or improved performance is achieved 

from fewer training examples.  That is, in each of these six cases, the data point corre-

sponding to the smaller data-set size performs as well or better than the data point that 

corresponds to the larger data-set size (the latter being either the natural distribution or a 

balanced one).  As an example, consider the adult data set and the AUC performance 

metric.  Table 7.3 shows that one can achieve a better AUC value (.849 vs. .839) by us-

ing, instead of all available training data and the natural class distribution, one-half of the 

available training data with a class distribution that includes 80% minority-class exam-

ples.  As a second example, one can achieve a competitive error rate on the phone data 

set (12.60% vs. 12.62%) by using ¾ of the available data rather than the full data set, if 
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one uses a class distribution that includes 10% minority-class examples rather than the 

natural class distribution. 

Figures 7.4 and 7.5 provide a graphical representation of the data, to show how class 

distribution and training-set size interact to affect classifier performance for the adult data 

set.  In these figures each performance curve is associated with a single training-set size.  

Because the performance curves always improve with increasing data set size, only the 

curves corresponding to the smallest and largest training-set sizes are explicitly labeled.   
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Figure 7.4: Effect of Class Distribution and Training-Set Size on Error Rate 
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Figure 7.5: Effect of Class Distribution and Training-Set Size on AUC 

In these figures, for a given x-value, the space between successive y-values indicates 

the change in performance due to changes in training-set size.  Based on this it is clear 

that classifier performance does begin to flatten out as more training data become avail-

able, but that it does not flatten out completely. Also note that as the training-set size in-

creases the choice of class distribution becomes somewhat less important, since the range 

of error-rate values for each curve diminishes. 

7.5 Summary 

This chapter demonstrated how the choice of class distribution affects classifier perform-

ance.  The experimental results show that when accuracy is used to measure classifier 

performance, the class distributions that yield the best classifiers tend to occur near the 

naturally occurring class distribution, but that significant improvements in classifier per-

formance may still occur by using a different class distribution.  When AUC is used to 
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measure classifier performance, a balanced class distribution generally performs quite 

well—and almost always performs better than the naturally occurring class distribution.  

The results from experiments that vary the amount of training data show that, as hoped, 

one can achieve competitive classifier performance using fewer training examples if the 

class distribution is chosen carefully. 
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Chapter 8 

A Budget-Sensitive Algorithm for Selecting 

Training Data 

“You must choose, but choose wisely” 

- Indiana Jones and the Last Crusade 

 
The results from the previous chapter demonstrate that some marginal class distributions 

yield classifiers that perform substantially better than others.  Unfortunately, forming the 

thirteen training sets of size n, each with a different class distribution, requires nearly 2n 

examples (2n examples would be needed if the class distribution ranged from 100% mi-

nority-class examples to 100% majority-class examples).  When it is costly to obtain 

training examples in a form suitable for learning, then this approach is not feasible—and 

ultimately is self-defeating. Ideally, one would like to select exactly n training examples, 

have them all used in the training set, and have the resulting class distribution yield a 

classifier that performs better than one generated from any other class distribution.  In 

this chapter we describe and evaluate a heuristic, budget-sensitive, progressive-sampling 

algorithm for selecting training data that approximates this ideal. 

8.1 Budget-Sensitive Sampling 

Usable training examples, as described earlier, are sometimes costly to obtain.  In these 

cases, the cost associated with forming the training set may need to be limited.  Let us 

assume that this total cost must not exceed some budgeted value, B.  In this chapter we 
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assume that the cost of procuring usable training examples is uniform and does not differ 

based on the class of the example.  Thus the budget B will make it possible to procure 

some number of examples, n.   In the remainder of this chapter the budget is expressed 

with respect to the number of examples that may be procured, rather than directly in 

terms of cost (e.g., dollars). 

The budget-sensitive sampling strategy makes two additional assumptions.  First, it 

assumes that the number of potentially available training examples from each class is suf-

ficiently large so that a training set with n examples can be formed with any desired mar-

ginal class distribution.  The second assumption is that the cost of executing the learning 

algorithm is negligible compared to the cost of procuring examples.  This assumption 

permits the learning algorithm to be run multiple times, in order to provide guidance 

about which examples to select. 

Formally, given a budget B that permits n examples to be procured, a budget-sensitive 

sampling strategy will select no more than n examples.  The goal of the sampling strategy 

is to select x minority-class examples and y majority-class examples, where x + y = n, 

such that the resulting distribution yields a classifier that performs well (i.e., near opti-

mally).  We say such a strategy is budget-efficient if all examples that are selected are 

used in the final training set, when forming the “desired” (in this case heuristically de-

termined) class distribution. 

8.2 The Budget-Sensitive Progressive Sampling Algorithm 

This section describes the budget-sensitive progressive sampling algorithm.  The algo-

rithm begins with a small amount of training data and progressively adds training exam-

ples using a geometric sampling schedule (Provost, Jensen & Oates, 1999).  The propor-
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tion of minority-class examples and majority-class examples added in each iteration of 

the algorithm is determined empirically by forming several class distributions from the 

currently available training data, evaluating the classification performance of the result-

ing classifiers, and then determining the class distribution that performs best.  The algo-

rithm implements a beam-search through the space of possible class distributions. 

The sampling algorithm will be guaranteed to be budget-efficient.  The key to ensur-

ing this is to constrain the search through the space of class distributions, so that all ex-

amples obtained during one iteration of the algorithm are guaranteed to be used in subse-

quent iterations. Note, however, that the heuristically determined class distribution asso-

ciated with the final training set is not guaranteed to yield the best-performing classifier; 

however, as we will show, the classifier induced using this class distribution performs 

well in practice. 

8.2.1 Description of the Algorithm 

The algorithm is outlined in Table 8.1, using pseudo-code.  This is followed by a line-by-

line explanation of the algorithm.  The algorithm takes three user-specified input parame-

WHUV�� �� WKH� JHRPHWULF� IDFWRU� XVHG� WR� GHWHUPLQH� WKH� UDWH� DW� ZKLFK� WKH� WUDLQLQJ-set size 

grows, n, the budget, and cmin, the minimum fraction of minority-class examples and 

majority-class examples that are assumed to appear in the final training set in order for 

the budget-efficiency guarantee to hold.5��)RU�WKH�UHVXOWV�SUHVHQWHG�LQ�WKLV�VHFWLRQ�� �LV�VHW�

to 2, so that the training-set size doubles every iteration of the algorithm, and cmin is set 

to 1/32. 

