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The soil is refreshed when sown with successive changes of seed, and so are 
our minds if cultivated by different subjects. 
                                                                          The Letters 
                                                                          Pliny the Younger 
 
 
 
 
 
 
 
 
 
 
…the wisdom of mortals consists…not only in remembering the past and 
apprehending the present, but in being able, through a knowledge of each, to 
anticipate the future, which grave men regard as the acme of human 
intelligence. 
                                                                            The Decameron 
                                                                            Giovanni Boccaccio   
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Abstract 
 
 
 Thirteen classifiers, including neural networks, statistical methods, decision trees, 
and an instance-based method were employed to perform binary classifications on twelve 
real-world datasets.  Predictive classification performance on test sets was compared 
using ROC analysis and error percentage.  The four best algorithms were neural 
networks.  The hypothesis of no difference between the error rates of the algorithms was 
rejected by statistical test.  The amount of difference in the quality of performance of the 
classifiers seems to be a characteristic of the dataset.  On certain datasets almost all 
algorithms worked about equally well.  For other datasets there are marked differences in 
algorithm effectiveness. 
 An attempt to improve classification accuracy by pre-clustering did not succeed.  
However, error rates within clusters from training sets were strongly correlated with error 
rates within the same clusters on the test sets.  This phenomenon could perhaps be used to 
develop confidence levels for predictions.    
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Chapter 1.      Introduction 
 
 
 Progress in storage technology is allowing vast amounts of raw data to 
accumulate in both private and public databases.  It has been estimated that the amount of 
data in the world doubles every twenty months (Frawley, Piatetsky-Shapiro, & Matheus, 
1992).  Insurers, banks, hotel chains, airlines, retailers, telecommunications and other 
enterprises are rapidly accumulating information from day to day transactions with their 
customers. Wal-Mart every day uploads twenty million point-of-sale transactions into a 
centralized database (Cios, Pedrycz, & Swiniarski, 1998).  As John (1997) writes: 
   
 Knowledge may be power, but all that data is unwieldy. 
 
Statistician David Wishart (1999a) comments: 
 
 Computers promised a fountain of wisdom, but delivered a flood of data. 
 
Unless the accumulated data can be adequately analyzed it becomes useless.  To help put 
this flood of data into a format that can be used, more and more data is being moved into 
data warehouses whose purpose is decision support.  Data warehouses help by having a 
common format and consistent definitions for fields. 
 
 The process of turning some of this stored data into knowledge is the domain of 
knowledge discovery in databases.  Knowledge discovery in databases has been defined 
as follows: 
 
 Knowledge discovery in databases is the nontrivial process of identifying valid,  
 novel, potentially useful and ultimately understandable patterns in data (Fayyad, 
 Piatetsky-Shapiro, and Smyth (1996). 
 
Data mining is a component of the knowledge discovery in databases process concerned 
with the algorithmic means by which patterns are extracted and enumerated from data.   
(Fayyad, Piatetsky-Shapiro, and Smyth, 1996). 
 

 
Data mining helps businesses and scientists discover previously unrecognized 

patterns in their databases.  These patterns may help a consumer products company 
optimize inventory levels and detect fraudulent credit-card transactions.  They can help a 
telecommunications company identify who is likeliest to move to another long-distance 
phone company.  They may help a doctor predict which patients are good candidates for a 
surgical procedure or are at risk for developing a particular disease.   
 

This knowledge discovery process has several steps.  The first step is to define the 
problem.  Often working with a domain expert, the data mining analyst needs to define 
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specific problems or questions to be answered. The second step is to extract the data, 
often from several different tables in a database and place it into one table against which 
data mining algorithms can be run. The third step is to “clean” and explore the data for 
such things as mislabeled fields and special semantics.  Special semantics refers to the 
practice of assigning numerical values such as zero or 99 to attributes whose actual value 
is unknown (George, 1997).  Next the data is “engineered.”  The data may be transformed 
to insure that the data all has the same scale.  There may be a decision to drop certain 
records if they are incorrect or represent cases that could not be used to infer general 
patterns.  Then the analyst selects an algorithm to analyze the data from among the many 
available or develops an algorithm.  Finally, he runs the algorithm(s) on a subset of the 
data, holding back a portion on which to validate the discovered patterns.  Our 
contributions in this thesis will be to the last two steps of the knowledge discovery 
process.  We will look at choosing algorithms and at clustering data to improve accuracy. 
                                 

We will examine several statistical and artificial intelligence (AI) methods used to 
perform various classification tasks.  Wilson (1997) defines this problem as follows: 

  
The problem of classification…is to learn the mapping from an input vector to an  
output class in order to generalize to new examples it has not necessarily seen  
before. 
 
Classification rather than continuous function approximation will be the focus 

because it is the most common question to be answered in data mining situations.  Binary 
classification is the frequently encountered situation where there are two categories.  A 
set of cases or instances is partitioned into two subsets based on whether each has or does 
not have a particular property.  Binary classification is also our focus because there are 
clear criteria for judging binary classification efforts - percentage correctly classified and 
receiver operating characteristic (ROC) curves.  

 
 Increased knowledge of the accuracy of various classification methods will allow 

data mining analysts to select from those that are most effective.  Knowledge of which 
classifiers perform best may suggest directions for those seeking to construct new 
algorithms or to improve upon existing ones.   

 
There is controversy over the relative merits of doing classification using AI tools 

such as neural networks versus employing statistical methods.  Thus, David Banks, 
(1996) a statistician, writes about neural networks in this tone: 

 
             Computer science has recently developed a new drug, called neural                                            
             nets.…I come to bury, not to praise.(pp.2,3) 
 
He goes on to cite experimental work which found no marked superiority for neural nets 
over newer statistical techniques in classification tasks.   
 

Those in the neural network camp almost universally boast of the superiority of 
neural networks over statistical methods.  For example, NeuralWare, Inc. (1991) states in 
a book it published on neural computing: 



 8

 
Neural computing systems are adept at many pattern recognition tasks, more so 
than both traditional statistical and expert systems… The ability to select 
combinations of features pertinent to the problem gives them an edge over 
statistically based systems. (p.10) 
 

Advocates of neural networks often claim that statistical models have difficulty dealing 
with the contradictory and messy data often found in real-world datasets.  They feel 
statistical methods only work with data that is "clean" and which contain consistent 
correlations.  They note that neural networks can fit complex non-linear models to the 
data while some statistical methods can accommodate only linear relationships. 
 

A third view is that both approaches are evenly matched and which approach is 
best will depend upon the problem domain.  Couvreur and Couvreur (1997) write: 
 
 For us, statistics and neural networks are complementary tools, with considerable 
 overlap not only in their fields of application but also in their theoretical  
 foundations…  When compared fairly, neural and modern statistical approaches 
 perform similarly, both in terms of quality of results and in terms of  
            computational cost.  In some applications NN's will outperform their statistical 
 counterparts, in others they will not (pp. 2, 5). 
  

We propose to compare the accuracy of various AI and statistical methods on 
several classification tasks.  There may be generalizations that can be drawn about the 
types of data sets for which certain methods are most appropriate.  Statistical methods 
used in the comparison will include decision trees (CART, CHAID, and QUEST), 
discriminant analysis, and logistic regression.  AI approaches will include various multi-
layer perceptron neural networks, learning vector quantization (LVQ) neural networks 
and other related supervised learning methods. 

 
The need for research comparing classification algorithms is great.  Salzberg 

(1997) writes: 
 
Classification research, which is a component of data mining as well as a subfield 
of machine learning, has always had a need for very specific, focused studies that  
compare algorithms carefully.  The evidence to date is that good evaluations are 
 not done nearly enough…(Salzberg, 1997) 

 
Prechelt (1996) surveyed nearly 200 papers on neural network algorithms.  Twenty-nine 
percent were not evaluated on any real-world data.  Only 8% compared the algorithm to 
more than one alternative classifier on real data. 
 
  

There are several sites on the web where interesting real-world data sets for doing 
classification can be found.  Most of the data that we will use in this thesis comes from 
such sources.  Real world datasets are used with the idea that good performance on them 
will generalize to similar performance on other real-world tasks. 
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A second focus of this thesis arises out of the proposition that large datasets may 

not yield certain significant patterns until they are divided into more homogeneous 
subgroups through cluster analysis techniques.  This is seen as improving the 
performance of more directed or "supervised" learning methods that are then applied to 
the subgroups created instead of to the entire dataset.   
 
