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Abstract

Thirteen classifiers, including neural networks, statistical methods, decision trees,
and an instance-based method were employed to perform binary classifications on twelve
real-world datasets. Predictive classification performance on test sets was compared
using ROC analysis and error percentage. The four best algorithms were neural
networks. The hypothesis of no difference between the error rates of the algorithms was
rejected by statistical test. The amount of difference in the quality of performance of the
classifiers seems to be a characteristic of the dataset. On certain datasets almost all
algorithms worked about equally well. For other datasets there are marked differencesin
algorithm effectiveness.

An attempt to improve classification accuracy by pre-clustering did not succeed.
However, error rates within clusters from training sets were strongly correlated with error
rates within the same clusters on the test sets. This phenomenon could perhaps be used to
develop confidence levels for predictions.
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Chapter 1. Introduction

Progressin storage technology is allowing vast amounts of raw datato
accumulate in both private and public databases. It has been estimated that the amount of
datain the world doubles every twenty months (Frawley, Piatetsky-Shapiro, & Matheus,
1992). Insurers, banks, hotel chains, airlines, retailers, telecommunications and other
enterprises are rapidly accumulating information from day to day transactions with their
customers. Wal-Mart every day uploads twenty million point-of-sale transactionsinto a
centralized database (Cios, Pedrycz, & Swiniarski, 1998). AsJohn (1997) writes:

Knowledge may be power, but all that datais unwieldy.
Statistician David Wishart (1999a) comments:
Computers promised afountain of wisdom, but delivered aflood of data.

Unless the accumulated data can be adequately analyzed it becomes useless. To help put
thisflood of data into aformat that can be used, more and more datais being moved into
data warehouses whose purpose is decision support. Data warehouses help by having a
common format and consistent definitions for fields.

The process of turning some of this stored datainto knowledge is the domain of
knowledge discovery in databases. Knowledge discovery in databases has been defined
asfollows:

Knowledge discovery in databasesis the nontrivial process of identifying valid,
novel, potentially useful and ultimately understandable patternsin data (Fayyad,
Piatetsky-Shapiro, and Smyth (1996).

Datamining is acomponent of the knowledge discovery in databases process concerned
with the algorithmic means by which patterns are extracted and enumerated from data.
(Fayyad, Piatetsky-Shapiro, and Smyth, 1996).

Data mining helps businesses and scientists discover previously unrecognized
patternsin their databases. These patterns may help a consumer products company
optimize inventory levels and detect fraudulent credit-card transactions. They can help a
telecommunications company identify who islikeliest to move to another long-distance
phone company. They may help adoctor predict which patients are good candidates for a
surgical procedure or are at risk for developing a particul ar disease.

This knowledge discovery process has severa steps. Thefirst step isto define the
problem. Often working with adomain expert, the data mining analyst needs to define



specific problems or questions to be answered. The second step isto extract the data,
often from several different tablesin a database and place it into one table against which
data mining algorithms can be run. The third step isto “clean” and explore the datafor
such things as mislabeled fields and special semantics. Special semanticsrefersto the
practice of assigning numerical values such as zero or 99 to attributes whose actual value
isunknown (George, 1997). Next the datais“engineered.” The data may be transformed
to insure that the data all has the same scale. There may be adecision to drop certain
records if they are incorrect or represent cases that could not be used to infer general
patterns. Then the analyst selects an algorithm to analyze the data from among the many
available or develops an agorithm. Finally, he runs the algorithm(s) on a subset of the
data, holding back a portion on which to validate the discovered patterns. Our
contributions in this thesis will be to the last two steps of the knowledge discovery
process. We will look at choosing algorithms and at clustering data to improve accuracy.

We will examine several statistical and artificial intelligence (Al) methods used to
perform various classification tasks. Wilson (1997) defines this problem as follows:

The problem of classification...isto learn the mapping from an input vector to an
output classin order to generalize to new examplesit has not necessarily seen
before.

Classification rather than continuous function approximation will be the focus
because it is the most common question to be answered in data mining situations. Binary
classification isthe frequently encountered situation where there are two categories. A
set of cases or instances is partitioned into two subsets based on whether each has or does
not have a particular property. Binary classification is also our focus because there are
clear criteriafor judging binary classification efforts- percentage correctly classified and
receiver operating characteristic (ROC) curves.

Increased knowledge of the accuracy of various classification methods will allow
data mining analysts to select from those that are most effective. Knowledge of which
classifiers perform best may suggest directions for those seeking to construct new
algorithms or to improve upon existing ones.

There is controversy over the relative merits of doing classification using Al tools
such as neural networks versus employing statistical methods. Thus, David Banks,
(1996) a tatistician, writes about neural networks in thistone:

Computer science has recently developed anew drug, called neural
nets....l cometo bury, not to praise.(pp.2,3)

He goes on to cite experimental work which found no marked superiority for neural nets
over newer statistical techniquesin classification tasks.

Those in the neural network camp almost universally boast of the superiority of
neural networks over statistical methods. For example, NeuralWare, Inc. (1991) statesin
abook it published on neural computing:



Neural computing systems are adept at many pattern recognition tasks, more so
than both traditional statistical and expert systems... The ability to select
combinations of features pertinent to the problem gives them an edge over
statistically based systems. (p.10)

Advocates of neural networks often claim that statistical models have difficulty dealing
with the contradictory and messy data often found in real-world datasets. They feel
statistical methods only work with datathat is"clean” and which contain consistent
correlations. They note that neural networks can fit complex non-linear modelsto the
data while some statistical methods can accommodate only linear relationships.

A third view isthat both approaches are evenly matched and which approach is
best will depend upon the problem domain. Couvreur and Couvreur (1997) write:

For us, statistics and neural networks are complementary tools, with considerable
overlap not only in their fields of application but also in their theoretical
foundations... When compared fairly, neural and modern statistical approaches
perform similarly, both in terms of quality of results and in terms of
computational cost. 1n some applications NN's will outperform their statistical
counterparts, in othersthey will not (pp. 2, 5).

We propose to compare the accuracy of various Al and statistical methods on
several classification tasks. There may be generalizations that can be drawn about the
types of data sets for which certain methods are most appropriate. Statistical methods
used in the comparison will include decision trees (CART, CHAID, and QUEST),
discriminant analysis, and logistic regression. Al approaches will include various multi-
layer perceptron neural networks, learning vector quantization (LV Q) neural networks
and other related supervised learning methods.

The need for research comparing classification algorithmsis great. Salzberg
(1997) writes:

Classification research, which is a component of datamining as well as a subfield

of machine learning, has always had a need for very specific, focused studies that

compare algorithms carefully. The evidence to date isthat good evaluations are
not done nearly enough...(Salzberg, 1997)

Prechelt (1996) surveyed nearly 200 papers on neural network algorithms. Twenty-nine
percent were not evaluated on any real-world data. Only 8% compared the algorithm to
more than one alternative classifier on real data.

There are severa sites on the web where interesting real-world data sets for doing
classification can be found. Most of the data that we will usein this thesis comes from
such sources. Real world datasets are used with the idea that good performance on them
will generalize to similar performance on other real-world tasks.



A second focus of thisthesis arises out of the proposition that large datasets may
not yield certain significant patterns until they are divided into more homogeneous
subgroups through cluster analysis techniques. Thisis seen asimproving the
performance of more directed or "supervised" learning methods that are then applied to
the subgroups created instead of to the entire dataset.

Chapter 2. Comparing the Algorithms

Classification aswe shall useit in this chapter refersto establishing rules so that
we can classify new observations into one of a set of existing classes. Observations have
attributes. Thetask of the classifier isto assign an observation to a class given its set of
attributes. The rules may be explicit or comprehensible, asin the case of decision trees.
Or, aswith neural networks, rules may not be capable of explicit formulation.

We assume that we have a number of sample observations from each class. The
classifier is presented with a substantial set of the data from which it can associate known
classes with attributes of the observations. Thisis known astraining. When such
guidance is given the processis known as supervised learning. The rules developed in
the training process are tested on the remaining portion of the data and compared with the
known classifications. Thisisknown asthe testing process. Here the response of the
procedure to new observationsis a prediction of the class to which the new observations
belong. The proportion correct in the test set is an unbiased estimate of the accuracy of
the rules implemented by the classifier.