                                                           
5 Consider the degenerate case where the algorithm determines that the best class distribution contains no 

minority-class examples or no majority-class examples.   If the algorithm begins with even a single ex-
ample of this class, then it will not be efficient. 
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1.    minority = majority = 0;  # current number minority/majority examples 

2.    





























=

minc

1
logK ;   # number of iterations is K+1 

 
3.    for (j = 0; j ��.��M� �M���  # for each iteration (e.g., j = 0, 1,2,3,4) 

4.    { 

5.        size = n��� �K-j        # set training-set size for iteration j 

 

6.        if (j = 0) 

7.                 beam_bottom = 0;   beam_top = 1; 

8.         else 

9.                 
11

)best1,bestmin(
radius_beam

+−
−=

µµ
 

10.            beam_bottom = best – beam_radius;  beam_top = best + beam_radius; 

 
11.     min_needed = size • beam_top;  # number minority examples needed 

12.     maj_needed = size • (1.0 – beam_bottom); # number majority examples needed 

 

13.     if (min_needed > minority) 

14.              request (min_needed - minority) additional minority-class examples; 

15.      if (maj_needed > majority) 

16.              request (maj_needed - majority) additional majority-class examples; 
 

17.       if (j ��.� 

18.               eval(beam_bottom, beam_top, size); # evaluate distributions in the beam 

19.        else 

20.               eval(best, best, size);  # last iteration just evaluate previous best 

21.  } 

Table 8.1: A Budget-Sensitive Progressive Sampling Algorithm 
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The algorithm begins by initializing the values for the minority and majority variables, 

which represent the total number of minority-class examples and majority-class examples 

requested by the algorithm.  Then, in line 2, the number of iterations of the algorithm is 

determined, such that the initial training-set size, which is subsequently set in line 5, will 

be at most cmin • n.   This will allow all possible class distributions to be formed using at 

most cmin minority-class examples and cmin majority-class examples.  For example, 

JLYHQ�WKDW� �LV���DQG�cmin is 1/32, in line 2 variable K will be set to 5 and in line 5 the 

initial training-set size will be set to 1/32 n. 

Next, in lines 6-10, the algorithm determines the class distributions to be considered in 

the current iteration by setting the boundaries of the beam.  For the first iteration, all class 

distributions are considered (i.e., the fraction of minority-class examples in the training 

set may vary between 0 and 1).  In subsequent iterations, the beam will be centered on the 

class distribution that performed best in the previous iteration.  In line 9 the radius of the 

beam is set such that the ratio beam_WRS�EHDPBERWWRP�ZLOO�HTXDO� ���)RU�H[DPSOH��LI� �LV�

2 and best is .15, then beam_radius is .05 and the beam will span from .10 to .20—which 

GLIIHU�E\�D�IDFWRU�RI����L�H��� �� 

In lines 11 and 12 the algorithm computes the number of minority-class examples and 

majority-class examples needed to form the class distributions that fall within the beam.  

These values are determined from the class distributions at the boundaries of the beam.  

In lines 13-16 additional examples are requested, if required.  In lines 17-20 an evaluation 

procedure is called to form the class distributions within the beam and then to induce and 

to evaluate the classifiers.  At a minimum this procedure will evaluate the class distribu-

tions at the endpoints and at the midpoint of the beam; however, this procedure may be 
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implemented to evaluate additional class distributions within the beam. The procedure 

will set the variable best to the class distribution that performs best. If the best perform-

ance is achieved by several class distributions, then a resolution procedure is needed.  

The resolution procedure used in this thesis is to select the class distribution for which the 

surrounding class distributions perform best; if this still does not yield a unique value, 

then the class distribution closest to the center of the beam is chosen.  In any event, for 

the last iteration, only one class distribution is evaluated—the class distribution from the 

previous iteration that yields the best performance.  This is necessary to ensure budget-

efficiency, since if more than one class distribution were evaluated in this case, then some 

examples would need to be discarded to form the best-performing class distribution. 

8.2.2 Proof of Budget-Efficiency 

This algorithm is guaranteed to request only examples that are subsequently used in the 

final training set, which will have the heuristically determined class distribution.  This 

guarantee can be verified inductively.  First, the base case.  The calculation for K in line 2 

ensures that the initial training set will contain cmin • n training examples. Since we as-

sume that the final training set will have at least cmin minority-class examples and cmin 

majority-class examples, all examples used to form the initial training set are guaranteed 

to be included in the final training set.  Note that cmin may be set arbitrarily small—the 

smaller cmin the larger K and the smaller the size of the initial training set. 

The inductive step is based on the observation that because the radius of the beam in 

line 9 is set so that the beam spans DW�PRVW�D�IDFWRU�RI� ��DOO�H[DPSOHV�UHTXHVWHG�LQ�HDFK�

iteration are guaranteed to be used in the final training set.  To see this, we will work 

backward from the final iteration (but the reasoning works both ways).  Assume that the 
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result of the algorithm is that the fraction of minority-class examples in the final training 

set is p, so that there are p • n minority-class examples in the final training set.  This 

means that p was the best distribution from the previous iteration.  Since p must fall 

somewhere within the beam for the previous iteration and the beam must span a factor ��

we can say the following: the fraction of minority-class examples in the previous iteration 

could range from p� ��LI�p�ZDV�DW�WKH�WRS�RI�WKH�SUHYLRXV�EHDP��WR�  • p (if p was at the 

bottom of the previous beam).  Since the previous iteration contains n/ �H[DPSOHV��GXH�WR�

WKH�JHRPHWULF�VDPSOLQJ�VFKHPH��WKHQ�WKH�SUHYLRXV�LWHUDWLRQ�KDV�DW�PRVW�� ���p) • n� ��RU�p 

• n, minority-class examples.  Thus, in all possible cases all minority-class examples from 

the previous iteration can be used in the final interaction.  This argument applies similarly 

to the majority-class examples and can be extended backwards to previous iterations.6  

Thus, because of the bound on the initial training-set size and the restriction on the width 

of the beam not to exceed the geometULF�IDFWRU� ��WKH�DOJRULWKP�JXDUDQWHHV�WKDW�DOO�H[Dm-

ples requested during the execution of the algorithm will be used in the final training set. 