                     
 

Chapter 2.      Comparing the Algorithms 
 
 Classification as we shall use it in this chapter refers to establishing rules so that 
we can classify new observations into one of a set of existing classes.  Observations have 
attributes.  The task of the classifier is to assign an observation to a class given its set of 
attributes.  The rules may be explicit or comprehensible, as in the case of decision trees.  
Or, as with neural networks, rules may not be capable of explicit formulation. 
 

 We assume that we have a number of sample observations from each class. The 
classifier is presented with a substantial set of the data from which it can associate known 
classes with attributes of the observations. This is known as training.  When such 
guidance is given the process is known as supervised learning.  The rules developed in 
the training process are tested on the remaining portion of the data and compared with the 
known classifications.  This is known as the testing process.  Here the response of the 
procedure to new observations is a prediction of the class to which the new observations 
belong.  The proportion correct in the test set is an unbiased estimate of the accuracy of 
the rules implemented by the classifier.  

 
Much of the knowledge gained in the data mining process is in the form of 

predicted classifications.  Customers may be classified as likely or not likely to respond 
to a bank's solicitations to take out a home loan.  Medical patients may be classed at high 
or low risk for heart disease based upon risk factors.  

 
There is another important type of classification based upon the concept of 

clustering.  Here neither the number of classes is known in advance nor is the assignment 
of observations to classes.  We shall discuss the relevance of this type of classification to 
predictive classification in chapter four.  

 
 
 

 

2.1  Previous Comparative Studies  
 
Several previous studies have compared classifiers.  The most inclusive study 

ever done comparing different classifiers was the STATLOG Project carried out in 
Europe (Michie, Spiegellhalter, and Taylor, 1994).  They proceeded from the assumption 
that the fragmentation among the different disciplines that have worked on classification 
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problems has hindered communication and progress.  They sought to remedy this by 
bringing together a multidisciplinary team and including classifiers developed by the 
different disciplines.  Included were procedures from classical statistics, modern 
statistics, decision trees, and neural networks.  They considered the results of 22 
algorithms from the above areas run on 16 datasets.  The datasets were diverse.  They 
included such problems as assessing Australian credit card applicants, recognizing 
handwritten digits, determining type of ground cover from Landsat satellite images, and 
predicting recovery level from head injury based upon data collected at the time of injury.  
The result was that the procedures that worked best varied by dataset.  The three 
individual procedures most often among the best for each of the datasets were one type of 
neural net (DIPOL92) and two types of statistical procedures (ALLOC 80 and logistic 
discriminant analysis).  Decision trees performed well if the dataset was multimodal.  
There were other variations.  Among the decision tree group of methods almost all 
performed about the same.  Among the neural nets one type was frequently one of the 
best overall (DIPOL92) and another type was rarely among the best (Kohonen's LVQ). 

 
Shalvik, Mooney, and Towell (1991) compared backpropagation and the ID3 type 

of decision tree on five real-world data sets.  They found backpropagation superior to the 
decision tree on two datasets with no difference on the other three.  

 
Brown, Corruble, and Pittard (1993) compared backpropagation neural networks 

and decision trees for multimodal classification problems.  Decision trees performed 
better on datasets which contained irrelevant attributes which they were able to ignore.  
Neural networks do not have such a capacity for feature selection.  Apparently, the neural 
networks were confused by the presence in the training set of attributes not useful in 
discriminating the target classes.  On two other datasets in which most variables were 
useful in discriminating the classes neural networks outperformed decision trees.  This 
suggests that to get the best performance from neural networks a procedure to select out 
the best input variables prior to training is sometimes necessary.  Another interesting 
finding was that neural networks with two hidden layers outperformed those with just one 
hidden layer.    

 
Ripley (1994) compared discriminant analysis, nearest neighbor, backpropagation 

neural networks, MARS, and a classification tree on a few classification problems.  The 
measure was percentage correctly classified.  The various tools were approximately 
equally matched.  Ripley concluded that: 

 
Neural networks emerge as one of a class of flexible non-linear regression  
methods which can be used to classify via regression (p 409). 

 
 Curram and Mingers (1994) compared discriminant analysis, decision trees, and 
neural networks across seven datasets.  Four contained real data and three were 
artificially created.  Discriminant analysis performed well when the dataset proved to be 
linearly separable.  On a dataset that was designed to have highly non-linear relatoinships 
(points classified as either inside or outside a sphere based on their three coordinates) 
discriminant analysis performed at a chance level.  Neural networks performed well on 
the sphere data and fairly well across all datasets.  It did better than discriminant analysis 
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when there were non-linear relationships between predictors and classes but slightly 
worse when the data were linearly separable.  Decision trees performed worse than the 
other two methods.  It was interesting that on the real world datasets, where its 
assumptions were likely not strictly adhered to, discriminant analysis proved to be 
reasonably robust. 
 
 Holmstrom, Koistinen, Laaksonen, and Oja (1997) compared several classifiers 
on handwritten character and phoneme data using percent accurately classified.  The two 
datasets have very different statistical properties.  The handwriting data is high 
dimensional while the phoneme data is low dimensional.  The handwriting data has many 
classes while the phoneme data has just two.  The phoneme data is described as having a 
rich internal structure with a class distribution containing many clusters.  Thirteen 
classifiers were employed.  They included variations of classical discriminant analysis, 
regression-based methods such as MARS, subspace classifiers, nearest-neighbor 
methods, and two types of neural networks.  In the classification of handwritten digits the 
nearest neighbor and subspace classifier techniques were most effective.  A decision tree 
classifier had the highest error percentage.  Combining three classifiers in a "committee" 
using a majority voting rule for classification provided an improvement over using a 
single classifier.  On the phoneme classification problem kernel classifiers, and nearest 
neighbor classifiers performed best.  Classifiers with relatively simple decision 
boundaries performed poorly on this dataset.  Such results indicate that characteristics of 
particular datasets are an important determinant of which classification tool will perform 
best.  This also suggests that it will be futile to try to discover one classification tool that 
will perform best across all datasets.     
 
 Lim, Loh, and Shih (1999) compared twenty-two decision tree, nine statistical, 
and two neural network algorithms in terms of classification accuracy.  They assessed 
classification accuracy by mean error rate and mean rank of error rate.  The best methods 
were a statistical algorithm called POLYCLASS - a spline based "modern version of 
logistic discrimination analysis."  Other top-ranked algorithms were linear discriminant 
analysis, logistic discriminant analysis, and the decision tree algorithm QUEST with 
linear splits.  The two neural network algorithms (LVQ and radial basis function) were 
both in the bottom fourth of the methods used.  However, more modern and perhaps more 
powerful neural network algorithms, such as backpropagation, were not used. 
 
 Other papers have compared classification approaches on a single dataset.  
Dietterich, Hild, and Bakiri (1989) compared the performance of a backpropagation 
neural network and a decision tree algorithm known as ID3.  The classification task was 
the mapping of English text to phonemes and stresses.  Backpropagation consistently 
outperformed the decision tree by several percentage points.  The authors comment that 
there is no universal learning algorithm that can take a sample of training examples for an 
unknown function and produce a good approximation.  Instead, every learning algorithm 
has its own biases about the nature of the problem to be learned.  The difference in 
performance between backpropagation and ID3 means that they make different 
assumptions.  
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 Chen (1991) compared three types of neural networks (backpropagation, radial 
basis functions, and probabilistic neural networks) with the statistical method of nearest 
neighbor decision rule.  The classification target was simulated active sonar waveforms.  
All three neural networks outperformed nearest neighbor.  More advanced statistical 
techniques were not included.    
 
 Sandholm Brodley, Vidovic, and Sandholm (1996) compared six algorithms in 
predicting morbidity and mortality from equine gastrointestinal colic.  The high mortality 
rate with surgery (40%) and the high cost of the operation (about $10,000) are reasons for 
only operating on horses that actually have the disease and will likely survive the 
operation.  Linear discriminant, logistic regression, and a neural network did slightly 
better than a decision tree and a nearest neighbor algorithm.  But the results from the 
neural network were seriously flawed because the test data used in the comparison was 
also used to choose the best time to stop training the neural net and to set other important 
aspects of the network's architecture. 
 
 Poddig (1995) predicted which of a set of French firms fell into bankruptcy.  The 
predictive attributes were 45 ratios developed from the firm's financial statements 1-3 
years before some entered bankruptcy.  A backpropagation neural network with multiple 
hidden layers exceeded the performance of discriminant analysis.  Kohonen's LVQ 
network underperformed the discriminant analysis. 
 