Much of the knowledge gained in the data mining processisin the form of
predicted classifications. Customers may be classified aslikely or not likely to respond
to abank's solicitations to take out ahome loan. Medical patients may be classed at high
or low risk for heart disease based upon risk factors.

There is another important type of classification based upon the concept of
clustering. Here neither the number of classesis known in advance nor is the assignment
of observationsto classes. We shall discuss the relevance of this type of classification to
predictive classification in chapter four.

2.1 Previous Comparative Studies

Several previous studies have compared classifiers. The most inclusive study
ever done comparing different classifiers was the STATLOG Project carried out in
Europe (Michie, Spiegellhalter, and Taylor, 1994). They proceeded from the assumption
that the fragmentation among the different disciplines that have worked on classification
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problems has hindered communication and progress. They sought to remedy this by
bringing together a multidisciplinary team and including classifiers developed by the
different disciplines. Included were procedures from classical statistics, modern
statistics, decision trees, and neural networks. They considered the results of 22
algorithms from the above areas run on 16 datasets. The datasets were diverse. They
included such problems as assessing Australian credit card applicants, recognizing
handwritten digits, determining type of ground cover from Landsat satellite images, and
predicting recovery level from head injury based upon data collected at the time of injury.
The result was that the procedures that worked best varied by dataset. The three
individual procedures most often among the best for each of the datasets were one type of
neural net (DIPOL92) and two types of statistical procedures (ALLOC 80 and logistic
discriminant analysis). Decision trees performed well if the dataset was multimodal.
There were other variations. Among the decision tree group of methods almost all
performed about the same. Among the neural nets one type was frequently one of the
best overall (DIPOL92) and another type was rarely among the best (Kohonen'sLV Q).

Shalvik, Mooney, and Towell (1991) compared backpropagation and the ID3 type
of decision tree on five real-world data sets. They found backpropagation superior to the
decision tree on two datasets with no difference on the other three.

Brown, Corruble, and Pittard (1993) compared backpropagation neural networks
and decision trees for multimodal classification problems. Decision trees performed
better on datasets which contained irrelevant attributes which they were able to ignore.
Neura networks do not have such a capacity for feature selection. Apparently, the neural
networks were confused by the presence in the training set of attributes not useful in
discriminating the target classes. On two other datasetsin which most variables were
useful in discriminating the classes neural networks outperformed decision trees. This
suggests that to get the best performance from neural networks a procedure to select out
the best input variables prior to training is sometimes necessary. Another interesting
finding was that neural networks with two hidden layers outperformed those with just one
hidden layer.

Ripley (1994) compared discriminant analysis, nearest neighbor, backpropagation
neura networks, MARS, and a classification tree on afew classification problems. The
measure was percentage correctly classified. The varioustools were approximately
equally matched. Ripley concluded that:

Neural networks emerge as one of aclass of flexible non-linear regression
methods which can be used to classify viaregression (p 409).

Curram and Mingers (1994) compared discriminant analysis, decision trees, and
neural networks across seven datasets. Four contained real data and three were
artificialy created. Discriminant analysis performed well when the dataset proved to be
linearly separable. On adataset that was designed to have highly non-linear relatoinships
(points classified as either inside or outside a sphere based on their three coordinates)
discriminant analysis performed at a chance level. Neural networks performed well on
the sphere data and fairly well across all datasets. It did better than discriminant analysis
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when there were non-linear relationships between predictors and classes but dlightly
worse when the data were linearly separable. Decision trees performed worse than the
other two methods. It was interesting that on the real world datasets, where its
assumptions were likely not strictly adhered to, discriminant analysis proved to be
reasonably robust.

Holmstrom, Koistinen, Laaksonen, and Oja (1997) compared severa classifiers
on handwritten character and phoneme data using percent accurately classified. Thetwo
datasets have very different statistical properties. The handwriting datais high
dimensional while the phonemedataislow dimensional. The handwriting data has many
classes while the phoneme data has just two. The phoneme datais described as having a
rich internal structure with a class distribution containing many clusters. Thirteen
classifierswere employed. They included variations of classical discriminant analysis,
regression-based methods such as MARS, subspace classifiers, nearest-neighbor
methods, and two types of neural networks. In the classification of handwritten digits the
nearest neighbor and subspace classifier techniques were most effective. A decision tree
classifier had the highest error percentage. Combining three classifiersin a"committee’
using amajority voting rule for classification provided an improvement over using a
single classifier. On the phoneme classification problem kernel classifiers, and nearest
neighbor classifiers performed best. Classifiers with relatively smple decision
boundaries performed poorly on this dataset. Such resultsindicate that characteristics of
particular datasets are an important determinant of which classification tool will perform
best. Thisalso suggeststhat it will befutile to try to discover one classification tool that
will perform best across all datasets.

Lim, Loh, and Shih (1999) compared twenty-two decision tree, nine statistical,
and two neural network algorithmsin terms of classification accuracy. They assessed
classification accuracy by mean error rate and mean rank of error rate. The best methods
were a statistical algorithm called POLY CLASS - a spline based "modern version of
logistic discrimination analysis." Other top-ranked algorithms were linear discriminant
analysis, logistic discriminant analysis, and the decision tree algorithm QUEST with
linear splits. The two neural network algorithms (LVQ and radial basis function) were
both in the bottom fourth of the methods used. However, more modern and perhaps more
powerful neural network algorithms, such as backpropagation, were not used.

Other papers have compared classification approaches on a single dataset.
Dietterich, Hild, and Bakiri (1989) compared the performance of a backpropagation
neural network and a decision tree algorithm known as ID3. The classification task was
the mapping of English text to phonemes and stresses. Backpropagation consistently
outperformed the decision tree by severa percentage points. The authors comment that
thereis no universal learning algorithm that can take a sample of training examplesfor an
unknown function and produce a good approximation. Instead, every learning algorithm
has its own biases about the nature of the problem to be learned. The differencein
performance between backpropagation and ID3 means that they make different
assumptions.
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Chen (1991) compared three types of neural networks (backpropagation, radial
basis functions, and probabilistic neural networks) with the statistical method of nearest
neighbor decision rule. The classification target was simulated active sonar waveforms.
All three neural networks outperformed nearest neighbor. More advanced statistical
technigques were not included.

Sandholm Brodley, Vidovic, and Sandholm (1996) compared six algorithmsin
predicting morbidity and mortality from equine gastrointestinal colic. The high mortality
rate with surgery (40%) and the high cost of the operation (about $10,000) are reasons for
only operating on horses that actually have the disease and will likely survive the
operation. Linear discriminant, logistic regression, and a neural network did slightly
better than a decision tree and a nearest neighbor algorithm. But the results from the
neural network were seriously flawed because the test data used in the comparison was
also used to choose the best time to stop training the neural net and to set other important
aspects of the network's architecture.

Poddig (1995) predicted which of a set of French firmsfell into bankruptcy. The
predictive attributes were 45 ratios developed from the firm's financial statements 1-3
years before some entered bankruptcy. A backpropagation neural network with multiple
hidden layers exceeded the performance of discriminant analysis. Kohonen'sLVQ
network underperformed the discriminant analysis.

Sen, Oliver, and Sen (1995) compared neural networks and logistic regression in
predicting which companies would be merged with other companies. The two techniques
performed equally well.

Schwartz Ward, MacWilliam, and Verner (1997) used fourteen variables as
potential predictors for improvement after total hip replacement surgery. A neural
network was compared with alinear regression model using the same data. Using a
receiver operating characteristic (ROC) curve for comparison the neural network was
more accurate but the difference did not reach statistical significance.

Pesonen (1977) compared discriminant analysis, logistic regression analysis, and
cluster analysis with a backpropagation network in the diagnosis of acute appendicitis.
Input variables were 17 clinical signs and age and sex of patients admitted to a hospital
suffering from acute abdominal pain. The results of the four classification methods were
compared with receiver operating characteristic curve (ROC) analysis aswell as by
diagnostic accuracy. Discriminant analysis and backpropagation showed slightly better
results than the other methods. Interestingly, he found that predicting that a case was
acute appendicitis only when all methods agreed on the diagnosis increased accuracy.
Pesonen concluded that backpropagation neural networks do not offer any magic but do
perform as well as statistical methods.