8.2.3 Minor Modifications to the Algorithm to Simplify Evaluation 

The experimental results in Table 7.3 from Chapter 7 show how class distribution and 

training-set size affect classifier performance.  These results are based on thirteen class 

distribution values.  So that we can use these results to evaluate the sampling algorithm, 

the sampling algorithm must be modified so that when the beam is set in lines 6-10 of 

Table 8.1, only these thirteen values are chosen for evaluation.  This is done by setting 

the low end (high end) of the beam to the class distribution listed in Table 7.3 that is just 

                                                           
6 The only exception is for the first iteration of the algorithm, since in this situation the beam is uncondi-

tionally set to span all class distributions.  This is the reason why the cmin value is required to provide the 
efficiency guarantee. 
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below (above) the best performing class distribution.  As an example, if the best perform-

ing class distribution contains 30% minority-class examples, then the bottom of the beam 

is set to include 20% minority-class examples and the top of the beam to include 40% 

minority-class examples.  Although this will sometimes allow the beam to span a range 

JUHDWHU� WKDQ� � ���� DQG�KHQFH� HOLPLQDWHV� WKH� JXDUDQWHH�RI�EXGJHW-efficiency, as we shall 

see, in practice this does not result in a problem (i.e., the algorithm is still budget-

efficient). 

In addition, one slight improvement was made to the algorithm. Specifically, for any 

iteration, if the number of examples already in hand (procured in previous iterations) is 

sufficient to evaluate additional class distributions, then the beam is widened to include 

these additional class distributions.  This can occur because during the first iteration the 

beam is set very wide. 

8.2.4 A Detailed Example 

This section provides a detailed iteration-by-iteration example describing the sampling 

algorithm as it is applied to the phone data set, when error rate is used to evaluate classi-

fier performance.  However, before providing the detailed description, we preview the 

main results by showing the “trajectory” of the sampling algorithm as it searches for a 

good class distribution.   The trajectory is depicted graphically in Figure 8.1 (the trajec-

tory is based on the class-distr  values listed shortly in Table 8.2). 
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Figure 8.1: Trajectory of the Sampling Algorithm 

In the following description, note that budget refers to the budget expended thus far.  

Hence a value of .5n means that half of the budgeted examples have been procured.  All 

experimental results (including the ones presented in the next section) are based on a 

JHRPHWULF�IDFWRU�� ��RI����DQG�D�YDOXH�RI�cmin of 1/32.  The total budget available for pro-

curing training examples is n.  Based on these values, the value of K, which determines 

the number of iterations of the algorithm and is computed on line 2 of Table 8.1, is set to 

5.  Finally, note that since we use the values from Table 7.3 to evaluate the sampling al-

gorithm, the number of budgeted training examples to be procured, n, corresponds to the 

number of training examples used when generating Table 7.3. 

The detailed iteration-by-iteration description of the sampling algorithm, as it is ap-

plied to the phone data set with error rate as the performance measure, is shown below.  
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A more concise summary is then provided in Table 8.2, which records the values of the 

key variables during each iteration. 

 

j =  0  Training-set size = 1/32 n. Form 13 data sets, which will contain between 2% and 

95% minority-class examples.  This requires .0298n (95% of 1/32 n) minority-

class examples and .0307n (100%-2% = 98% of 1/32 n) majority-class examples.  

Induce and then evaluate the resulting classifiers.  Based on the results in Table 

7.3, the natural distribution, which contains 18.2% minority-class examples, per-

forms best.  Total Budget: .0605n (.0298n minority, .0307n majority). 

j = 1   Training-set size = 1/16 n.  Form data sets corresponding to the best-performing 

class distribution form the previous iteration (18.2% minority) and the adjoining 

class distributions used in the beam search, which contain 10% and 20% minor-

ity-class examples.  This requires .0250n (20% of 1/16 n) minority-class examples 

and .0563n (90% of 1/16 n) majority-class examples.  Since .0298n minority-class 

examples were previously obtained, class distributions containing 30% and 40% 

minority-class examples can also be formed without requesting additional exam-

ples.  This iteration requires .0256n additional majority-class examples.  The best-

performing distribution contains 10% minority-class examples. Total Budget: 

.0861 n (.0298n minority, .0563n majority). 

j = 2  Training-set size = 1/8 n.  Since the 10% distribution performed best, the beam 

search evaluates the 5%, 10%, and 18.2% minority-class distributions.  The 20% 

class distribution is also evaluated since this requires only .0250n of the .0298n 

previously obtained minority-class examples. A total of .1188n (95% of 1/8 n) 

majority-class examples are required.  The best performing distribution contains 

10% minority-class examples.  This iteration requires .0625n additional majority-

class examples. Total Budget: .1486n (298n minority, 1188n majority). 

j = 3  Training-set size = 1/4 n.  The distributions to be evaluated are 5%, 10%, and 

18.2%.  There are no “extra” minority-class examples available to evaluate addi-
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tional class distributions.  This iteration requires .0455n (18.2% of 1/4 n) minor-

ity-class examples and .2375n (95% of 1/4 n) majority-class examples.  The best-

performing class distribution contains 10% minority-class examples. Total 

Budget: .2830n (.0455n minority, .2375n majority) 

j = 4   Training-set size = 1/2 n.  The 5%, 10%, and 18.2% class distributions are evalu-

ated.  This iteration requires .0910n (18.2% of 1/2 n) minority-class examples and 

.4750n (95% of 1/2 n) majority-class examples.  The best-performing distribution 

contains 10% minority-class examples. Total Budget: .5660n (.0910n minority, 

.4750n majority). 

j = 5    Training-set size = n.  For this last iteration only the best class distribution from 

the previous iteration is evaluated.  Thus, a data set of size n is formed, containing 

.1n minority-class examples and .9n majority-class examples.  Thus .0090n addi-

tional minority-class examples and .4250n additional majority-class examples are 

required.  Since all the previously obtained examples are used, there is no “waste” 

and the budget is not exceeded.  Total Budget: 1.0n (.1000n minority, .9000n ma-

jority). 

 

This detailed description is summarized in Table 8.2.  Note that the total budget is not 

exceeded since the budget used in 1n. 

j size class-distr best min-need maj-need minority majority budget
0 1/32 n all 18.2% .0298 .0307 .0298 .0307 .0605
1 1/16 n 10, 18.2 , 20, 30, 40 10% .0250 .0563 .0298 .0563 .0861
2 1/8 n 5, 10 , 18.2, 20 10% .0250 .1188 .0298 .1188 .1486
3 1/4 n 5, 10 , 18.2 10% .0455 .2375 .0455 .2375 .2830
4 1/2 n 5, 10 , 18.2 10% .0910 .4750 .0910 .4750 .5660
5 1  n 10 .1000 .9000 .1000 .9000 1.0000

Expressed as a fraction on n

 

Table 8.2: Compact Description of the Execution of the Sampling Algorithm 
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8.3 Experimental Results 

The budget-sensitive progressive-sampling algorithm, using the results from Table 7.3, 

was applied to the phone, adult, and covertype data sets using both error rate and AUC to 

measure classifier performance.  The execution of the sampling algorithm on these data 

sets is described in Table 8.3 using the compact tabular notation introduced in the Table 

8.2. 