 Sen, Oliver, and Sen (1995) compared neural networks and logistic regression in 
predicting which companies would be merged with other companies.  The two techniques 
performed equally well. 
 

Schwartz Ward, MacWilliam, and Verner (1997) used fourteen variables as 
potential predictors for improvement after total hip replacement surgery.  A neural 
network was compared with a linear regression model using the same data.  Using a 
receiver operating characteristic (ROC) curve for comparison the neural network was 
more accurate but the difference did not reach statistical significance. 
 
 Pesonen (1977) compared discriminant analysis, logistic regression analysis, and 
cluster analysis with a backpropagation network in the diagnosis of acute appendicitis.  
Input variables were 17 clinical signs and age and sex of patients admitted to a hospital 
suffering from acute abdominal pain.  The results of the four classification methods were 
compared with receiver operating characteristic curve (ROC) analysis as well as by 
diagnostic accuracy.  Discriminant analysis and backpropagation showed slightly better 
results than the other methods.  Interestingly, he found that predicting that a case was 
acute appendicitis only when all methods agreed on the diagnosis increased accuracy.  
Pesonen concluded that backpropagation neural networks do not offer any magic but do 
perform as well as statistical methods.   
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2.2  Descriptions of Classification Algorithms 
 
 The following is a listing of all the supervised learning methods we use: 
 

1. Discriminant Analysis 
2. Logistic Regression 
3. Classification and Regression Trees (CART) 
4. Chi-squared Automatic Interaction Detection (CHAID) 
5. QUEST decision tree 
6. Model Ware 
7. Model Quest 
8. Multi-Layer Perceptron neural net (MLP) - Backpropagation 

Learning 
9. MLP Cascade Correlation neural net 
10. Learning Vector Quantization (LVQ) neural net 
11. MLP Levenberg-Marquardt neural network 
12. Resilient Propagation 
13. Ward Systems Classifier 

 
Discriminant analysis is the oldest statistical technique for classification. 

R.A. Fisher first published it in 1936.  In it the difference between two classes is 
maximized by a linear combination of variables.  This linear function acts as a hyper-
plane that partitions the observation space into classes.  Which side of a hyper plane a 
point falls into determines its classification.  Discriminant analysis assumes that the 
predictor variables are normally distributed.  We will use the implementation of 
discrminant analysis provided in SPSS Version 8.0. 
 
 Logistic regression is a version of linear regression used for predicting a 
classifying variable.  Logistic regression builds up a linear model using the logarithm of 
the odds of occurrence of a class membership.  In logistic regression the modeler must 
select the right variables and account for their possible interactions.  There is no 
normality assumption imposed upon the data.  We will use the implementation of logistic 
regression provided in SPSS Version 8.0. 
 
 Decision trees develop a series of rules that classify observations.  We will use 
three types - CART (known as "C&RT" in SPSS's version), CHAID, and QUEST.  In all 
decision trees an observation enters at the root node.  A test is applied which is designed 
to best separate the observations into classes.  This is referred to as making the groups 
"purer."  The observation then passes along to the next node.  The process of testing the 
observations to split them into classes continues until the observation reaches a leaf node.  
Observations reaching a particular leaf node are classified the same way.  Many leaves 
may make the same classification but they do so for different reasons.  Decision trees 
differ from the classical statistical tests in that they do not draw lines through the data 
space to classify observations.  Decision trees may be thought of as drawing boxes 
around similar observations.  Several different paths may be followed for an observation 
to become part of a particular class.  Criticisms of decision trees include that any decision 
on how to split at a node is made "locally." It does not take into account the effect the 
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split may have on future splits.  And the splits are "hard splits" that often may not reflect 
reality.  Thus an attribute "years of age" may be split at "age > 40."  Is someone thirty-
nine so different than a forty-one year old?  Also, splits are made considering only one 
attribute at a time (Two Crows Corporation, 1998). 
 
 Brieman, Friedman, Olshen, and Stone developed the CART algorithm in 1984.  
It builds a binary tree.  Observations are split at each node by a function on one attribute.  
The split is selected which divides the observations at a node into subgroups in which a 
single class most predominates.  When no split can be found that increases the class 
specificity at a node the tree has reached a leaf node.  When all observations are in leaf 
nodes the tree has stopped growing.  Each leaf can then be assigned a class and an error 
rate (not every observation in a leaf node is of the same class).  Because the later splits 
have smaller and less representative samples to work with they may overfit the data.  
Therefore, the tree may be cut back to a size which allows effective generalization to new 
data.  Branches of the tree that do not enhance predictive classification accuracy are 
eliminated in a process known as "pruning."         
 
 CHAID differs from CART in that it stops growing a tree before overfitting 
occurs.  When no more splits are available that lead to a statistically significant 
improvement in classification the tree stops growing.  Also, any continuously valued 
attributes must be redone as categorical variables.  The implementations of CART and 
CHAID we will use are from SPSS's Answer Tree Version 2.0. 
 
 QUEST is another type of decision tree developed by Loh and Shih (1997).  It is 
unique in that it performs approximately unbiased as to class membership variable 
selection to split nodes.   We will use the implementation of QUEST with linear 
combination splits available from http://www.stat.wisc.edu/~loh/quest.html. 
 
 Model Ware is a modeling tool that can be applied to signal processing, 
decision/control and classification problems.  Model Ware learns from examples via the 
"Universal Process Algorithm" (UPM).  It is in some ways similar to a nearest neighbor 
algorithm.  The UPM requires a set of example data, known as the reference data file.  
This describes how the system or process behaves under known operating conditions.  
When it receives an input vector UPM creates a localized model based on a subset of the 
patterns from the reference library.  The selection of exemplars is based on a metric of 
the similarity of the test vector to each pattern in the reference library.  After the 
exemplars are selected the model computes the response vector.  UPM also outputs 
diagnostic information indicating the quality of each component of the input vector and 
the overall system health. (Teranet Incorporated, 1992).   
 
 The version of Model Ware used in this study is no longer sold.  The company 
that created it markets a product called Model Ware/RT.  It is based on UPM's capacity to 
output diagnostic information about each component of the input vector and about overall 
system health.  This product is marketed exclusively to the semiconductor industry.  It is 
used there in a real-time mode to detect faults in semiconductor manufacturing 
(O'Sullivan, Martinez, Durham, and Felker, 1995).  Model Ware was included in the 
present study because of evidence that it excels at classification problems (Hess, 1992). 
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 Model Quest (AbTech Corporation, 1996) automatically constructs polynomial 
networks from a database of input and output values for example situations.  The 
attributes used and their coefficients and the number and types of network elements, 
network size and structure, and network connectivity are all learned automatically.  
ModelQuest constructs a network by sequentially hypothesizing many potential network 
configurations and then rating them according to the predicted square error (PSE) criteria.  
The PSE test is employed to avoid overly complex networks that perform well on the 
training data but will perform poorly on future data.  Model Quest was originally 
developed within the U.S. Military for target classification and other purposes.  It is 
currently commercially available and is widely used in data mining applications.  
 
 A neural network is a group of highly interconnected processing elements that can 
learn from information presented to them.  Neural networks were inspired by the 
structure of neuronal connections in the human brain.  The neural network's ability to 
learn and its basis in the biological activities of the human brain classify it as a form of 
artificial intelligence.  
 

 The most widely used neural network is the multi-layer perceptron (MLP) type 
neural network.  MLP networks process information in interconnected processing 
elements called nodes.  Nodes are organized into groups known as layers.  An MLP 
network consists of an input layer, one or more processing layers, and an output layer.  
The nodes of adjacent layers are connected to transfer the output signals from one layer 
to the next.  Each input connection to a node has a weighting value associated with it.  
The node produces a single output that is transmitted to many other processing elements.  
Processing continues through each layer of the network.  The network's response emerges 
at the output layer.  During the training process the network's response at the output layer 
is compared to the known to be correct answers from a training set. 

  
In the most common learning process used by MLP's the difference between the 

network's output and the correct responses are figured and this error is backpropagated 
through the network to improve its response.  The procedure of processing inputs through 
the network, figuring errors, and sending the errors back through the network to adjust 
the weights constitutes the learning process in the backpropagation type of multi-layered 
perceptrons.  Connection weights are adjusted to drive the error to a minimum.  Neural 
networks resemble a directed graph with nodes, connections, and a direction of flow.  
Vesta Services (1996) produced the MLP using the backpropagation learning method that 
we will use (QNET).  
 