2.2 Descriptions of Classification Algorithms

Thefollowing isalisting of al the supervised learning methods we use:

Discriminant Analysis

Logistic Regression

Classification and Regression Trees (CART)
Chi-sguared Automatic I nteraction Detection (CHAID)
QUEST decision tree

Model Ware

Model Quest

Multi-Layer Perceptron neural net (MLP) - Backpropagation
Learning

9. MLP Cascade Correlation neural net

10. Learning Vector Quantization (LVQ) neura net

11. MLP Levenberg-Marquardt neural network

12. Resilient Propagation

13. Ward Systems Classifier

NGO~ WNE

Discriminant analysis is the oldest statistical technique for classification.
R.A. Fisher first published it in 1936. Init the difference between two classesis
maximized by alinear combination of variables. Thislinear function acts as a hyper-
plane that partitions the observation space into classes. Which side of a hyper planea
point fallsinto determinesits classification. Discriminant analysis assumes that the
predictor variables are normally distributed. We will use the implementation of
discrminant analysis provided in SPSS Version 8.0.

Logistic regressionisaversion of linear regression used for predicting a
classifying variable. Logistic regression builds up alinear model using the logarithm of
the odds of occurrence of aclass membership. Inlogistic regression the modeler must
select the right variables and account for their possible interactions. Thereisno
normality assumption imposed upon the data. We will use the implementation of logistic
regression provided in SPSS Version 8.0.

Decision trees develop a series of rulesthat classify observations. We will use
three types- CART (known as"C&RT" in SPSS'sversion), CHAID, and QUEST. Inall
decision trees an observation enters at the root node. A test isapplied which is designed
to best separate the observationsinto classes. Thisisreferred to as making the groups
"purer.” The observation then passes along to the next node. The process of testing the
observations to split them into classes continues until the observation reaches aleaf node.
Observations reaching a particular leaf node are classified the same way. Many leaves
may make the same classification but they do so for different reasons. Decision trees
differ from the classical statistical testsin that they do not draw lines through the data
space to classify observations. Decision trees may be thought of as drawing boxes
around similar observations. Several different paths may be followed for an observation
to become part of aparticular class. Criticisms of decision treesinclude that any decision
on how to split at anodeis made "locally." It does not take into account the effect the
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split may have on future splits. And the splitsare "hard splits' that often may not reflect
reality. Thusan attribute "years of age" may be split at "age > 40." |s someone thirty-
nine so different than aforty-one year old? Also, splits are made considering only one
attribute at atime (Two Crows Corporation, 1998).

Brieman, Friedman, Olshen, and Stone developed the CART agorithm in 1984.
It builds abinary tree. Observations are split at each node by afunction on one attribute.
The split is selected which divides the observations at a node into subgroupsin which a
single class most predominates. When no split can be found that increases the class
specificity at a node the tree has reached aleaf node. When all observations arein leaf
nodes the tree has stopped growing. Each leaf can then be assigned a class and an error
rate (not every observation in aleaf node is of the same class). Because the later splits
have smaller and | ess representative samples to work with they may overfit the data.
Therefore, the tree may be cut back to a size which allows effective generalization to new
data. Branches of the tree that do not enhance predictive classification accuracy are
eliminated in a process known as "pruning.”

CHAID differsfrom CART in that it stops growing atree before overfitting
occurs. When no more splits are available that lead to a statistically significant
improvement in classification the tree stops growing. Also, any continuously valued
attributes must be redone as categorical variables. The implementations of CART and
CHAID we will use are from SPSS's Answer Tree Version 2.0.

QUEST is another type of decision tree developed by Loh and Shih (1997). Itis
unique in that it performs approximately unbiased as to class membership variable
selection to split nodes. We will use the implementation of QUEST with linear
combination splits available from http://www.stat.wisc.edu/~loh/quest.html.

Model Ware isamodeling tool that can be applied to signal processing,
decision/control and classification problems. Model Ware learns from examples viathe
"Universa Process Algorithm™ (UPM). Itisin someways similar to a nearest neighbor
algorithm. The UPM requires a set of example data, known as the reference datafile.
This describes how the system or process behaves under known operating conditions.
When it receives an input vector UPM creates alocalized model based on a subset of the
patterns from the reference library. The selection of exemplarsis based on a metric of
the similarity of the test vector to each pattern in the reference library. After the
exemplars are selected the model computes the response vector. UPM also outputs
diagnostic information indicating the quality of each component of the input vector and
the overall system health. (Teranet Incorporated, 1992).

The version of Model Ware used in this study isno longer sold. The company
that created it markets a product called Model Ware/RT. It isbased on UPM's capacity to
output diagnostic information about each component of the input vector and about overall
system health. This product is marketed exclusively to the semiconductor industry. Itis
used there in areal-time mode to detect faults in semiconductor manufacturing
(O'sullivan, Martinez, Durham, and Felker, 1995). Model Ware was included in the
present study because of evidence that it excels at classification problems (Hess, 1992).



Model Quest (AbTech Corporation, 1996) automatically constructs polynomial
networks from a database of input and output values for example situations. The
attributes used and their coefficients and the number and types of network elements,
network size and structure, and network connectivity are all learned automatically.

M odel Quest constructs a network by sequentially hypothesizing many potential network
configurations and then rating them according to the predicted square error (PSE) criteria.
The PSE test is employed to avoid overly complex networks that perform well on the
training data but will perform poorly on future data. Model Quest was originaly
developed within the U.S. Military for target classification and other purposes. Itis
currently commercially available and iswidely used in data mining applications.

A neural network isagroup of highly interconnected processing elements that can
learn from information presented to them. Neura networks were inspired by the
structure of neuronal connectionsin the human brain. The neural network's ability to
learn and its basisin the biological activities of the human brain classify it asaform of
artificia intelligence.

The most widely used neural network is the multi-layer perceptron (MLP) type
neural network. MLP networks process information in interconnected processing
elements called nodes. Nodes are organized into groups known as layers. An MLP
network consists of an input layer, one or more processing layers, and an output layer.
The nodes of adjacent layers are connected to transfer the output signals from one layer
to the next. Each input connection to a node has a weighting value associated with it.

The node produces a single output that is transmitted to many other processing elements.
Processing continues through each layer of the network. The network's response emerges
at the output layer. During the training process the network's response at the output layer
is compared to the known to be correct answers from atraining set.

In the most common learning process used by MLP's the difference between the
network's output and the correct responses are figured and this error is backpropagated
through the network to improve its response. The procedure of processing inputs through
the network, figuring errors, and sending the errors back through the network to adjust
the weights constitutes the learning process in the backpropagation type of multi-layered
perceptrons. Connection weights are adjusted to drive the error to aminimum. Neural
networks resembl e a directed graph with nodes, connections, and a direction of flow.
Vesta Services (1996) produced the ML P using the backpropagation learning method that
wewill use (QNET).

Cascade correlation is another type of MLP that begins with no nodes initially and
then adds them one at atime. Each new node receives inputs from the inputs and the
other nodes in the network. Weights for the new nodes are not determined by minimizing
mean sgquared error, as in backpropagation. Rather, the covariance between a new node
and the residual error is maximized. Logical Designs Consulting (1994) developed the
implementation of cascade correlation we will use.
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Another type of MLP uses a particular method to adjust the difference between
network outputs and target outputs during training. The Levenberg-Marquardt type of
training method has space requirements proportional to the square of the number of
weights in the network. This means that networks with alarge number of connections
between inputs and hidden nodes may be precluded. Hema Chandrasekaran (n.d.)
developed the version we will use.

Resilient Propagation isa MLP neural network modified from backpropagation to
train more efficiently. The implementation of resilient propagation is from QwikNet v.
2.23 (Jensen, 1999).

NeuroShell Classifier isaneural network using a proprietary algorithm (Ward
Systems, 1998). While details of its structure are unavailable it isatool which might
well be selected by those in data mining.

Learning Vector Quantization (LVQ) isa"nearest neighbor" neura net in which
each node is designated, viaits desired output, to belong to one of a number of classes.
The LVQ agorithm involves the use of codebook vectors. These are points within the
problem space to approximate various modes of the problem. Several codebook vectors
are usually assigned to each class. New patternsare classified based on the class
assignment of the codebook vector that is closest to its position. The training process
involves iteratively adjusting the positions of the codebook vectorsin order to create a
distribution that will minimize overal classification error. Logical Designs Consulting
(1994) created the implementation of LV Q that we will use.

2.3 Assessing Classification Tool Performance

While we seek to determine the fitness of each algorithm the results obtained
when atechnique is applied to data may depend upon other factors. These include the
implementation of the technigque as a computer program and the skill of the user in
getting the best out of the technique.