Data set Metric j size class-distr best min-need maj-need minority majority budget
Phone ER 0 1/32 n all 18.2 .0298 .0307 .0298 .0307 .0605

1 1/16 n 10, 18.2 , 20, 30, 40 10 .0250 .0563 .0298 .0563 .0861
2 1/8 n 5, 10 , 18.2, 20 10 .0250 .1188 .0298 .1188 .1486
3 1/4 n 5, 10 , 18.2 10 .0455 .2375 .0455 .2375 .2830
4 1/2 n 5, 10 , 18.2 10 .0910 .4750 .0910 .4750 .5660
5 1 n 10 .1000 .9000 .1000 .9000 1.0

Phone AUC 0 1/32 n all 20 .0298 .0307 .0298 .0307 .0605
1 1/16 n 18.2, 20 , 30, 40 30 .0250 .0511 .0298 .0511 .0809
2 1/8 n 20, 30 , 40 30 .0500 .1000 .0500 .1000 .1500
3 1/4 n 20, 30 , 40 20 .1000 .2000 .1000 .2000 .3000
4 1/2 n 18.2, 20 , 30 18.2 .1500 .4090 .1500 .4090 .5590
5 1 n 18.2 .1820 .8180 .1820 .8180 1.0

Adult ER 0 1/32 n all 20 .0298 .0307 .0298 .0307 .0605
1 1/16 n 10, 20 , 23.9, 30, 40 20 .0250 .0563 .0298 .0563 .0861
2 1/8 n 10, 20 , 23.9 20 .0299 .1125 .0299 .1125 .1424
3 1/4 n 10, 20 , 23.9 10 .0598 .2250 .0598 .2250 .2848
4 1/2 n 5, 10 , 20 20 .1000 .4750 .1000 .4750 .5750
5 1 n 20 .2000 .8000 .2000 .8000 1.0

Adult AUC 0 1/32 n all 80 .0298 .0307 .0298 .0307 .0605
1 1/16 n 60,  70, 80 , 90 70 .0563 .0250 .0563 .0307 .0870
2 1/8 n 60, 70 , 80 70 .1000 .0500 .1000 .0500 .1500
3 1/4 n 60, 70 , 80 80 .2000 .1000 .2000 .1000 .3000
4 1/2 n 70, 80 , 90 80 .4500 .1500 .4500 .1500 .6000
5 1 n 80 .8000 .2000 .8000 .2000 1.0

Covertype ER 0 1/32 n all 5 .0298 .0307 .0298 .0307 .0605
1 1/16 n 2, 5 , 10, 20, 30, 40 5 .0250 .0613 .0298 .0613 .0911
2 1/8 n 2, 5 , 10, 20 5 .0250 .1225 .0298 .1225 .1523
3 1/4 n 2, 5 , 10 5 .0250 .2450 .0298 .2450 .2748
4 1/2 n 2, 5 , 10 5 .0500 .4900 .0500 .4900 .5400
5 1 n 5 .0500 .9500 .0500 .9500 1.0

Covertype AUC 0 1/32 n all 20 .0298 .0307 .0298 .0307 .0605
1 1/16 n 14.8, 20 , 30, 40 30 .0250 .0533 .0298 .0533 .0831
2 1/8 n 20, 30 , 40 40 .0500 .1000 .0500 .1000 .1500
3 1/4 n 30, 40 , 50 30 .1250 .1750 .1250 .1750 .3000
4 1/2 n 20, 30 , 40 20 .2000 .4000 .2000 .4000 .6000
5 1 n 20 .2000 .8000 .2000 .8000 1.0  

Table 8.3: Complete Summary Description of the Execution of the Algorithm 
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The results in Table 8.3 indicate that in no case is the budget exceeded, which means that 

all examples requested during the execution of the algorithm are used in the final training 

set, with the heuristically-determined class distribution (i.e., the algorithm is budget-

efficient). 

The performance of the sampling algorithm is summarized in Table 8.4, along with the 

performance of three other strategies for selecting the class distribution of the training 

data.  These additional strategies are: 1) always pick the natural class distribution, 2) al-

ways pick the balanced class distribution, and 3) pick the class distribution that performs 

best over the thirteen class distributions in Table 7.3.  Table 8.4 also specifies the cost for 

each strategy, which is based on the number of training examples requested by the algo-

rithm. This cost is expressed with respect to the budget n (each strategy yields a final 

training set with n examples). 

Data Set ER AUC Cost ER AUC Cost ER AUC Cost ER AUC Cost
phone 12.32% 0.851 n 12.32% 0.851 n 14.81% 0.849 n 12.32% 0.853 1.93n
adult 17.09% 0.861 n 17.25% 0.839 n 20.05% 0.851 n 16.85% 0.861 1.93n
covertype 5.04% 0.984 n 5.03% 0.984 n 6.46% 0.980 n 5.00% 0.984 1.93n

Sampling Algorithm Pick Natural Pick Balanced Pick Best

 

Table 8.4: Comparative Performance of the Sampling Algorithm 

We begin by discussing the costs associated with each of the four selection strategies.  

The strategies that involve picking the natural or balanced class distributions require ex-

actly n examples to be selected and hence are budget-efficient.  The “Pick Best” strategy, 

which evaluates thirteen class distributions using between 2% and 95% minority-class 

examples, requires that .95n minority-class examples and .98n majority-class examples 

be chosen.  This yields a total cost of 1.93n and hence is not budget-efficient.  Unlike 

these three “fixed” strategies, the cost of the budget-sensitive sampling algorithm de-
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pends on the performance of the induced classifiers.  Even though this algorithm, with the 

changes described in Section 8.2.3, is not guaranteed to be budget-efficient, it nonetheless 

is in all cases—since for both error rate and AUC the cost incurred is always exactly n.  

Next we compare the results for classifier performance in Table 8.4.  These results 

show that by using the budget-sensitive progressive-sampling algorithm to choose the 

training data it is possible to achieve results that are no worse and sometimes better than 

the strategies of always using the natural or balanced class distributions, without requir-

ing that any extra examples to be procured.  Specifically, note that in no case does the 

strategy of always using the balanced distribution outperform the sampling algorithm and 

that in only one case (for covertype using error rate) does the strategy of using the natural 

distribution outperform the sampling algorithm (and in this case the difference is mini-

mal).  The budget-sensitive algorithm does almost as well (essentially as well in 5 of 6 

cases) as the “Pick Best” strategy, which is almost twice as costly.  Based on these re-

sults, the budget-sensitive progressive-sampling algorithm is attractive—it incurs the 

minimum possible cost in terms of procuring examples while permitting the class distri-

bution for training to be selected using some intelligence. 