 Cascade correlation is another type of MLP that begins with no nodes initially and 
then adds them one at a time.  Each new node receives inputs from the inputs and the 
other nodes in the network.  Weights for the new nodes are not determined by minimizing 
mean squared error, as in backpropagation.  Rather, the covariance between a new node 
and the residual error is maximized.  Logical Designs Consulting (1994) developed the 
implementation of cascade correlation we will use. 
 



 16

 Another type of MLP uses a particular method to adjust the difference between 
network outputs and target outputs during training.  The Levenberg-Marquardt type of 
training method has space requirements proportional to the square of the number of 
weights in the network. This means that networks with a large number of connections 
between inputs and hidden nodes may be precluded. Hema Chandrasekaran (n.d.) 
developed the version we will use.  
 
 Resilient Propagation is a MLP neural network modified from backpropagation to 
train more efficiently.  The implementation of resilient propagation is from QwikNet v. 
2.23 (Jensen, 1999). 
 

NeuroShell Classifier is a neural network using a proprietary algorithm (Ward 
Systems, 1998).  While details of its structure are unavailable it is a tool which might 
well be selected by those in data mining.     
 
 Learning Vector Quantization (LVQ) is a "nearest neighbor" neural net in which 
each node is designated, via its desired output, to belong to one of a number of classes.  
The LVQ algorithm involves the use of codebook vectors.  These are points within the 
problem space to approximate various modes of the problem.  Several codebook vectors 
are usually assigned to each class.  New patterns are classified based on the class 
assignment of the codebook vector that is closest to its position.  The training process 
involves iteratively adjusting the positions of the codebook vectors in order to create a 
distribution that will minimize overall classification error.  Logical Designs Consulting  
(1994) created the implementation  of LVQ that we will use.  
 
  

2.3   Assessing Classification Tool Performance  
 

      
While we seek to determine the fitness of each algorithm the results obtained 

when a technique is applied to data may depend upon other factors.  These include the 
implementation of the technique as a computer program and the skill of the user in 
getting the best out of the technique. 

 
We will use several metrics to assess the performance of classification tools.  The 

first is the traditional one of percentage of cases in the test set incorrectly classified 
(mean error rate). We will average this number across all datasets to give us a measure of 
a classifier's overall effectiveness.  We will also examine the ranks of the classifiers 
within datasets.  The classifiers with the lowest error rate will be assigned a rank of one, 
the one with the second lowest error rate will be assigned a rank of two, etc.  The average 
ranks will be assigned in the case of ties.   

 
It has been shown that there are problems with using accuracy of classification 

estimation as a method of comparing algorithms (Provost, Fawcett, and Kohavi, 1998).  It 
assumes that the classes are distributed in a constant and relatively balanced fashion.  But 
class distributions may be skewed.  For example, if your classification task is screening 
for a rare disease, calling all cases "negative" can lead to a spuriously and trivially high 
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accuracy rate.  If only .1 percent of patients has the disease a test that says no one has the 
disease will be correct 99.9% of the time.  Accuracy percentage is affected by prevalence 
rates and there is no mathematical way to compensate for this. 

 
Accuracy is also of limited usefulness as an index of a classifier's performance 

because it is insensitive to the types of errors made.  Using classification accuracy as a 
measure assumes equal misclassification costs - a false positive has the same significance 
as a false negative.  This assumption is rarely valid in real-world classification tasks.  For 
example, one medical test may have as its mistakes almost all false negatives (misses).  
Another might err in the direction of false positives (false alarms).  Yet these two tests 
can yield equal percentages of correctly classified cases.  If the disease detected by the 
test is a deadly one a false negative may be much more serious than a false positive.  
Similarly, if the task is classifying credit card transactions as fraudulent the cost of 
misclassifying a transaction as fraudulent (false alarm) may be much less than missing a 
case of fraud. 

 
The limitations of using classification accuracy can be overcome by an approach 

known as receiver operating characteristic (ROC) analysis (Metz, 1978; Swets, 1973). 
This is the second metric we shall use to evaluate classifier performance.  We can begin 
our look at it by defining decision performance in terms of four categories: 

 
True Positive Decisions   =   True Positive Fraction (TPF)  
Actually Positive Cases 
 
 
False Positive Decisions   =   False Positive Fraction (FPF) 
Actually Negative Cases 
 
 
True Negative Decisions   =   True Negative Fraction (TNF) 

 Actually Negative Cases 
 
 
 False Negative Decisions   =   False Negative Fraction (FNF) 
 Actually Positive Cases 
 
Since all observations are classified as either positive or negative with respect to 
membership in a class the number of correct decisions plus the number of incorrect 
decisions equals the number of observations in that class.  Thus, the above fractions are 
related by: 
 
                                               TPF  +  FNF  =  1 
                                                        and 
 
                                               TNF  +  FPF  =  1 
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FNF can always be computed from knowledge of TPF.  TNF can be computed from 
knowledge of FPF.  It is necessary to know only one fraction from each of the above 
relations to determine all four of the types of decision fractions. 
 
 These concepts allow us to sort out the effects of the prevalence of a class.  It also 
allows us to score separately the performance of a classifier with respect to observations  
that actually are and are not members of a class.   
 
 When we use a classification algorithm its output does not necessarily 
automatically cause an observation to fall into a particular class.  If we have a two 
category classification problem predicted by one output the distribution of results from 
observations in the "0" class and from those in the "1" class will overlap (since the test is 
not perfect).  A threshold value for allocating predictions to "0" or to "1" must be chosen 
arbitrarily.  A different choice of threshold yields different frequencies for the types of 
correct and incorrect decisions.  If we change the decision threshold we will obtain a 
different set of decision fractions.  Because TPF and FPF determine all of the decision 
fractions we just keep track of how they change as the decision threshold is varied.  The 
points representing all possible combinations of TPF and FPF lie on a curve that is called 
the receiver operating curve (ROC) for a classifier.  It is called this because the receiver 
of the classifier information can "operate" on any point on the curve given a particular 
decision threshold.   
 

In ROC space the TPF is typically plotted on the Y-axis and the FPF is plotted on 
the X-axis.  If the classifier provides valid information the intermediate points on the 
ROC curve must be above the lower left to upper right diagonal.  When this is so a 
decision to place an observation in a class when it actually is a member of that class is 
more probable.  A ROC curve illustrates the tradeoffs that can be made between TPF and 
FPF (and hence all four of the decision fractions).  
 
 ROC analysis gives us another perspective on the performance of classifiers.  An 
ROC curve shows the performance of a classifier across a range of possible threshold 
values.  The area under the ROC curve is an important metric for evaluating classifiers 
because it is the average sensitivity across all possible specificities.  One point in ROC 
space is better if it is to the upper left in the ROC chart.  This means TPF is higher, FPF 
is lower, or both.  A ROC graph permits an informal visual comparison of classifiers.  If a 
classifier's ROC curve is shifted to the upper left across all decision thresholds it will 
perform better under all decision cutoffs.  However, if the ROC curves cross then no 
classifier is best under all scenarios.  There would then exist scenarios for which the 
model giving the highest percentage correctly classified does not have the minimum cost. 
The computer program we will use for figuring ROC curves was developed by Charles 
Metz, Ph.D. of the Department of Radiology at the University of Chicago (Metz, 1998). 
 
 Bradley (1997) investigated the use of the area under the ROC curve (AUC) as a 
measure of a classification algorithm's performance.  He compared six learning 
algorithms on six real-world medical datasets using AUC and conventional overall 
accuracy.  AUC showed increased sensitivity (a larger F value) in analysis of variance 
tests.  It was also invariant to a priori class probabilities.  Bradley recommended that 
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AUC should be used in preference to overall accuracy as a single number evaluation of 
classification algorithms. 
 
 A major limitation of ROC analysis is that it can only analyze classifier output 
that is continuously distributed.  Many classification algorithms, notably decision trees, 
can only have discrete outputs (i.e., "1" or "0").  Hence, ROC analysis can be used with 
most, but not all of the classification algorithms used in this study.   
  
 
 
 
 

2.4 The Data 
 

We have included twelve datasets in our study.  They are described briefly below.  
Any modifications we need to make to them for our study are also noted.  We will 
remove those observations or cases containing missing data from all datasets. 

 
Breast Cancer Survival  This sample relates age at time of operation and number of 

positive axillary nodes to five-year survival after surgery for breast cancer.  There are 306 
cases in this dataset from the University of California at Irvine's (UCI) Machine Learning 
Repository (Blake, Keogh, and Merz, 1998). 