We will use several metrics to assess the performance of classification tools. The
first isthe traditional one of percentage of casesin the test set incorrectly classified
(mean error rate). We will average this number across all datasets to give us a measure of
aclassifier'soverall effectiveness. We will also examine the ranks of the classifiers
within datasets. The classifiers with the lowest error rate will be assigned arank of one,
the one with the second lowest error rate will be assigned arank of two, etc. The average
ranks will be assigned in the case of ties.

It has been shown that there are problems with using accuracy of classification
estimation as a method of comparing algorithms (Provost, Fawcett, and Kohavi, 1998). It
assumes that the classes are distributed in a constant and relatively balanced fashion. But
class distributions may be skewed. For example, if your classification task is screening
for arare disease, calling all cases "negative" can lead to a spuriously and trivially high
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accuracy rate. If only .1 percent of patients has the disease atest that says no one has the
disease will be correct 99.9% of thetime. Accuracy percentage is affected by prevalence
rates and there is no mathematical way to compensate for this.

Accuracy isaso of limited usefulness as an index of a classifier's performance
becauseit isinsensitive to the types of errors made. Using classification accuracy asa
measure assumes equal misclassification costs - afalse positive has the same significance
asafalsenegative. Thisassumptionisrarely validin real-world classification tasks. For
example, one medical test may have as its mistakes almost all false negatives (misses).
Another might err in the direction of false positives (false alarms). Y et these two tests
can yield equal percentages of correctly classified cases. If the disease detected by the
test isadeadly one afalse negative may be much more serious than a false positive.
Similarly, if thetask is classifying credit card transactions as fraudulent the cost of
misclassifying atransaction as fraudulent (false alarm) may be much less than missing a
case of fraud.

The limitations of using classification accuracy can be overcome by an approach
known as recelver operating characteristic (ROC) analysis (Metz, 1978; Swets, 1973).
Thisisthe second metric we shall use to evaluate classifier performance. We can begin
our look at it by defining decision performance in terms of four categories:

True Positive Decisions = True Positive Fraction (TPF)
Actually Positive Cases

False Positive Decisions = False Positive Fraction (FPF)
Actually Negative Cases

True Negative Decisions = True Negative Fraction (TNF)
Actually Negative Cases

False Negative Decisions = False Negative Fraction (FNF)
Actually Positive Cases

Since al observations are classified as either positive or negative with respect to
membership in a class the number of correct decisions plus the number of incorrect
decisions equals the number of observationsin that class. Thus, the above fractions are
related by:

TPF + FNF = 1
and

TNF + FPF = 1
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FNF can always be computed from knowledge of TPF. TNF can be computed from
knowledge of FPF. It isnecessary to know only one fraction from each of the above
relationsto determine all four of the types of decision fractions.

These concepts allow usto sort out the effects of the prevalence of aclass. It aso
allows us to score separately the performance of a classifier with respect to observations
that actually are and are not members of aclass.

When we use a classification algorithm its output does not necessarily
automatically cause an observation to fall into aparticular class. If we have atwo
category classification problem predicted by one output the distribution of results from
observationsin the"0" class and from those in the"1" classwill overlap (sincethetest is
not perfect). A threshold value for alocating predictionsto "0" or to "1" must be chosen
arbitrarily. A different choice of threshold yields different frequencies for the types of
correct and incorrect decisions. If we change the decision threshold we will obtain a
different set of decision fractions. Because TPF and FPF determine al of the decision
fractions we just keep track of how they change as the decision threshold isvaried. The
points representing all possible combinations of TPF and FPF lie on acurve that is caled
the receiver operating curve (ROC) for aclassifier. Itis called this because the receiver
of the classifier information can "operate” on any point on the curve given a particular
decision threshold.

In ROC spacethe TPF istypically plotted on the Y-axis and the FPF is plotted on
the X-axis. If the classifier provides valid information the intermediate points on the
ROC curve must be above the lower |eft to upper right diagonal. When thisisso a
decision to place an observation in a class when it actually isa member of that classis
more probable. A ROC curveillustrates the tradeoffs that can be made between TPF and
FPF (and hence all four of the decision fractions).

ROC analysis gives us another perspective on the performance of classifiers. An
ROC curve shows the performance of aclassifier across arange of possible threshold
values. The area under the ROC curve is an important metric for evaluating classifiers
because it isthe average sensitivity across all possible specificities. One point in ROC
space is better if it isto the upper left in the ROC chart. This means TPF is higher, FPF
islower, or both. A ROC graph permits an informal visual comparison of classifiers. If a
classifier's ROC curveis shifted to the upper left across all decision thresholdsit will
perform better under all decision cutoffs. However, if the ROC curves cross then no
classifier is best under all scenarios. There would then exist scenarios for which the
model giving the highest percentage correctly classified does not have the minimum cost.
The computer program we will use for figuring ROC curves was developed by Charles
Metz, Ph.D. of the Department of Radiology at the University of Chicago (Metz, 1998).

Bradley (1997) investigated the use of the area under the ROC curve (AUC) asa
measure of aclassification algorithm's performance. He compared six learning
algorithms on six real-world medical datasets using AUC and conventional overall
accuracy. AUC showed increased sengitivity (alarger F value) in analysis of variance
tests. It wasalso invariant to apriori class probabilities. Bradley recommended that



AUC should be used in preference to overall accuracy as a single number eval uation of
classification algorithms.

A mgor limitation of ROC analysisisthat it can only analyze classifier output
that is continuoudly distributed. Many classification agorithms, notably decision trees,
can only have discrete outputs (i.e., "1" or "0"). Hence, ROC analysis can be used with
most, but not all of the classification algorithms used in this study.

24 TheData

We have included twelve datasets in our study. They are described briefly below.
Any modifications we need to make to them for our study are also noted. We will
remove those observations or cases containing missing datafrom all datasets.

Breast Cancer Survival This sample relates age at time of operation and number of
positive axillary nodesto five-year survival after surgery for breast cancer. There are 306
casesin this dataset from the University of Californiaat Irvine's (UCI) Machine Learning
Repository (Blake, Keogh, and Merz, 1998).

Cleveland Clinic Heart Disease Here we are classifying patients as having or not
having heart disease based upon 12 cardiac functioning variables. Diseaseis defined as
having a greater than 50% narrowing of arteries on angiographic examination. Thereis
complete data for about 287 subjectsin this dataset aso obtained from UCI.

Contraceptive Method Choice This data obtained from the UCI database was
originally collected by the National Indonesia Contraceptive Prevalence Study in 1987.
The data consists of nine demographic attributes for 1,473 married women. The datais
modified dlightly from the original dataset to include two classifications - does or does
not use contraception.

Doctor Visits Thisdataset contains data on a sample of elderly individuals
drawn from the National Medical Expenditure Survey donein 1987. There are 4406
observations and 22 variables. The datawas used in a paper from the Journal of Applied
Econometrics (Deb and Trivedi, 1997). Thisjourna maintains asite where data from its
articlesis deposited and can be accessed (http://ged.econ.queensu.caljael).

Earnings This dataset is from Polachek and Y oon (1996) who studied income
using data from the Michigan Panel Study of Income Dynamics. Predictors are education
(years), job experience (years) and tenure at current job (months). The dependent
variable iswhether wage level is above or below average. The number of observationsis
13,408.
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Indian Rice Farm This dataset comes from aforthcoming paper in the Journal of
Applied Econometrics by Horrace and Schmidt (in press). The target variable is whether
afarminavillagein Indiais classified as above or below average in efficiency of rice
production. Efficiency isdefined asthe total rough ricein kilograms produced after
deducting for harvest costs (which are paid in terms of rough rice) divided by the total
areathe farmer cultivated inrice. Thereisdatafrom one thousand and twenty-six Indian
farms who average 1.07 acres of rice under cultivation. Predictor variablesinclude the
village where the farm islocated, the total area cultivated with rice, whether traditional or
high-yielding varieties of rice are planted, fertilizer use levels, labor hours expended, and
labor pay rate. Thereisdatafrom 1026 farms.

Italian Household Income The target variable in this dataset is the classification
of an Italian household's net disposable income as above or below the median. Predictors
are such variables as husband and wife's hours of work, number of children between
certain ages, work experience, education, and whether or not they resided in northern
Italy. Thisdataisfrom aforthcoming paper in the journal of Applied Econometrics by
Aaberge, Colombino, and Steiner (in press).