8.4 Summary 

This chapter introduced a budget-sensitive progressive sampling algorithm that uses some 

intelligence in determining the class distribution used for learning, while selecting the 

minimum number of examples possible (i.e., no examples are wasted).  A slightly modi-

fied version of the basic algorithm was evaluated on three very large data sets and shown 

to perform nearly as well as the optimal strategy, which always chooses the best class dis-

tribution for learning.  The sampling algorithm described in this chapter shows that the 
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experimental results from earlier chapters can be put to practical use—that in practice one 

can determine a good class distribution for learning by intelligently selecting the training 

examples. 
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Chapter 9 

Research Related to Class Distribution 

This second part of this thesis focused on class distribution, its effect on decision-tree 

learning and how choosing the class distribution carefully when training data is costly 

can compensate for a limited amount of training data.  This chapter describes related re-

search, which may be placed into the following categories: research concerning the rela-

tionship between class distribution and classifier performance, research on how to reduce 

the amount of necessary labeled training data, research on progressive sampling strate-

gies, and research on how to learn when data sets have highly unbalanced class distribu-

tions.  Research in each of these categories is described in turn. 

9.1 The Relationship between Class Distribution and Classifier Performance 

Several researchers have considered the question of what class distribution to use for a 

fixed training-set size, and, more generally, how class distribution affects classifier per-

formance.  Both Catlett (1991) and Chan and Stolfo (1998) study the relationship be-

tween (marginal) training class distribution and classifier performance when the training-

set size is held fixed.  However, these studies focus most of their attention on other issues 

and have two main weaknesses with respect to their study of class distribution.  First, 

both of these studies analyze only a few data sets, which makes it impossible to draw 

general conclusions about the relationship between class distribution and classifier per-
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formance.  Secondly, these studies fail to adjust for changes made to the class distribution 

of the training set, as described in Chapter 6. 

Chan & Stolfo (1998) show, based on three data sets, that when accuracy is the per-

formance metric, a training set that uses the natural class distribution yields the best re-

sults.  These results agree partially with our results—although we show that the natural 

distribution does not always maximize accuracy, we do show that the optimal distribution 

generally is close to the natural distribution.  The different conclusions are likely due to 

the fact the Chan & Stolfo do not adjust for the changes made to the class distribution of 

the training data.  Not adjusting for these changes, as shown in this thesis, will negatively 

affect classifier performance when the class distribution is modified, and hence will bias 

the results to favor the naturally occurring (unmodified) class distribution. 

 Chan & Stolfo also show that when actual costs are factored in (i.e., the cost of a false 

positive is not the same as a false negative), the natural distribution does not perform 

best; rather a training distribution closer to a balanced distribution performs best.  They 

also observe, as we did, that by increasing the percentage of minority-class examples in 

the training set, the induced classifier performs better at classifying minority examples. 

9.2 Reducing the Need for Labeled Training Data 

Several researchers have looked at the general question of how to reduce the need for la-

beled training data by selecting the data intelligently, but without explicitly considering 

the class distribution.  For example, Cohn et al. (1994) and Lewis and Catlett (1994) use 

“active learning” to add examples to the training set for which the classifier is least cer-

tain about the classification.  Saar-Tsechansky and Provost (2001, 2003) provide an over-

view of such methods and also extend them to cover AUC and other non-accuracy based 
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performance metrics.  However, the setting where these methods are applicable is differ-

ent from the setting we consider.  In particular, these methods assume either that arbitrary 

examples can be labeled or that the descriptions of a pool of unlabeled examples are 

available and the critical cost is associated with labeling them (so the algorithms select 

the examples intelligently rather than randomly).  In our typical setting, the cost is in pro-

curing the descriptions of the examples—the labels are known beforehand. 

9.3 Progressive Sampling Strategies 

The budget-sensitive sampling strategy described in Chapter 8 employs a type of progres-

sive sampling.  There has been some prior research on progressive sampling strategies.  

John and Langley (1996) show how one can use the extrapolation of learning curves to 

determine when classifier performance using a subset of available training data comes 

close to the performance that would be achieved by using the full data set.  Provost et al. 

(1999) suggest using a geometric sampling schedule and show that it is often more effi-

cient than using all of the available training data. The techniques described by John and 

Langley (1996) and Provost et al. (1999) do not change the distribution of examples in 

the training set, but rather rely on taking random samples from the available training data.  

Our progressive sampling routine extends these methods by stratifying the sampling by 

class and using the information acquired during the process to select a good final class 

distribution. 

9.4 Handling Highly Unbalanced Class Distributions 

There has been a considerable amount of research on how to build “good” classifiers 

when the class distribution of the data is highly unbalanced and it is costly to misclassify 
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minority-class examples (Japkowicz et al., 2000).  This research is related to the research 

in this thesis because a frequent approach for learning from highly skewed data sets is to 

modify the class distribution of the training set.  Under these conditions, classifiers that 

optimize for accuracy are especially inappropriate because they tend to generate trivial 

models that almost always predict the majority class.  A common approach for dealing 

with highly unbalanced data sets is to reduce the amount of class imbalance in the train-

ing set.  This tends to produce classifiers that perform better on the minority class than if 

the original distribution were used.  Note that in this situation the training-set size is not 

fixed and the motivation for changing the distribution is usually to produce a “better” 

classifier—not to reduce, or minimize, the training-set size. 

The two basic methods for reducing class imbalance in training data are under-

sampling and over-sampling.  In this context, under-sampling discards examples in the 

majority class while over-sampling replicates examples in the minority class (Breiman, et 

al. 1984; Kubat & Matwin, 1997; Japkowicz & Stephen, 2001).  Neither approach consis-

tently outperforms the other nor does any specific under-sampling or over-sampling rate 

consistently yield the best results.  Estabrooks and Japkowicz (2001) address this issue by 

showing that a mixture-of-experts approach, which combines classifiers built using un-

der-sampling and over-sampling methods with various sampling rates, can produce con-

sistently good results. 