 
Cleveland Clinic Heart Disease  Here we are classifying patients as having or not 

having heart disease based upon 12 cardiac functioning variables.  Disease is defined as 
having a greater than 50% narrowing of arteries on angiographic examination.  There is 
complete data for about 287 subjects in this dataset also obtained from UCI. 

 
Contraceptive Method Choice  This data obtained from the UCI database was 

originally collected by the National Indonesia Contraceptive Prevalence Study in 1987. 
The data consists of nine demographic attributes for 1,473 married women.  The data is 
modified slightly from the original dataset to include two classifications - does or does 
not use contraception.  

 
Doctor Visits  This dataset contains data on a sample of elderly individuals 

drawn from the National Medical Expenditure Survey done in 1987.  There are 4406 
observations and 22 variables.  The data was used in a paper from the Journal of Applied 
Econometrics (Deb and Trivedi, 1997).  This journal maintains a site where data from its 
articles is deposited and can be accessed (http://qed.econ.queensu.ca/jae/). 
 

Earnings  This dataset is from Polachek and Yoon (1996) who studied income 
using data from the Michigan Panel Study of Income Dynamics.  Predictors are education 
(years), job experience (years) and tenure at current job (months).  The dependent 
variable is whether wage level is above or below average.  The number of observations is 
13,408.   
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 Indian Rice Farm  This dataset comes from a forthcoming paper in the Journal of 
Applied Econometrics by Horrace and Schmidt (in press).  The target variable is whether 
a farm in a village in India is classified as above or below average in efficiency of rice 
production.  Efficiency is defined as the total rough rice in kilograms produced after 
deducting for harvest costs (which are paid in terms of rough rice) divided by the total 
area the farmer cultivated in rice.  There is data from one thousand and twenty-six Indian 
farms who average 1.07 acres of rice under cultivation.  Predictor variables include the 
village where the farm is located, the total area cultivated with rice, whether traditional or 
high-yielding varieties of rice are planted, fertilizer use levels, labor hours expended, and 
labor pay rate.  There is data from 1026 farms.  
 
 Italian Household Income  The target variable in this dataset is the classification 
of an Italian household's net disposable income as above or below the median.  Predictors 
are such variables as husband and wife's hours of work, number of children between 
certain ages, work experience, education, and whether or not they resided in northern 
Italy.  This data is from a forthcoming paper in the journal of Applied Econometrics by 
Aaberge, Colombino, and Steiner (in press). 
 
 Own Home This data is derived from the 1987 wave of the Michigan Panel Study 
of Income Dynamics as used in the study of Lee (1995).  Variables such as husband/wife 
educational and vocational variables as well as number and age of children are related to 
whether or not the home they live in is owned by the household or otherwise.  The 
number of observations is 3382. 
  
 Pima Indians Diabetes  This UCI dataset provides 8 medical attributes for 768 
women of Pima Indian heritage.  Predictors include such attributes as 2-hour serun 
insulin level, body mass index, diabetes pedigree function, age, skin fold thickness, and 
diastolic blood pressure. The cases are classified according to whether or not they carry a 
diagnosis of diabetes. 
 
 Working Wives  Various demographic variables and type of husband's insurance 
coverage is related to hours worked per week by the wife (Olson, 1998).  To turn this into 
a classification problem cases are categorized as wife working more or less than 32 hours 
per week.  This dataset also comes from the Journal of Applied Econometrics database.  
There are over 22,000 cases. 
 
 Wage Differences  This dataset from the Journal of Applied Econometrics is 
taken from the second Malysian Family Life Survey done in 1989.  Educational, 
ethnicity, and family asset attributes were related to income (Marcia and 
Schafgans,1998).  To make this a classification problem income level is classified as 
above or below the average.  Because many of the women did not work outside the home 
only males are included in our study.  There are more than 4,000 such cases. 
 
 Yeast Proteins  Here we predict the cellular localization sites of proteins in yeast 
cells.  There are 8 predictors.  We will limit our study to the two most prevalent classes.  
This gives us 889 instances in this dataset from UCI. 
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2.5   Experimental Procedure 
 
 

Eighty percent of each dataset will be used for training the algorithms and twenty  
percent will be held back as a test set.  For the backpropagation, cascade correlation, and 
Levenberg-Marquardt neural networks ten percent of the training data (8 percent of the 
total) will be put into a file used to prevent overtraining (Masters, 1993).  Assignment of 
data to training, overtraing prevention, and tresting files will be randomized.  Three 
hidden layers was used with the backpropagation neural network and two with the 
Levenberg-Marquardt network to insure the ability to model complex relationships.  
Training of these neural networks stops when the error level on overtraining prevention 
file passed through the neural net model reaches its minimum and no improvement 
occurs for 10,000 iterations for backpropagation networks.  Tuning discriminant analysis 
using the stepwise technique to remove non-contributory variables was not done because 
this might have given an advantage over the other methods.  Performance on the test sets 
using percentage accurately classified and ROC analysis forms the basis for comparing 
the algorithms.              
 

 
   

Chapter 3.     Pre-clustering 
       
 
 Another approach to classification is cluster analysis.  Cluster analysis is an 
exploratory data analysis tool where there are no pre-set classes, although the number of 
classes may be set.  Because in cluster analysis classes must be constructed without 
guidance it is known as an unsupervised learning technique.  This is akin to how people 
or animals learn about their environment when they are not told or directed what to learn.  
 
 Clusters are formed when attributes of observations tend to vary together.  Cluster 
analysis constructs "good" clusters when the members of a cluster have a high degree of 
similarity to each other (internal homogeneity) and are not like members of other clusters 
(external homogeneity).  However, there is no agreement over how many clusters a 
dataset should be partitioned into.  There are no guidelines on the number of clusters that 
would be optimal to aid supervised learning efforts. 
 
 Statisticians have developed clustering procedures which group observations by 
taking into account various metrics to optimize similarity.  The major type of cluster 
analysis, which will be used in this study, is hierarchical clustering.   
 
 Hierarchical clustering begins with putting each observation into a separate 
cluster.  Clusters are then combined successively based upon their resemblance to other 
clusters.  The number of clusters is reduced until only one cluster remains.  A tree or 
dendrogram can represent hierarchical clustering.  Each fork in the tree represents a step 
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in the clustering process.  The tree can be sectioned at any level to yield a partition of the 
set of observations.  At its early stages the dendrogram is very broad.  There are many 
clusters that contain very similar observations.  As the tree structure narrows the clusters 
comprise coarser, more inclusive groupings. 
 
 Berry and Linoff (1997) have proposed cluster analysis as a precursor to 
analyzing data with supervised learning techniques.  Especially in a large dataset 
elements may form subgroups or clusters.  Members of a cluster may have much in 
common with other members of their cluster and differ in important ways from members 
of other clusters.  Each cluster may have its own "rules" that relate the attributes of its 
members to classifying variables.  Thus, to enhance accuracy it may be advantageous to 
first group elements of a dataset by cluster and then apply the classification algorithms 
successively to each cluster.  In this way they will learn each cluster's unique "rules" for 
relating attributes to classes and thereby more accurately classify the members of each 
cluster.  Berry and Linoff (1997) write about this approach as follows: 
 
 It is possible to find rules and patterns within strong clusters once the  
            noise from the rest of the database has been eliminated… Automatic 
            cluster detection can be used to uncover hidden structure that can be 
            used to improve the performance of more directed techniques…  Once 
            automatic cluster detection has discovered regions of the data that 
            contain similar records, other data mining tools have a better chance of  
            discovering rules and patterns within them. (pp.212,214,215) 
 
The process of grouping data into subgroup classifications has been described as "pre-
clustering." 
 
 Dr. David Wishart, creator of the Clustan cluster analysis software, responded in 
the following way to the question of his opinion of this use for cluster analysis: 
 

The essence of clustering is to break down a heterogeneous dataset into 
homogeneous subsets. …cluster your data into homogeneous subsets which you 
can describe, and then work individually on the subsets.   
 In the context of, say, supermarket shoppers, there are different types - the 
bargain hunter, the quality foods seeker, the organics cook, the anti - GM 
(genetically-modified) lobbyist, and so on.  Each of these types needs a different 
marketing strategy to achieve good sales response.  So they have to be identified 
and analyzed separately.   
 In my banking study the same thing happened.  The bank was surprised to 
find it had different types of account holders, some of which were not profitable.  
They were then able to focus on the profitable ones, and either disengage or 
convert the non-profitable ones.  In essence, developing different sets of rules for 
cluster subgroups. 
   I think this works for almost any types of dataset. …In data mining 
contexts, it probably works best with large datasets, because there's always the 
hope that you might get a surprise hidden in a lot of data (e.g. the profitability of 
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account types) or discover a nugget of hidden data (e.g. in the context of health 
insurance claims, a tiny group of fraudsters operating a scam) (Wishart, 1999). 
     