Own Home This datais derived from the 1987 wave of the Michigan Panel Study
of Income Dynamics as used in the study of Lee (1995). Variables such as husband/wife
educational and vocational variables as well as number and age of children are related to
whether or not the home they livein is owned by the household or otherwise. The
number of observationsis 3382.

Pimalndians Diabetes This UCI dataset provides 8 medical attributesfor 768
women of Pima Indian heritage. Predictorsinclude such attributes as 2-hour serun
insulin level, body mass index, diabetes pedigree function, age, skin fold thickness, and
diastolic blood pressure. The cases are classified according to whether or not they carry a
diagnosis of diabetes.

Working Wives Various demographic variables and type of husband's insurance
coverage isrelated to hours worked per week by the wife (Olson, 1998). To turn thisinto
aclassification problem cases are categorized as wife working more or less than 32 hours
per week. This dataset also comes from the Journal of Applied Econometrics database.
There are over 22,000 cases.

Wage Differences This dataset from the Journal of Applied Econometricsis
taken from the second Maysian Family Life Survey donein 1989. Educational,
ethnicity, and family asset attributes were related to income (Marciaand
Schafgans,1998). To make this a classification problem income level is classified as
above or below the average. Because many of the women did not work outside the home
only males are included in our study. There are more than 4,000 such cases.

Y east Proteins Here we predict the cellular localization sites of proteinsin yeast
cells. Thereare 8 predictors. Wewill limit our study to the two most prevalent classes.
This gives us 889 instances in this dataset from UCI.
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2.5 Experimental Procedure

Eighty percent of each dataset will be used for training the algorithms and twenty
percent will be held back as atest set. For the backpropagation, cascade correlation, and
Levenberg-Marquardt neural networks ten percent of the training data (8 percent of the
total) will be put into afile used to prevent overtraining (Masters, 1993). Assignment of
datato training, overtraing prevention, and tresting fileswill be randomized. Three
hidden layers was used with the backpropagation neural network and two with the
Levenberg-Marquardt network to insure the ability to model complex relationships.
Training of these neural networks stops when the error level on overtraining prevention
file passed through the neural net model reaches its minimum and no improvement
occurs for 10,000 iterations for backpropagation networks. Tuning discriminant analysis
using the stepwise technique to remove non-contributory variables was not done because
this might have given an advantage over the other methods. Performance on the test sets
using percentage accurately classified and ROC analysis forms the basis for comparing
the algorithms.

Chapter 3.  Pre-clustering

Another approach to classification is cluster analysis. Cluster analysisis an
exploratory data analysis tool where there are no pre-set classes, although the number of
classes may be set. Becausein cluster analysis classes must be constructed without
guidance it is known as an unsupervised learning technique. Thisisakin to how people
or animals learn about their environment when they are not told or directed what to learn.

Clusters are formed when attributes of observationstend to vary together. Cluster
analysis constructs "good" clusters when the members of a cluster have a high degree of
similarity to each other (interna homogeneity) and are not like members of other clusters
(external homogeneity). However, there is no agreement over how many clusters a
dataset should be partitioned into. There are no guidelines on the number of clusters that
would be optimal to aid supervised learning efforts.

Statisticians have developed clustering procedures which group observations by
taking into account various metricsto optimize similarity. The magjor type of cluster
analysis, which will be used in this study, is hierarchical clustering.

Hierarchical clustering begins with putting each observation into a separate
cluster. Clustersare then combined successively based upon their resemblance to other
clusters. The number of clustersisreduced until only one cluster remains. A treeor
dendrogram can represent hierarchical clustering. Each fork in the tree represents a step
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in the clustering process. The tree can be sectioned at any level to yield a partition of the
set of observations. At its early stages the dendrogramis very broad. There are many
clustersthat contain very similar observations. Asthe tree structure narrows the clusters
comprise coarser, more inclusive groupings.

Berry and Linoff (1997) have proposed cluster analysis as a precursor to
analyzing data with supervised learning techniques. Especialy in alarge dataset
elements may form subgroups or clusters. Members of a cluster may have muchin
common with other members of their cluster and differ in important ways from members
of other clusters. Each cluster may have itsown "rules’ that relate the attributes of its
members to classifying variables. Thus, to enhance accuracy it may be advantageous to
first group elements of adataset by cluster and then apply the classification algorithms
successively to each cluster. In thisway they will learn each cluster's unique "rules’ for
relating attributes to classes and thereby more accurately classify the members of each
cluster. Berry and Linoff (1997) write about this approach as follows:

It is possible to find rules and patterns within strong clusters once the
noise from the rest of the database has been eliminated... Automatic
cluster detection can be used to uncover hidden structure that can be
used to improve the performance of more directed techniques... Once
automatic cluster detection has discovered regions of the data that
contain similar records, other data mining tools have a better chance of
discovering rules and patterns within them. (pp.212,214,215)

The process of grouping data into subgroup classifications has been described as "pre-
clustering."

Dr. David Wishart, creator of the Clustan cluster analysis software, responded in
the following way to the question of hisopinion of thisuse for cluster analysis:

The essence of clustering is to break down a heterogeneous dataset into
homogeneous subsets. ...cluster your datainto homogeneous subsets which you
can describe, and then work individually on the subsets.

In the context of, say, supermarket shoppers, there are different types- the
bargain hunter, the quality foods seeker, the organics cook, the anti - GM
(genetically-modified) lobbyist, and so on. Each of these types needs a different
marketing strategy to achieve good sales response. So they have to be identified
and analyzed separately.

In my banking study the same thing happened. The bank was surprised to
find it had different types of account holders, some of which were not profitable.
They were then able to focus on the profitable ones, and either disengage or
convert the non-profitable ones. In essence, developing different sets of rules for
cluster subgroups.

| think this works for almost any types of dataset. ...In data mining
contexts, it probably works best with large datasets, because there's always the
hope that you might get a surprise hidden in alot of data (e.g. the profitability of



account types) or discover anugget of hidden data (e.g. in the context of health
insurance claims, atiny group of fraudsters operating a scam) (Wishart, 1999).

A further example Wishart mentions comes from the field of astronomy. Inthe
Hertzsprung-Russel diagram stars are plotted by temperature and luminosity. "Dwarf"
and "giant" stars arein separate clusters. Within each cluster thereis adifferent
relationship between temperature and luminosity. The correlation is negative for the
dwarfs and positive for the giants. If just one correlation were figured for the dataset of
al starsthe corrleations within the two clusters would wash each other out. Thiswould
erroneously indicate no relationship between temperature and luminosity. Y et within the
clustersfor the two types of starsthere are clear "rules’ governing the relationship
between temperature and luminosity.

Despite the plausibility of this use for cluster analysis there does not appear to be
any empirical studies supporting this approach in the data mining or statistical literature.
Dr. Jon Kettenring, of Bellcore, isaFellow and past president (1997) of the American
Statistical Association. He gave a presentation entitled "Massive data sets, data mining,
and cluster analysis' before the Institute for Mathematics and Its Applications. He was
asked if he was aware of any empirical studies which demonstrate that cluster analysis
improves the performance of supervised learning done within the clusters. Hisreply was:

No, | am not aware of any such studies. There may be some, but in fact these are
points of view that are much easier to state than substantiate (K ettenring, 1999).

3.1 Experimenta Procedure

Hierarchical clustering with Ward's method as a linkage rule are applied to the
training sets derived from several of our datasets using the ClustanGraphics software
program (Wishart,1999c). Neural networks are believed to need relatively large training
sets (Masters, 1993). Since the training sets are partitioned by cluster analysiswe
restricted the clustering to datasets containing more than 1,000 cases. The datasets used
in this analysisinclude the Doctor Visits, Italian Household Income, Earnings, Own
Home, Wage Differences, and Working Wives. We partition atraining set into four
clusters based only on the values of the predictive attributes. The statistical and Al
classifiers then create a predictive model for the cases that were put into each cluster.
Test set datais then be put into its cluster-of-best-fit. The predictive models created for
each cluster classify the test set cases assigned to that cluster. For each dataset the
accuracy of the models created for the clusters are compared with those created for the
entire training set. While the number of clusters created is arbitrarily set at four, this
should give us at least some hints as to whether breaking training sets into clusters
routinely aids the supervised learning process. The design also allows us to evaluate how
clustering and classifying algorithms interact in their effect on accuracy.