Both under-sampling and over-sampling have known drawbacks.  Under-sampling 

throws out potentially useful data while over-sampling increases the size of the training 

set and hence the time to build a classifier.  Furthermore, since most over-sampling 

methods make exact copies of minority class examples, overfitting is likely to occur—
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classification rules may be induced to cover a single replicated example.  Recent research 

has focused on improving these basic methods.  Kubat and Matwin (1997) employ an un-

der-sampling strategy that intelligently removes majority examples by removing only 

those majority examples that are “redundant” or that “border” the minority examples—

figuring they may be the result of noise.  Chawla et al. (2000) combine under-sampling 

and over-sampling methods, and, to avoid the overfitting problem, form new minority 

class examples by interpolating between minority-class examples that lie close together.  

Chan and Stolfo (1998) take a somewhat different, and innovative, approach.  They first 

run preliminary experiments to determine the best class distribution for learning and then 

generate multiple training sets with this class distribution.  This is typically accomplished 

by including all minority-class examples and some of the majority-class examples in each 

training set.  They then apply a learning algorithm to each training set and then combine 

the generated classifiers to form a composite learner.  This method ensures that all avail-

able training data are used, since each majority-class example will be found in at least 

one of the training sets. 

The research in this thesis can properly be viewed as research into under-sampling and 

its effect on classifier performance.  However, given this perspective, our research per-

forms under-sampling in order to reduce the training-set size, whereas in the research re-

lating to skewed data sets the primary motivation is to improve classifier performance. 

For example, Kubat and Matwin (1997) motivate the use of under-sampling because “… 

adding examples of the majority class to the training set can have a detrimental effect on 

the learner’s behavior.”  A consequence of these different motivations is that in our ex-

periments we discard examples belonging to the minority and majority classes (although 
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in different proportions), while in the research concerned with learning from skewed dis-

tributions it is only majority-class examples that are discarded. 

 The use of under-sampling for reducing the training-set size (and thereby reducing 

cost) may be the more practically useful perspective. Reducing the class imbalance in the 

training set effectively causes the learner to impose a greater cost for misclassifying mi-

nority-class examples (Breiman et al., 1984).  Thus, when the cost of acquiring and learn-

ing from the data is not an issue, cost-sensitive or probabilistic learning methods are a 

more direct and arguably more appropriate way of dealing with class imbalance, because 

they do not have the problems, noted earlier, that are associated with under-sampling and 

over-sampling.  Such approaches have been shown to outperform under-sampling and 

over-sampling (Japkowicz & Stephen, 2002).  To quote one of the papers that considers 

this issue, “All of the data available can be used to produce the tree, thus throwing away 

no information, and learning speed is not degraded due to duplicate instances” (Drum-

mond & Holte 2000, page 239). 

9.5 Summary 

This chapter reviewed research related to the class distribution work described in this the-

sis.  The research most directly related to our research, by Chan and Stolfo (1998), pro-

duced similar results regarding the relationship between class distribution and classifier 

performance.  The observed differences are likely due to the fact that Chan and Stolfo did 

not correct for changes made to the class distribution of the training data.  This chapter 

also reviewed research concerned with intelligently selecting data when data is costly—

research that use criteria other than the class label to select the data.  Progressive sam-

pling strategies were also reviewed.  Much of this chapter focused on how the class dis-
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tribution of highly skewed data sets may be modified by under-sampling or over-

sampling the data.  The relationship between these techniques, and the research in this 

thesis, was discussed. 
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Chapter 10 

Conclusions and Future Work 

“What we call the beginning is often the end. 
And to make an end is to make a beginning. 

The end is where we start from." 

- T. S. Eliot, “Four Quartets” 

“A conclusion is the place where you got tired of thinking.” 

- Martin H. Fischer 

 
This thesis provides an empirical study of small disjuncts and class distribution and their 

impact on decision-tree learning.  This chapter summarizes the main contributions and 

lessons learned from these two studies.  Limitations with these studies are then discussed, 

including the reliance on decision tree learning throughout this thesis.  In this discussion 

we do provide some reasons to believe that our results may generalize beyond this one 

important class of learners.  Areas of possible future research are then discussed, fol-

lowed by some final remarks. 

10.1 Summary of Contributions 

Although the study of small disjuncts and the study of class distribution are separate, 

many of the main contributions for each are related, since the studies share the same gen-

eral framework.  We begin by describing these common contributions. 
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This thesis provides the most comprehensive empirical studies to date of the role that 

small disjuncts and class distribution play in learning.  Whereas previous research stud-

ies, for both topics, have only analyzed a handful of data sets, in this thesis we analyze a 

large set of benchmark data sets (thirty data sets for small disjuncts and twenty-six for 

class distribution).  Because of this, we are able to quantify the impact that small dis-

juncts and class distribution have on decision tree learning, note patterns of behavior and 

draw conclusions from the results. 

Each study began by measuring the impact and role of the relevant phenomena (small 

disjuncts, class distribution) on learning under normal circumstances (e.g., without add-

ing noise or altering the class distribution).  For the study of small disjuncts, a new met-

ric, error concentration, was used to summarize the distribution of errors with respect to 

disjunct size.  This new metric made it possible, for the first time, to compare these dis-

tributions across classifiers.  The experimental results demonstrated that the errors are 

highly concentrated in the small disjuncts for most classifiers, but that there are a sub-

stantial number of classifiers for which this is not the case. 

Analysis of these small disjunct results indicates that classifiers with relatively low er-

ror rates almost always have high error concentrations while this is not true of classifiers 

with high error rates.  This analysis further indicates that this pattern is due to the fact that 

classifiers with low error rates generally contain some very accurate large disjuncts.  We 

conclude from this that concepts that can be learned well tend to contain very large sub-

concepts and that C4.5 and Ripper generate classifiers with similar error concentrations 

because both are able to form accurate large disjuncts to cover these large subconcepts. 
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 Similarly, the effect that class distribution has on decision tree learning under normal 

circumstances, when the class distribution of the training data is not altered, was also 

measured.  These results were analyzed to look for any differences between the minority 

and majority classes.  The results show that the minority-class predictions consistently 

have a much higher error rate than majority-class predictions and that minority-class test 

examples are misclassified much more often than majority-class test examples.  The dif-

ference in behavior for the predictions was attributed to the fact that there are more ma-

jority-class examples in the test data (the “test distribution effect”) and that minority class 

examples tend to be covered by smaller, more error prone, disjuncts.  The difference in 

behavior for the test examples was attributed to the fact that accuracy favors the majority 

class—false negative errors are preferred over false positive errors. 

Each of the studies next made changes to the experimental setup, to gain additional in-

sight into the learning process.  For the small disjunct study, factors such as pruning, 

training-set size, noise, and class imbalance were varied.   The goal of these experiments 

was twofold: to provide a better understanding of the role of small disjuncts in decision 

tree learning and to provide a better understanding of decision tree learning in general.  