 A further example Wishart mentions comes from the field of astronomy.  In the 
Hertzsprung-Russel diagram stars are plotted by temperature and luminosity.  "Dwarf" 
and "giant" stars are in separate clusters.  Within each cluster there is a different 
relationship between temperature and luminosity.  The correlation is negative for the 
dwarfs and positive for the giants.  If just one correlation were figured for the dataset of 
all stars the corrleations within the two clusters would wash each other out. This would 
erroneously indicate no relationship between temperature and luminosity.  Yet within the 
clusters for the two types of stars there are clear "rules" governing the relationship 
between temperature and luminosity.  
 
 Despite the plausibility of this use for cluster analysis there does not appear to be 
any empirical studies supporting this approach in the data mining or statistical literature. 
Dr. Jon Kettenring, of Bellcore, is a Fellow and past president (1997) of the American 
Statistical Association.  He gave a presentation entitled "Massive data sets, data mining, 
and cluster analysis" before the Institute for Mathematics and Its Applications.  He was 
asked if he was aware of any empirical studies which demonstrate that cluster analysis 
improves the performance of supervised learning done within the clusters.  His reply was: 
 
 No, I am not aware of any such studies.  There may be some, but in fact these are  
 points of view that are much easier to state than substantiate (Kettenring, 1999). 
 
 
3.1 Experimental Procedure 
 
 

Hierarchical clustering with Ward's method as a linkage rule are applied to the 
training sets derived from several of our datasets using the ClustanGraphics software 
program (Wishart,1999c).  Neural networks are believed to need relatively large training 
sets (Masters, 1993).  Since the training sets are partitioned by cluster analysis we 
restricted the clustering to datasets containing more than 1,000 cases.  The datasets used 
in this analysis include the Doctor Visits, Italian Household Income, Earnings, Own 
Home, Wage Differences, and Working Wives.  We partition a training set into four 
clusters based only on the values of the predictive attributes.  The statistical and AI 
classifiers then create a predictive model for the cases that were put into each cluster.  
Test set data is then be put into its cluster-of-best-fit.  The predictive models created for 
each cluster classify the test set cases assigned to that cluster.  For each dataset the 
accuracy of the models created for the clusters are compared with those created for the 
entire training set.  While the number of clusters created is arbitrarily set at four, this 
should give us at least some hints as to whether breaking training sets into clusters 
routinely aids the supervised learning process.  The design also allows us to evaluate how 
clustering and classifying algorithms interact in their effect on accuracy.  

 
 The study also looks to see if the error rate for a model applied to a cluster within 
the training set from which it is derived predicts the error rate for members of the same 
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cluster within the test set.  This could yield confidence levels for predictive classifications 
of new data.  First, the training set itself is passed through the classification model 
developed from the training set.  Almost all the algorithms used in our study work by 
constructing an abstract description for mapping vector inputs onto classes.  Even some 
members of the training set will not be classified correctly by this concept description.  
The testing set is also classified.  Next, the training and testing set are clustered at the 
four-cluster level based on a cluster model constructed from the training set.  The error 
rate is figured for each member of both the training and the testing set grouped by cluster 
membership.  The error rate for a given cluster in the training set is compared with the 
error rate for the same cluster in the test set.  If there is a positive relationship, the error 
level for clusters in the training set could be taken as indicating a confidence level for 
predictions of that cluster among new cases presented for classification.    
 
 
 

Chapter 4.  Results 
 
 The error rates for the algorithms in each dataset are presented in Tables 2 
through 13.  ROC data (when applicable) is also included.  ROC curves for each dataset 
are presented in Figures 1 through 12 in Appendix A.  The mean error of the classifiers 
across datasets in ascending order is presented in Table 14.  The mean rank of the error 
rate of the classifiers is shown in Table 15.  The mean rank of the classifiers by ROC area 
under the curve measurement (A(z)) is shown in Table 16.  To compute ranks an 
algorithm was given a score of "1" if it had the lowest error rate, "2" if it had the second 
lowest error, etc.  If two algorithms had an equal error rate, the average rank was 
assigned.  From inspection of the tables and figures we can draw several conclusions: 
 

1. QNET and Model Quest are consistently good classifiers. 
2. The four best classifiers are all neural networks. 
3. The worst algorithm (LVQ) is also a neural network. 
4. The first four classifiers are the same whether ranked according to error rate 

or ROC area under the curve criteria. 
5. For certain datasets there are almost no differences between the quality of 

classification performance by the various algorithms.  In other datasets there 
are wide differences between the quality of the classifier's decision 
performances.  

 
The statistical significance of the differences of the mean ranks of algorithms for 

error rates within datasets was analyzed using Friedman's Test.  This test gave a 
significance probability of <.001 (Chi Square = 65.745, df = 12).  This indicates that the 
null hypothesis that the algorithms have equal error rates on average is rejected. 

 
The author contacted the developers of the most accurate method (QNET) and 

asked them if they would comment on the reasons for its outstanding performance.  
QNET implements a standard backpropagation multi-layer perceptron neural network.  
William Riba, a developer of QNET wrote: 
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There are a couple of things we paid close attention to in our development of  
QNET.  We spent a lot of time on accuracy optimization.  There are  
computational shortcuts - which we tested and were tempted to take for speed  
improvements, but were ultimately rejected because they compromised accuracy. 
With our attention to accuracy you'd think we'd have developed a real slow  
trainer.  Luckily we gained back speed through loop optimizations and the use of  
an optimizing Intel compiler for the computational sections (buggy as heck - but  
worth it).  It claims to make better use of the CPU's floating point unit - resulting  
in increased accuracy and speed.  Last, we paid close attention to QNET's default  
settings - again for the purpose of developing more accurate models, not for 
 fastest training.  So I would credit an attention to detail more than algorithmic  
differences (Riba, 2000).  
  
 
 

Table 1.  Breast Cancer Survival (2 predictors, 306 cases).  The Loh and Shih freeware 
version of QUEST did not run on this dataset.  The version of QUEST from SPSS, Inc. 
was substituted. 
               
                                                                                    ROC   
Methods       Error rate   Rank  a b Az Rank 
 
Cascade Correlation 24.59% 2.5 .67 .63 .71 3 
C&RT 29.51 7  
CHAID 29.51 7 
Discriminant Analysis 29.51 7 .81 .90 .73 2 
Levenberg-Marquardt 32.79 10.5 .51 .94 .64 7 
Logistic Regression 32.79 10.5 .83 .91 .73 1 
LVQ 34.43 12 
Model Quest 24.59 2.5 .53 .48 .68 6 
Model Ware 31.15 9 .28 .57 .59 9 
QNET 26.23 4 .64 .55 .71 4 
QUEST 37.71 13 
Resilient Propagation 22.95 1 .56 .47 .69 5 
Ward Classifier 27.87 5 .41 .56 .64 8 
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Table 2.  Cleveland Clinic Heart Disease (11 predictors, 287 cases) 
 
                                                                                    ROC   
Methods       Error rate   Rank  a b Az Rank 
 
Cascade Correlation 28.07% 10 .96 .80 .77 9 
C&RT 31.58 11  
CHAID 28.07 8 
Discriminant Analysis 19.30 2 1.80 1.30 .86 4 
Levenberg-Marquardt 28.07 8 1.06 .52 .82 6 
Logistic Regression 21.06 3.5 1.80 1.21 .87 2 
LVQ 56.14 13  
Model Quest 26.32 6 1.34 .99 .83 5 
Model Ware 24.43 5 1.59 1.03 .87 3 
QNET 15.79 1 1.82 1.18 .88 1 
QUEST 21.05 3.5  
Resilient Propagation 33.33 12 1.33 1.18 .81 7 
Ward Classifier 28.07 8 1.20 1.02 .80 8 
 
 
 
 
 
Table 3.  Contraceptive Method Choice (9 predictors, 1473 cases) 
 
                                                                                    ROC   
Methods       Error rate   Rank  a b Az Rank 
 
Cascade Correlation 30.51 4 1.14 1.14 .75 4 
C&RT 28.47 1  
CHAID 30.85 5 
Discriminant Analysis 37.97 9 1.35 1.14 .81 3 
Levenberg-Marquardt 34.24 7 .95 1.24 .72 6.5 
Logistic Regression 34.76 8 .88 1.24 .71 8 
LVQ 41.02 12 
Model Quest 28.81 2 3.15 2.26 .90 2 
Model Ware 40.34 10 .79 1.04 .71 9 
QNET 29.83 3 4.39 2.72 .94 1 
QUEST 65.08 13  
Resilient Propagation 32.46 6 .92 1.07 .73 5 
Ward Classifier 41.02 11 .95 1.24 .72 6.5 
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Table 4.  Doctor Visits (11 predictors, 5190 cases) 
 