The study also looksto seeif the error rate for amodel applied to a cluster within
the training set from which it is derived predicts the error rate for members of the same
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cluster within the test set. This could yield confidence levels for predictive classifications
of new data. First, thetraining set itself is passed through the classification model
developed from the training set. Almost all the algorithms used in our study work by
constructing an abstract description for mapping vector inputs onto classes. Even some
members of the training set will not be classified correctly by this concept description.
Thetesting set isalso classified. Next, the training and testing set are clustered at the
four-cluster level based on a cluster model constructed from the training set. The error
rate isfigured for each member of both the training and the testing set grouped by cluster
membership. The error rate for agiven cluster in the training set is compared with the
error rate for the same cluster in the test set. If thereisapositive relationship, the error
level for clustersin the training set could be taken as indicating a confidence level for
predictions of that cluster among new cases presented for classification.

Chapter 4. Results

The error rates for the algorithms in each dataset are presented in Tables 2
through 13. ROC data (when applicable) is aso included. ROC curves for each dataset
are presented in Figures 1 through 12 in Appendix A. The mean error of the classifiers
across datasets in ascending order is presented in Table 14. The mean rank of the error
rate of the classifiersis shown in Table 15. The mean rank of the classifiers by ROC area
under the curve measurement (A(z)) isshown in Table 16. To compute ranks an
algorithm was given ascore of "1" if it had the lowest error rate, "2" if it had the second
lowest error, etc. If two agorithms had an equal error rate, the average rank was
assigned. From inspection of the tables and figures we can draw severa conclusions.

QNET and Model Quest are consistently good classifiers.

Thefour best classifiersare al neura networks.

The worst algorithm (LVQ) isalso aneura network.

Thefirst four classifiers are the same whether ranked according to error rate
or ROC area under the curve criteria.

For certain datasets there are almost no differences between the quality of
classification performance by the various algorithms. In other datasets there
are wide differences between the quality of the classifier's decision
performances.

pPODNPRE

o1

The statistical significance of the differences of the mean ranks of algorithms for
error rates within datasets was analyzed using Friedman's Test. Thistest gavea
significance probability of <.001 (Chi Square = 65.745, df = 12). Thisindicates that the
null hypothesis that the algorithms have equal error rates on average is rejected.

The author contacted the devel opers of the most accurate method (QNET) and
asked them if they would comment on the reasons for its outstanding performance.
QNET implements a standard backpropagation multi-layer perceptron neural network.
William Riba, a developer of QNET wrote:



There are a couple of things we paid close attention to in our devel opment of
QNET. We spent alot of time on accuracy optimization. There are
computational shortcuts - which we tested and were tempted to take for speed
improvements, but were ultimately rejected because they compromised accuracy.
With our attention to accuracy you'd think we'd have developed areal slow
trainer. Luckily we gained back speed through loop optimizations and the use of
an optimizing Intel compiler for the computational sections (buggy as heck - but
worth it). It claimsto make better use of the CPU's floating point unit - resulting
in increased accuracy and speed. Last, we paid close attention to QNET's default
settings - again for the purpose of devel oping more accurate models, not for
fastest training. So | would credit an attention to detail more than algorithmic
differences (Riba, 2000).

Table 1. Breast Cancer Surviva (2 predictors, 306 cases). The Loh and Shih freeware
version of QUEST did not run on this dataset. The version of QUEST from SPSS, Inc.

was substituted.

ROC
Methods Errorrate  Rank a b Az Rank
Cascade Correlation 24.59% 25 .67 .63 71 3
C&RT 29.51 7
CHAID 29.51 7
Discriminant Analysis  29.51 7 81 90 73 2
Levenberg-Marquardt  32.79 105 51 94 64 7
Logistic Regression 32.79 105 .83 91 73 1
LVQ 34.43 12
Model Quest 24.59 25 53 48 .68 6
Model Ware 3115 9 .28 57 59 9
ONET 26.23 4 64 55 71 4
QUEST 37.71 13
Resilient Propagation 22.95 1 .56 47 .69 5
Ward Classifier 27.87 5 41 .56 64 8
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Table 2. Cleveland Clinic Heart Disease (11 predictors, 287 cases)

ROC
Methods Errorrate  Rank a b Az Rank
Cascade Correlation 28.07% 10 .96 80 .77 9
C&RT 31.58 11
CHAID 28.07 8
Discriminant Analysis  19.30 2 180 130 .86 4
Levenberg-Marquardt  28.07 8 106 .52 82 6
Logistic Regression 21.06 35 180 121 .87 2
LVQ 56.14 13
Model Quest 26.32 6 134 99 83 5
Model Ware 2443 5 159 103 .87 3
ONET 15.79 1 18 118 .88 1
QUEST 21.05 35
Resilient Propagation 33.33 12 133 118 381 7
Ward Classifier 28.07 8 120 102 .80 8
Table 3. Contraceptive Method Choice (9 predictors, 1473 cases)

ROC
Methods Errorrate  Rank a b Az Rank
Cascade Correlation 30.51 4 114 114 75 4
C&RT 28.47 1
CHAID 30.85 5
Discriminant Analysis  37.97 9 135 114 81 3
Levenberg-Marquardt  34.24 7 95 124 72 6.5
Logistic Regression 34.76 8 88 124 71 8
LVQ 41.02 12
Model Quest 28.81 2 315 226 .90 2
Model Ware 40.34 10 79 104 71 9
ONET 29.83 3 439 272 94 1
QUEST 65.08 13
Resilient Propagation 32.46 6 92 107 .73 5
Ward Classifier 41.02 11 95 124 72 6.5



Table4. Doctor Visits (11 predictors, 5190 cases)

M ethods

Cascade Correlation
C&RT

CHAID

Discriminant Analysis
Levenberg-Marquardt
Logistic Regression
LVQ

Model Quest

Model Ware

ONET

QUEST

Resilient Propagation
Ward Classifier

Table5. Earnings (3 predictors, 13,408 cases)

M ethods

Cascade Correlation
C&RT

CHAID

Discriminant Analysis
Levenberg-Marquardt
Logistic Regression
LVQ

Model Quest

Model Ware

ONET

QUEST

Resilient Propagation
Ward Classifier

Errorrate  Rank
18.69% 7
18.88 85
19.29 10
23.80 11
18.50 5
18.50 5
39.13 13
18.40 3
23.99 12
18.30 2
18.88 85
18.50 5
17.92 1

Errorrate  Rank
35.27% 105
34.34 7
35.05 8
35.15 9
34.30 6
35.27 105
41.95 13
33.82 1
40.23 12
34.12 4
33.89 2
34.30 5
34.04 3

ROC
a

.90
97
.92
.96
1.02
57
.99

1.01
.96

ROC

I

A7

15
81

.83
A48
.80

81
.78

(o

91

.98
.93
.96

.98
91
9

95
91

(o

.99

1.00
97
.99

.98
1.03
.98

97
.93
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Az Rank
75 8
.79 2
75 7
76 6
.78 3
.66 9
.76 4
.85 1
.76 5

Az Rank
71 6
.70 8
72 25
.70 7
72 1
.63 9
71 4
72 25
12 5



Table 6. Italian Household Income (9 predictors, 2,953 cases)

Methods

Cascade Correlation
C&RT

CHAID

Discriminant Analysis
Levenberg-Marquardt
Logistic Regression
LVQ

Model Quest

Model Ware

ONET

QUEST

Resilient Propagation
Ward Classifier

Errorrate  Rank
20.64% 5
21.66 95
23.18 11
20.81 6.5
20.98 8
20.81 6.5
45.82
18.78 1
24.53 12
20.47 4
21.66 95
20.30 25
20.30 25

ROC

a

151

164
161
1.65
1.62

1.09
1.69

1.76
1.70

Table 7. Wage Differences (9 predictors, 8,748 cases)

M ethods

Cascade Correlation
C&RT

CHAID

Discriminant Analysis
Levenberg-Marquardt
Logistic Regression
LVQ

Model Quest

Model Ware

ONET

QUEST

Resilient Propagation
Ward Classifier

Errorrate  Rank
36.46% 10
30.11 4
31.89 6
38.11 12
30.74 5
37.31 11
55.14 13
29.83 3
33.89 9
29.60 2
3291 8
29.09 1
32.00 7