The experiments and subsequent analysis yielded many interesting observations, only 

some of which are highlighted below. 

Pruning was shown to eliminate many small disjuncts, thereby reducing the error con-

centration of the induced classifiers.  However, even with pruning most classifiers had 

error concentrations that were decidedly positive, indicating that pruning does not totally 

eliminate, or, more properly, mask, the problem with small disjuncts.  Pruning was shown 

to be most effective when the unpruned classifier has a high error concentration, indicat-
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ing that most errors are concentrated in the smaller disjuncts.  Pruning was also shown to 

be only moderately effective as a strategy for addressing the problem with small dis-

juncts.  Finally, this thesis pointed out a weakness of pruning—it distributes the errors 

more uniformly throughout the disjuncts.  We show that because of this pruning hurts the 

accuracy of large disjuncts and will generally degrade classification performance when 

only a subset of the available examples need to be classified. 

The analysis of training-set size shows that an increase in the amount of training data 

almost always leads to an increase in error concentration.  This change occurs because as 

more training data is made available, the large disjuncts, which may cover the areas in the 

target concept that are expressible using axis-parallel cuts in the instance space, can be 

learned more accurately.  In contrast, small disjuncts, which may be used to approximate 

the portions of the target concept that cannot be expressed using axis-parallel cuts (and 

generally lie close to the decision boundary), will still contain some errors.  Furthermore, 

the additional training data may cause some small subconcepts to be sampled for the first 

time, resulting in small disjuncts.  These disjuncts will tend to be error prone because 

with few training examples, it will be difficult to accurately determine the correct 

boundaries of the subconcept. 

Noise was investigated to determine its effect on small disjuncts and error concentra-

tion.  Noisy data was shown to cause many erroneous small disjuncts to be formed and to 

break down highly accurate large disjuncts.  Pruning was shown to combat the effects of 

noise by dramatically reducing the number of small disjuncts formed due to the noisy 

data.  This was shown to help preserve the accuracy of the induced classifier.  The in-

crease in error rate that does occur with pruning is due to the inability of the pruning 
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strategy to distinguish between small subconcepts of the target concept and noise.  Sup-

porting this is the fact that noise appears to have less of a deleterious effect on learning 

when the classifier induced without noise has a low error concentration—indicating that 

the classifier may be made up primarily of large disjuncts. 

Finally, class imbalance was analyzed to see how it affects the distribution of errors by 

disjunct size.  Changing the class distribution of the data set to remove class imbalance 

was shown to consistently reduce the error concentration of the induced classifier, indi-

cating that class imbalance is partly responsible for the problem with small disjuncts.  

The reason that class imbalance leads to an increase in error concentration is as follows.  

Minority-class examples are more difficult to classify than majority-class examples due 

to the test distribution effect (i.e., because there are more majority-class test examples).  

Because our results show that small disjuncts are more likely to be labeled with the mi-

nority class than large disjuncts, small disjuncts therefore should have a higher error rate 

than large disjuncts.  This says that part of the problem with small disjuncts is related to 

class imbalance. 

Next, we return to the contributions from the study of class distribution.  The class dis-

tribution of the training data was altered to study the effect of class distribution on classi-

fication performance.  Because this alteration would unduly bias the classifier to favor the 

preferentially sampled class, the class probability estimates produced by the classifier 

were adjusted and the class labels re-assigned based on these new estimates.   The 

method for correcting these estimates was described in detail in this thesis.  Experimental 

results showed for the first time that adjusting the probability estimates yields a substan-

tial improvement in classifier accuracy.  This indicates that the results from past research 
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on class distribution, which did not adjust the classifier to account for changes in class 

distribution, are suspect.  In particular, these results will tend to be biased toward the 

natural class distribution. 

The experimental results using C4.5 indicate that when accuracy is the performance 

measure, the best class distribution for learning tends to be near the natural distribution—

although the use of a class distribution other than the naturally occurring distribution of-

ten leads to substantial improvements in classifier performance.  The results also indicate 

that when AUC is the performance measure, then a balanced class distribution will gen-

erally perform quite well, although not always optimally.  Therefore, we recommend, as a 

general guideline, that if the relative costs of misclassifying examples are not known, or 

the true, underlying, class distribution is not known, that one consider using a balanced 

class distribution for learning when the amount of training data must be limited. 

However, one can improve upon this general guideline by interleaving data procure-

ment and learning, using feedback from learning to guide the search for a good class dis-

tribution.  This method is feasible when data can be incrementally procured by class or 

when the amount of data is limited due to costs associated with learning from the data 

(e.g., computational limitations).  In this latter case, labeled data are already available, so 

procurement of examples by class is trivial.  Based on the empirical evidence presented 

in this thesis, our budget-sensitive progressive-sampling algorithm almost always per-

forms as well or better than the strategies of always choosing the natural distribution or a 

balanced distribution—and never does considerably worse.  Furthermore, this sampling 

algorithm yields classifiers that nearly perform as well as those generated from the opti-

mal class distribution.  Based on these results, the budget-sensitive progressive-sampling 
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algorithm is attractive—it incurs the minimum possible cost in terms of procuring exam-

ples while permitting the class distribution for training to be selected using some intelli-

gence. 

Machine learning and data mining practitioners often need to make changes to the 

class distribution of training data, but have had little guidance in the past on how to do 

this. Changes to the class distribution are seldom done in a principled manner and the 

reasons for changing the distribution—and the consequences—are often not understood.  

The research presented in this thesis should provide these practitioners with a better un-

derstanding of the relationship between class distribution and classifier performance, the 

issues involved, and permits them to learn more effectively when there is a need to limit 

the amount of training data. 

10.2 Limitations and Future Work 

This section describes limitations with the research described in this thesis and also sug-

gests possible avenues for future research.  The first limitation we discuss concerns the 

reliance on decision tree learning (and rule learning for the small disjuncts study).  This 

class of learners was selected because of its popularity and importance.  We believe that 

the reliance on decision tree learning is not as large a concern for the class distribution 

study as for the study of small disjuncts.  This is because there are some reasons to be-

lieve that the class distribution results aren’t unduly tied to the learning algorithm.  

Namely, since the role that class distribution plays in learning—and the reasons listed in 

Section 6.6.2 for why a classifier will perform worse on the minority class—are not spe-

cific to decision-tree learners, one would expect other learners to behave similarly.  
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Nonetheless, it would certainly be worthwhile in future work to repeat the experiments 

for the class distribution study using additional learners. 