                                                                                    ROC   
Methods       Error rate   Rank  a b Az Rank 
 
Cascade Correlation 18.69% 7 .90 .91 .75 8 
C&RT 18.88 8.5 
CHAID 19.29 10 
Discriminant Analysis 23.80 11 .97 .98 .79 2 
Levenberg-Marquardt 18.50 5 .92 .93 .75 7 
Logistic Regression 18.50 5 .96 .96 76 6 
LVQ 39.13 13 
Model Quest 18.40 3 1.02 .98 .78 3 
Model Ware 23.99 12 .57 .91 .66 9 
QNET 18.30 2 .99 .94 .76 4 
QUEST 18.88 8.5  
Resilient Propagation 18.50 5 1.01 .95 .85 1 
Ward Classifier 17.92 1 .96 .91 .76 5 
 
 
 
 
 
 
 
Table 5.  Earnings (3 predictors, 13,408 cases) 
 
                                                                                   ROC   
Methods       Error rate   Rank  a b Az Rank 
 
Cascade Correlation 35.27% 10.5 .77 .99 .71 6 
C&RT 34.34 7 
CHAID 35.05 8 
Discriminant Analysis 35.15 9 .75 1.00 .70 8 
Levenberg-Marquardt 34.30 6 .81 .97 .72 2.5 
Logistic Regression 35.27 10.5 .74 .99 .70 7 
LVQ 41.95 13 
Model Quest 33.82 1 .83 .98 .72 1 
Model Ware 40.23 12 .48 1.03 .63 9 
QNET 34.12 4 .80 .98 .71 4 
QUEST 33.89 2 
Resilient Propagation 34.30 5 .81 .97 .72 2.5 
Ward Classifier 34.04 3 .78 .93 .72 5 
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Table 6.  Italian Household Income (9 predictors, 2,953 cases) 
 
                                                                                    ROC   
Methods       Error rate   Rank  a b Az Rank 
 
Cascade Correlation 20.64% 5 1.51 .87 .87 8 
C&RT 21.66 9.5 
CHAID 23.18 11 
Discriminant Analysis 20.81 6.5 1.64 .94 .88 6 
Levenberg-Marquardt 20.98 8 1.61 .89 .89 5 
Logistic Regression 20.81 6.5 1.65 .96 .88 7 
LVQ 45.82 
Model Quest 18.78 1 1.62 .87 .89 4 
Model Ware 24.53 12 1.09 1.07 .77 9 
QNET 20.47 4 1.69 .92 .89 1 
QUEST 21.66 9.5 
Resilient Propagation 20.30 2.5 1.76 1.03 .89 2 
Ward Classifier 20.30 2.5 1.70 .96 .89 3 
 
 
 
 
 
 
 
Table 7.  Wage Differences (9 predictors, 8,748 cases) 
 
                                                                                    ROC   
Methods       Error rate   Rank  a b Az Rank 
 
Cascade Correlation 36.46% 10 .56 1.05 .65 7 
C&RT 30.11 4 
CHAID 31.89 6 
Discriminant Analysis 38.11 12 .46 .98 .63 9 
Levenberg-Marquardt 30.74 5 .99 1.08 .75 2 
Logistic Regression 37.31 11 .47 .99 .63 8 
LVQ 55.14 13 
Model Quest 29.83 3 .99 1.07 .75 1 
Model Ware 33.89 9 .71 1.01 .69 6 
QNET 29.60 2 .96 1.05 .75 3 
QUEST 32.91 8 
Resilient Propagation 29.09 1 .92 1.02 .74 4 
Ward Classifier 32.00 7 .84 1.02 .72 5 
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Table 8.  Own Home (12 predictors, 3,382 cases) 
 
                                                                                    ROC   
Methods       Error rate   Rank  a b Az Rank 
 
Cascade Correlation 33.58% 10 .87 1.09 .72 8 
C&RT 30.03 6 
CHAID 30.92 8 
Discriminant Analysis 36.83 12 .94 1.03 .74 6 
Levenberg-Marquardt 30.47 7 1.09 1.08 .77 4 
Logistic Regression 28.99 3 1.11 1.02 .78 2 
LVQ 37.72 13 
Model Quest 28.85 2 1,06 .97 .78 3 
Model Ware 36.54 11 .64 .94 .68 9 
QNET 27.07 1 1.13 .96 .79 1 
QUEST 29.29 4 
Resilient Propagation 31.51 9 .84 1.03 .72 7 
Ward Classifier 30.03 5 1.06 1.04 .77 5 
 
 
 
 
 
 
 
Table 9.  Pima Indians Diabetes (6 predictors, 724 cases) 
 
                                                                                    ROC   
Methods       Error rate   Rank  a b Az Rank 
 
Cascade Correlation 19.31% 1.5 1.86 1.42 .86 3.5 
C&RT 22.07 8.5 
CHAID 28.28 12 
Discriminant Analysis 19.31 1.5 1.86 1.42 .86 3.5 
Levenberg-Marquardt 23.45 11 1.04 .89 .78 9 
Logistic Regression 21.38 7 1.68 1.17 .86 2 
LVQ 33.11 13 
Model Quest 20.69 5.5 1.32 .87 .84 6 
Model Ware 22.07 8.5 1.57 1.28 .83 8 
QNET 20.00 3.5 1.51 1.05 .85 5 
QUEST 22.76 10 
Resilient Propagation 20.69 5.5 1.69 1.39 .84 7 
Ward Classifier 20.00 3.5 1.73 1.18 .87 1 
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Table 10.  Indian Rice Farms (22 predictors, 1,026 cases) 
 
                                                                                    ROC   
Methods       Error rate   Rank  a b Az Rank 
 
Cascade Correlation 37.56% 11 .10 1.39 .52 6 
C&RT 35.13 9  
CHAID 37.08 10 
Discriminant Analysis 31.71 4 .04 1.24 .51 7 
Levenberg-Marquardt 38.05 12              -.03 1.14 .49 9 
Logistic Regression 32.20 5.5 .04 1.24 .51 8 
LVQ 47.80 13 
Model Quest 32.68 7.5 .66 .78 .70 4 
Model Ware 30.24 3 .11 1.12 .53 5 
QNET 29.27 2 .70 .56 .73 2 
QUEST 32.68 7.5 
Resilient Propagation 26.34 1 .70 .77 .71 3 
Ward Classifier 32.20 5.5 .84 .82 .74 1 
 
 
 
 
 
 
Table 11.  Working Wives (20 predictors, 22,272 cases).  The Loh and Shih freeware 
version of QUEST did not run on this dataset.  The version of QUEST from SPSS, Inc. 
was substituted. 
 
                                                                                    ROC   
Methods       Error rate   Rank  a b Az Rank 
 
Cascade Correlation 24.48% 7.5 1.30 .94 .83 8 
C&RT  24.81 9 
CHAID 24.30 5 
Discriminant Analysis  25.20 11 1.31 .93 .83 6 
Levenberg-Marquardt 23.82 2.5 1.36 .97 .84 4 
Logistic Regression 25.20 10 1.30 .92 .83 7 
LVQ 54.92 13 
Model Quest 16.35 1 1.36 .94 .84 1 
Model Ware 31.21 12 .83 1.03 .72 9 
QNET 24.14 4 1.35 .93 .84 2 
QUEST 24.48 7.5 
Resilient Propagation 23.82 2.5 1.40 1.05 .83 5 
Ward Classifier 24.36 6 1.39 1.01 .84 3 
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Table 12.  Yeast Proteins (7 predictors, 892 cases) 
 
                                                                                    ROC   
Methods       Error rate   Rank  a b Az Rank 
 
Cascade Correlation 34.83% 2 .71 .98 .69 2 
C&RT 34.83 2 
CHAID 37.64 9 
Discriminant Analysis 37.08 6.5 .68 1.01 .68 3 
Levenberg-Marquardt 38.77 11 .48 .97 .64 9 
Logistic Regression 37.36 8 .68 1.03 .68 4 
LVQ 44.38 13 
Model Quest 37.08 6.5 .55 .85 .66 7 
Model Ware 40.45 12 .59 1.11 .65 8 
QNET 34.83 2 .78 1.07 .70 1 
QUEST 35.96 4.5 
Resilient Propagation 38.20 10 .60 .93 .67 6 
Ward Classifier       35.96    4.5           .61       .85        .68           5 