ROC

a

.56

46
.99
A7

.99
71
.96

.92
84

(o

87

.89
.96

87
1.07
92

1.03
.96

(o

1.05

.98
1.08
.99
1.07

101
1.05

1.02
1.02

.88
.89
.88

.89
q7
.89

.89
.89

.63
15
.63

15
.69
15

14
12
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Table 8. Own Home (12 predictors, 3,382 cases)

ROC
Methods Errorrate  Rank a b
Cascade Correlation 33.58% 10 87 109
C&RT 30.03 6
CHAID 30.92 8
Discriminant Analyss  36.83 12 94 103
Levenberg-Marquardt  30.47 7 109 1.08
Logistic Regression 28.99 3 111 102
LVQ 37.72 13
Model Quest 28.85 2 106 .97
Model Ware 36.54 11 64 A
ONET 27.07 1 113 .96
QUEST 29.29 4
Resilient Propagation 3151 9 84 103
Ward Classifier 30.03 5 106 104
Table 9. Pimalndians Diabetes (6 predictors, 724 cases)

ROC
Methods Errorrate  Rank a b
Cascade Correlation 19.31% 15 186 142
C&RT 22.07 85
CHAID 28.28 12
Discriminant Analysis  19.31 15 18 142
Levenberg-Marquardt  23.45 11 1.04 .89
Logistic Regression 21.38 7 168 117
LVQ 3311 13
Model Quest 20.69 55 132 .87
Model Ware 22.07 85 157 128
ONET 20.00 35 151 105
QUEST 22.76 10
Resilient Propagation 20.69 55 169 139
Ward Classifier 20.00 35 173 118

14
A7
.78

.78
.68
.79

12
A7

.86
.78
.86

.83
.85

87

N

= O w



Table 10. Indian Rice Farms (22 predictors, 1,026 cases)

ROC
Methods Errorrate  Rank a b Az Rank
Cascade Correlation 37.56% 11 10 139 52 6
C&RT 35.13 9
CHAID 37.08 10
Discriminant Analysis 3171 4 04 124 51 7
Levenberg-Marquardt  38.05 12 -.03 114 49 9
Logistic Regression 32.20 55 04 124 51 8
LVQ 47.80 13
Model Quest 32.68 75 66 .78 .70 4
Model Ware 30.24 3 J1 112 53 5
QNET 29.27 2 70 56 .73 2
QUEST 32.68 75
Resilient Propagation 26.34 1 .70 A7 71 3
Ward Classifier 32.20 55 84 82 74 1

Table11. Working Wives (20 predictors, 22,272 cases). The Loh and Shih freeware
version of QUEST did not run on this dataset. The version of QUEST from SPSS, Inc.
was substituted.

ROC
Methods Error rate Rank a b Az Rank
Cascade Correlation 24.48% 75 130 94 83 8
C&RT 24.81 9
CHAID 24.30 5
Discriminant Analysis  25.20 11 131 .93 .83 6
Levenberg-Marquardt  23.82 25 136 .97 84 4
Logistic Regression 25.20 10 130 .92 .83 7
LVQ 54.92 13
Model Quest 16.35 1 136 94 34 1
Model Ware 31.21 12 83 103 .72 9
ONET 2414 4 135 .93 84 2
QUEST 24.48 75
Resilient Propagation 23.82 25 140 105 .83 5

Ward Classifier 24.36 6 139 101 84 3



Table 12. Yeast Proteins (7 predictors, 892 cases)

ROC
Methods Errorrate  Rank a b Az
Cascade Correlation 34.83% 2 71 98 .69
C&RT 34.83 2
CHAID 37.64 9
Discriminant Analyss  37.08 6.5 .68 101 .68
Levenberg-Marquardt  38.77 11 48 97 o4
Logistic Regression 37.36 8 68 103 .68
LVQ 44.38 13
Model Quest 37.08 6.5 55 8 .66
Model Ware 40.45 12 59 111 65
QNET 34.83 2 78 107 .70
QUEST 35.96 45
Resilient Propagation 38.20 10 .60 93 .67
Ward Classifier 35.96 4.5 61 .85 .68

Table 13. Mean Error of Methods Across Datasets in Ascending Order

Mean
M ethods Error rate
ONET 25.80
Mode Quest 26.35

Resilient Propagation 27.72
Ward Systems Classifier  28.05

C&RT 28.45
Cascade Correlation 28.61
Logistic Regression 28.76
QUEST 28.85

Levenberg-Marquardt 29.52
Discriminant Analysis 29.57
CHAID 29.60
ModelWare 31.35
LVQ 44.24

»h O W

= oo~



32

Table 14. Mean Rank of Error Rate in Ascending Order

Mean Rank of

Methods Error Rate
ONET 271
Model Quest 3.42
Resilient Propagation 5.04
Ward Systems Classifier 5.17
Cascade Correlation 6.75
C&RT 6.88
Logistic Regression 7.38
QUEST 7.58
Discriminant Analysis 7.63
Levenberg-Marquardt 7.75
CHAID 8.25
Model Ware 9.63
LVQ 12.83

Table 15. Mean Rank of ROC A(z) in Ascending Order

Mean Rank

M ethod onA(z)
ONET 242

M odel Quest 3.58
Resilient Propagation 4.54
Ward Systems Classifier 4.62
Discriminant Analysis 4.96
Logistic Regression 5.17
Levenberg-Marquardt 5.92
Cascade Correlation 6.04
ModelWare 7.75

Each training dataset was partitioned by cluster analysisinto four clusters (pre-
clustering) and models were created for each cluster using three classification algorithms
- discriminant analysis, QNET, and C& RT. These models were used to classify test
cases that belonged to the same cluster. The errors made within each cluster of the test
set were summed and compared with the error level when the classification model was
developed from the entire dataset. The results are presented in Table 16. The mean error



level isdightly greater using pre-clustering, obviating the possibility that this method has
an overall positive effect upon classification accuracy in the datasets used.

Table 16. Comparison of Error Rates for Three Algorithms Run on Entire
Training/Testing Datasets and on Training/Testing Datasets Partitioned Into Four

Clusters Using Ward's Method

Dataset M ethods

Doctor Visits
Discriminant Analysis
ONET
C&RT

Earnings
Discriminant Analysis
ONET
C&RT

Italian Household Income
Discriminant Analysis
QNET
C&RT

Wage Differences
Discriminant Analysis
QNET
C&RT

Own Home
Discriminant Analysis
ONET
C&RT

Error Rate Error
Without Rate With
Pre-Clustering Pre-Clustering
23.80% 23.99%
18.30 19.27
18.88 18.12
35.16% 39.19%
34.12 33.63
34.34 34.08
20.81% 22.17%
20.47 20.47
21.66 23.86
38.11% 39.20%
29.60 29.49
30.11 31.89
36.83% 33.73%
27.07 29.73
30.03 34.07



Working Wives

Discriminant Analysis

ONET
C&RT

Mean

25.20%

24.14
2481

27.41%

34

25.21
24.00
21.85

27.99%

Error rate within acluster from the training set was correlated with error rate
within those same clustersin the test set. Using both the decision tree algorithm C&RT
and the neural network QNET this relationship was found to be extremely robust (Tables
17 and 18). Relative error rates computed by cluster in the training set can thus give us
some indication of the confidence that can be placed upon predictions of new or test

cases belonging to the corresponding clusters.

Table 17. Error Rate by Clusters Within Training and Testing Set Using C& RT

Algorithm

Doctor Vidits

Cluster 1
Cluster 2
Cluster 3
Cluster 4

Earnings

Cluster 1
Cluster 2
Cluster 3
Cluster 4

Training Set

13.01%
10.34
27.48
26.81

26.80%
36.05
34.81
37.29

Testing Set

15.70%
10.42
28.00
26.06

29.16%
37.15
36.11
33.95



[talian Household Income

Cluster 1
Cluster 2
Cluster 3
Cluster 4

Wage Differences

Cluster 1
Cluster 2
Cluster 3
Cluster 4

Own Home

Cluster 1
Cluster 2
Cluster 3
Cluster 4

Working Wives

Cluster 1
Cluster 2
Cluster 3
Cluster 4

21.77%
32.26
13.73
14.37

26.79%
27.84
33.15
36.32

20.17%
27.70
22.97
14.27

26.44%
22.78
25.68
18.21

27.95%
23.33
17.10
14.01

26.41%
29.45
32.25
32.27

30.68%
32.14
36.36
15.71

28.20%
23.54
26.57
20.33

Correlation between percentages in training and testing set: r = .853, df=23, p<<.01

Table 18. Error Rate by Clusters Within Training and Testing Set Using QNET

Algorithm.