The study of small disjuncts, however, may be much more closely tied to the type of 

learning algorithm.  This is because small disjuncts may be formed, in part, due to the 

inability of a learner to express the target concept (recall the example in Figure 3.1 in 

which a decision tree learner attempts to learn a non-axis parallel boundary).   For this 

reason, it would be particularly useful to extend the study of small disjuncts to include 

other learners—including learners such as neural networks that have greater expressive 

power. 

One specific problem with using C4.5 to study the effect of class distribution on learn-

ing is that C4.5 does not account for changes made to the class distribution of the training 

data.  Differences between the class distribution of the training and test data are ac-

counted for in a post-processing step, by re-computing the probability estimates at the 

leaves and using these estimates to re-label the tree.  There are two drawbacks with this 

approach.  The first is that if C4.5 had knowledge of the target (i.e., test) distribution dur-

ing the tree-building process, then a different decision tree might be constructed.  The 

second drawback is that we could not use C4.5’s pruning strategy when alterations were 

made to the training data, since pruning is sensitive to changes in class distribution. 

It would be worthwhile in future research to analyze the effect of class distribution on 

learning using a learner that is sensitive to changes in distribution or cost-sensitive 

(changes in class distribution are effectively equivalent to changes in misclassification 

cost).  Such a learner would generate a classifier based on full knowledge of the changes 

made to the class distribution and would also use this information when pruning.   
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We should point out, however, that even with the two drawbacks just noted, there are 

reasons to believe that the existing limitation with C4.5 is not that serious—and that our 

results would not be that different had C4.5 been able to factor in changes to the class dis-

tribution.  First, Drummond and Holte (2000) showed that there are splitting criteria that 

are completely insensitive to differences in class distribution and that these splitting crite-

ria perform as well or better than methods that explicitly factor in changes to class distri-

bution.  They further showed that C4.5’s splitting criterion is relatively insensitive to the 

class distribution—and therefore to changes in class distribution.  Thus, the tree produced 

by C4.5 might not change much even if changes in distribution were factored in.  Sec-

ondly, there are reasons to believe that not using pruning did not unduly affect our re-

sults.  We can say this because we showed that the observed differences in behavior be-

tween the minority and majority classes still exist with pruning and that C4.5 without 

pruning performs competitively with C4.5 with pruning.  Moreover, other research (Brad-

ford et al., 1998) indicates that classifier performance does not generally improve when 

pruning takes class distribution and costs into account. 

Another limitation with our study of class distribution is that only two-class learning 

problems were analyzed.  Although this simplified the analysis, it limited the scope of the 

study.  It would be quite interesting to see if the observed patterns of behavior change for 

data sets with many classes. 

The budget-sensitive progressive-sampling algorithm described in this thesis assumes 

that the cost of obtaining examples is the same independent of the class of the example.  

In practice, however, this is often not the case—examples belonging to the rarer class are 

often more expensive (e.g., in the telecommunication domain fraudulent charges must be 
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verified).  It would be interesting to extend the sampling algorithm to take non-uniform 

procurement costs into account and see how such differences in cost affects the optimal 

class distribution. 

This thesis showed that it is possible to improve classifier performance by changing 

the class distribution of the training data, so that it no longer adheres to the naturally oc-

curring class distribution.  Perhaps a similar approach can be employed to better learn 

small subconcepts, thereby reducing the problem with small disjuncts.  The basic idea is 

to select additional training examples that would fall within a small disjunct, in order to 

“enlarge” the disjunct.  Similar approaches have been developed previously, to intelli-

gently choose examples based on feedback from the learning process, but not solely 

based on disjunct size.  For example, as described in Chapter 9, over-sampling methods 

sometimes introduce additional minority-class examples, by either duplicating existing 

examples, or by intelligently combining existing minority-class examples.  The approach 

of selecting additional examples is actually more feasible in the context defined in this 

thesis, when the amount of training data needs to be limited, because examples that fall 

into these small disjuncts may already exist.  It is worthwhile to note the research in this 

thesis already incidentally addresses the idea of selecting examples based on disjunct 

size.  This is because the recommended strategy of choosing a balanced class distribution 

for learning to maximize AUC eliminates many small disjuncts (i.e., those associated 

with the minority class).  Part of the success of this strategy is therefore due to the fact 

that it preferentially samples examples that would otherwise be classified by small dis-

juncts. 
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The pruning results associated with the study of small disjuncts showed that pruning 

degrades the accuracy of the highly accurate, large disjuncts.  Given that large disjuncts 

are often amongst the best classification rules (i.e., will have the best predictive accu-

racy), these intriguing results indicate that pruning may generally be harmful when one 

need only classify some of the available examples.  Thus, these results warrant further 

attention.  First, additional learners and pruning strategies should be analyzed to see if 

they exhibit the same behavior.  Next, the classification rules should be ordered using cri-

teria other than disjunct size (e.g., training accuracy) to judge the quality of the rule, to 

see if pruning still has a deleterious effect on the best classification rules. 

Error concentration was used in this thesis to describe classifier performance and to 

assess how various factors (pruning, noise, etc.) affect classifier performance.  A key 

question is, can error concentration be used as a parameter to improve learning?   This is 

similar in spirit to the use of disjunct size, by other researchers, to determine the learner, 

or bias, to be used to classify an example.  For example, can error concentration, meas-

ured using one learner (e.g., C4.5) be used to select the most appropriate learner?   More 

fundamentally, which learning methods perform best for data sets associated with high 

error concentrations?  With low error concentrations?  Based on the results for pruning in 

this thesis, perhaps the more intriguing question is can error concentration be used to help 

determine how much pruning should be done?  

10.3 Final Remarks 

We began this thesis by discussing the value of studying those situations and portions of 

a classifier that are responsible for contributing most of the errors.  In this thesis we saw 

that small disjuncts contribute many, if not most, classification errors.  We also saw that 



161 

 

rare classes are a problem for learning.  That is, we saw that the inability of a classifier to 

effectively classify minority-class examples leads to many, if not most, classification er-

rors.  While we proposed no specific solution for dealing with small disjuncts, we did 

show that one can improve learning in the presence of rare classes by carefully choosing 

the class distribution of the training data.  For example, we suggested the use of a bal-

anced class distribution for learning when the amount of training data must be limited and 

one wants to generate a classifier robust to changes in misclassification cost and class dis-

tribution (i.e., wants to maximize AUC).  This thesis shows that by studying small dis-

juncts and class distribution—by focusing on where the errors are—one can gain useful 

insights into the learning process.  
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