Doctor Vidits

Cluster 1
Cluster 2
Cluster 3
Cluster 4

Training Set

13.44%
11.49
31.73
27.56

Testing Set

15.70%

8.33

26.00
24.85



Earnings

Cluster 1
Cluster 2
Cluster 3
Cluster 4

27.28%
36.42
35.57
38.04

[talian Household Income

Cluster 1
Cluster 2
Cluster 3
Cluster 4

Wage Differences

Cluster 1
Cluster 2
Cluster 3
Cluster 4

Own Home

Cluster 1
Cluster 2
Cluster 3
Cluster 4

Working Wives

Cluster 1
Cluster 2
Cluster 3
Cluster 4

Correlation between percentagesin training and testing set: r = .870, df=23, p<<.01

21.66%
26.88
13.73
15.50

26.20%
27.55
33.26
36.50

20.24%
27.88
14.87
14.39

25.46%
21.13
25.32
18.89

28.71%
37.15
36.98
30.24

25.59%
30.00
16.06
14.04

26.67%
271.34
32.02
32.76

27.27%
29.29
27.28
14.29

26.44%
21.64
27.09
19.01

3€



37

Chapter 5. Discussion

1. Algorithm superiority is somewher e between selective and gener alized.

One of the findings of this study is that the algorithms used do systematically
differ in their general accuracy. Brodley (1993) has asserted that any superiority of a
learning algorithm is only "selective" and limited to a given task or dataset:

The results of empirical comparisons of existing learning algorithmsillustrate that
each algorithm has a selective superiority; (author'sitalics) it is best for some but
not all tasks. Given adata set, it is often not clear beforehand which agorithm
will yield the best performance...In every case, the algorithm can boast one or
more superior learning performances over others, but none is always better.
(Brodley, 1993)

This may not be the most accurate description of the comparative performance of the
classification algorithms used in our study. The superiority of the best algorithmsin our
study is not as selective asin Brodley's conception. A statistical test did reject the notion
that there was no difference in classifier performance across all datasets. On the other
hand, any superiority is not totally general either. Superiority somewhere between
general and selective is perhaps the best characterization of our results. For example, the
best overall performer, QNET, is the absolute best for only two datasets and ties with two
other methods for first place in another, but it never ranks below fourth of the thirteen
classifiers. And among the weaker performers, the CHAID decision tree has a mean rank
of 8.25. Itisnever better than fifth or worse than twelfth. It seemsthat, at least among
our datasets, it would be difficult to claim any "selective superiority” for it. These
findings are presented in the table below.

Table 19. Algorithm Superiority Across Datasets for Two Algorithms

Times Best Average Rank Range
ONET 3(onetie) 271 1-4
CHAID 0 8.25 5-12

2. Newer methodsfor classification are coming into their own.

The good performance of several newer algorithms suggests that they have earned their
place in data classification endeavors. There have been concerns that expectations for
neural networks in particular, following along historical pattern in the artificial
intelligence field, have been inflated. But, as Banks (1996) notes:

The ultimate arbiter among these many competing methods must be performance
(Banks, 1996).

The present results suggest that neural nets have a contribution to make to classification
efforts. The most recent, extensive, and methodologically elegant published comparison
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of classification algorithmsisthe work of Lim, Loh, and Shih (1999). They compared
twenty-two decision trees, and nine statistical but only two neural network algorithms.
And one of the two neural network algorithmswas LV Q. Michie, Spiegelhalter, and
Taylor, (1994) Poddig, (1995) and the present study found this early neural network
algorithm (circa 1988) to be among the least accurate classifiers (due either to the
implementation used or to the algorithm itself). Theresults of the current study suggest
that future work in thisfield will benefit from including a range of the more modern
neural network algorithms. They also suggest that neural networks not be left out for
consideration when the concern is classifying real-world data for some practical purpose.

3. Theamount of diver gence between the classifiers on accuracy measures varies as
afunction of the dataset.

Examining the error rates and ROC graphs by dataset reveals that for some
datasets it would seem not to matter which algorithm you selected to do classification -
they amost al work about the same. For other datasets there are very definite "winners'
and "losers' among the classification algorithms. For instance, looking at the ROC
curvesfor the "Earnings' dataset (Figure 5) most overlie each other so closely that they
cannot be discriminated. Similarly, the range of error ratesfor 11 of the classifiersfor
this dataset falls narrowly from 33.82% to 35.27%. For the "Wage Differences’ dataset
inspection of the ROC curves (Figure 7) shows that algorithm performance varies
substantially across the range of possible cutoff points for classification. And the error
rate measures similarly show a broad range of results from 29.09% to 37.31%. The
reason for this divergence in the amount of variability of agorithm performance between
datasets is uncertain.

4. Accuracy optimization techniques should be a priority in the computer
programming of classification algorithms.

Comments from one of the developers of our best method, QNET, were cited
above. They indicate that with dependence upon computers to implement algorithms
close attention needs to be paid to programming techniques aimed at accuracy
optimization. Technical choices about programming issueswill greatly affect the
accuracy of iterative, computationally intensive classification agorithms. To achieve
highly accurate classifier performance it is necessary to consider details of the algorithm's
implementation on a computer system.

5. Cluster analysis can be explored asa method to indicate confidence levelsfor
classifiers.

The attempt to increase classification accuracy by first clustering the training and
testing data, and then developing and testing the classification model within the clusters
failed. 1t wasno more accurate than just developing one model by training the algorithm
on al thedata. Possibly clustering methods other than Ward's method could be tried.
And it may be that this approach will work on datasets other than those included in the
present study.

The error rates within clustersin training sets are highly predictive of error rates
for those clustersin testing sets. The relative rankings of the accuracy of the clusters



within the training data can be used to indicate a confidence level for predictions within
those clusters from new data or atesting set. Thus, if cases are classified at the four
cluster level predictions on new or test set cases could be ranked from 1 (most
confidence) to 4 (least confidence). Thiswould be based upon their membershipin
clustersthat in the training set the classification model had greater or lesser success
classifying correctly. Thisisanew usefor cluster analysisthat can be explored further.

Chapter 6. Improvements and Future Directions

Aswith any large project at its completion, the author can see waysin which it
could have been improved as well as directions he would like to pursue in the future.
Here are some of those ideas.

1. Severd interesting new classification algorithms became available as this project
neared its conclusion. Tjen-Sien Lim developed an advanced decision tree
methodology, known as PLUS (Lim, 1999). Nauck (1999) presented her
implementation of NEFCLASS - a combined neural network-fuzzy logic approach to
classification. Another new type of classifier is support vector machines (SVM).
SVM's combine linear modeling and instance-based learning. Software has been
offered which implements this new technique. (Witten and Frank, 2000).

2. Itisknown that with smaller datasets single train and test partitions may provide an
inaccurate estimation of the true error rate of a classification algorithm (Weiss and
Kulikowski, 1991). A random sub-sampling procedure known as 10-fold cross
validation has been developed to minimize any estimation bias. Typically, asin Lim,
(1999) thisisimplemented by randomly dividing a dataset into ten disjoint subsets,
each containing the same number of records. A classification model is constructed
from nine of the subsets and tested on the one withheld subset. Thisprocessis
repeated ten times, each with a different subset withheld. Accuracy across the ten
subsetsis averaged to provide an estimate for the classifier. This procedure would
have been interesting to employ with some of the smaller datasets used in the present
study.

3. New ways have been discovered to make classification algorithms more accurate.
For example, it has been found that if a classifier is even weakly accurate more
accurate results can be obtained by running the algorithm several times on different
samples of the training set and combining the resulting models. Thisis known as
"bagging." A procedure called "boosting" is another way of combining several
modelsinto asingle predictive model (Schapire, Freund, Bartlett and Lee, 1998).
Such unique ways of employing the training and testing data, along with improving
classification algorithms, offer enhanced opportunities to solve the complex data
classification problems our technological world presentsto us.

In conclusion, we have seen that to understand and enhance the data mining
process we have relied upon tools traditionally belonging to both statistics and computer
science. As statistician William Shannon (1999) wrote:
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| think there isachallenge for statisticians to start learning machine learning and
computer science, and machine learnersto start learning statistics. These two
fieldsrightly fall under the broad umbrella of "data analysis.”
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