 
 
 

Table 13.  Mean Error of Methods Across Datasets in Ascending Order 
 
 
                                             Mean 
Methods                            Error rate                                         
 
 
QNET                                  25.80                
Model Quest                        26.35                
Resilient Propagation           27.72               
Ward Systems Classifier      28.05                
C&RT                                   28.45               
Cascade Correlation             28.61               
Logistic Regression              28.76               
QUEST                                 28.85               
Levenberg-Marquardt           29.52               
Discriminant Analysis          29.57              
CHAID                                 29.60              
ModelWare                          31.35              
LVQ                                     44.24              
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Table 14.  Mean Rank of Error Rate in Ascending Order 
 
                      
                                        Mean Rank of 
Methods                             Error Rate 
 
 
QNET                                      2.71 
Model Quest                            3.42    
Resilient Propagation              5.04 
Ward Systems Classifier         5.17 
Cascade Correlation                6.75 
C&RT                                     6.88 
Logistic Regression                7.38 
QUEST                                    7.58 
Discriminant Analysis             7.63 
Levenberg-Marquardt              7.75 
CHAID                                    8.25 
Model Ware                             9.63 
LVQ                                        12.83  
 
 
Table 15.  Mean Rank of ROC A(z) in Ascending Order 
 
                                              Mean Rank 
Method                           on A(z) 
 
QNET                                         2.42 
ModelQuest                                3.58 
Resilient Propagation                 4.54 
Ward Systems Classifier            4.62 
Discriminant Analysis                4.96 
Logistic Regression                    5.17 
Levenberg-Marquardt                 5.92 
Cascade Correlation                    6.04 
ModelWare                                 7.75               
 
 
 
 

Each training dataset was partitioned by cluster analysis into four clusters (pre-
clustering) and models were created for each cluster using three classification algorithms 
- discriminant analysis, QNET, and C&RT.  These models were used to classify test 
cases that belonged to the same cluster.  The errors made within each cluster of the test 
set were summed and compared with the error level when the classification model was 
developed from the entire dataset.  The results are presented in Table 16.  The mean error 
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level is slightly greater using pre-clustering, obviating the possibility that this method has 
an overall positive effect upon classification accuracy in the datasets used.          
                                         
 
Table 16. Comparison of Error Rates for Three Algorithms Run on Entire 
Training/Testing Datasets and on Training/Testing Datasets Partitioned Into Four 
Clusters Using Ward's Method   
 
                                                                                                         
                                                                    Error Rate                  Error 
                                                                      Without                Rate With       
Dataset                          Methods              Pre-Clustering        Pre-Clustering                
 
 
Doctor Visits             
                          Discriminant Analysis            23.80%                  23.99% 
                          QNET                                     18.30                      19.27 
                          C&RT                                     18.88                      18.12     
                    
 
 
 
Earnings 
                         Discriminant Analysis             35.16%                   39.19%    
                         QNET                                      34.12                       33.63 
                         C&RT                                      34.34                       34.08   
 
 
 
Italian Household Income 
                  Discriminant Analysis            20.81%                  22.17% 
                  QNET                                     20.47                      20.47                                       
                  C&RT                                     21.66                      23.86 
 
 
Wage Differences 
                  Discriminant Analysis            38.11%                  39.20%                    
                  QNET                                      29.60                     29.49                     
                  C&RT                                      30.11                     31.89   
 
 
 
Own Home 
                  Discriminant Analysis            36.83%                  33.73%          
                  QNET                                      27.07                     29.73 
                  C&RT                                      30.03                     34.07 
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Working Wives 
                  Discriminant Analysis            25.20%                    25.21 
                  QNET                                     24.14                       24.00            
                  C&RT                                     24.81                       21.85    
 
 
                                            Mean             27.41%                    27.99% 
 
 
 
 Error rate within a cluster from the training set was correlated with error rate 
within those same clusters in the test set.  Using both the decision tree algorithm C&RT 
and the neural network QNET this relationship was found to be extremely robust (Tables 
17 and 18).  Relative error rates computed by cluster in the training set can thus give us 
some indication of the confidence that can be placed upon predictions of new or test 
cases belonging to the corresponding clusters. 
 
 
 
 
 
 Table 17.  Error Rate by Clusters Within Training and Testing Set Using C&RT 
Algorithm  
 
                                 Training Set                      Testing Set          
 
Doctor Visits 
 
Cluster 1                        13.01%                           15.70%                 
Cluster 2                        10.34                               10.42 
Cluster 3                        27.48                               28.00  
Cluster 4                        26.81                               26.06 
 
Earnings 
 
Cluster 1                        26.80%                           29.16% 
Cluster 2                        36.05                               37.15   
Cluster 3                        34.81                               36.11 
Cluster 4                        37.29                               33.95 
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Italian Household Income 
 
Cluster 1                        21.77%                           27.95%              
Cluster 2                        32.26                               23.33  
Cluster 3                        13.73                               17.10   
Cluster 4                        14.37                               14.91 
 
 
Wage Differences 
 
Cluster 1                         26.79%                           26.41%    
Cluster 2                         27.84                               29.45 
Cluster 3                         33.15                               32.25                                     
Cluster 4                         36.32                               32.27 
 
 
Own Home 
 
Cluster 1                         20.17%                            30.68% 
Cluster 2                         27.70                                32.14 
Cluster 3                         22.97                                36.36 
Cluster 4                         14.27                                15.71  
 
 
Working Wives 
 
Cluster 1                        26.44%                             28.20%                                      
Cluster 2                        22.78                                 23.54 
Cluster 3                        25.68                                 26.57           
Cluster 4                        18.21                                 20.33 
 
Correlation between percentages in training and testing set: r = .853, df=23, p<<.01 
 
 
Table 18.  Error Rate by Clusters Within Training and Testing Set Using QNET 
Algorithm. 
     
                                 Training Set                      Testing Set          
 
Doctor Visits 
 
Cluster 1                        13.44%                           15.70%                 
Cluster 2                        11.49                                8.33 
Cluster 3                        31.73                               26.00  
Cluster 4                        27.56                               24.85 
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Earnings 
 
Cluster 1                        27.28%                           28.77% 
Cluster 2                        36.42                               37.15   
Cluster 3                        35.57                               36.98 
Cluster 4                        38.04                               30.24 
 
 
Italian Household Income 
 
Cluster 1                        21.66%                           25.59%              
Cluster 2                        26.88                               30.00  
Cluster 3                        13.73                               16.06   
Cluster 4                        15.50                               14.04 
 
 
Wage Differences 
 
Cluster 1                         26.20%                           26.67%    
Cluster 2                         27.55                               27.34 
Cluster 3                         33.26                               32.02                                     
Cluster 4                         36.50                               32.76 
 
 
Own Home 
 
Cluster 1                         20.24%                            27.27% 
Cluster 2                         27.88                                29.29 
Cluster 3                         14.87                                27.28 
Cluster 4                         14.39                                14.29  
 
 
Working Wives 
 
Cluster 1                        25.46%                             26.44%                                      
Cluster 2                        21.13                                 21.64 
Cluster 3                        25.32                                 27.09           
Cluster 4                        18.89                                 19.01 
 
Correlation between percentages in training and testing set: r = .870, df=23, p<<.01 
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Chapter 5.  Discussion 
 
1.  Algorithm superiority is somewhere between selective and generalized. 

One of the findings of this study is that the algorithms used do systematically 
differ in their general accuracy.  Brodley (1993) has asserted that any superiority of a 
learning algorithm is only "selective" and limited to a given task or dataset: 

 
 The results of empirical comparisons of existing learning algorithms illustrate that  

each algorithm has a selective superiority; (author's italics) it is best for some but  
not all tasks.  Given a data set, it is often not clear beforehand which algorithm 
will yield the best performance…In every case, the algorithm can boast one or 
more superior learning performances over others, but none is always better. 
(Brodley, 1993)  

 
This may not be the most accurate description of the comparative performance of the 
classification algorithms used in our study.  The superiority of the best algorithms in our 
study is not as selective as in Brodley's conception.  A statistical test did reject the notion 
that there was no difference in classifier performance across all datasets.  On the other 
hand, any superiority is not totally general either.  Superiority somewhere between 
general and selective is perhaps the best characterization of our results.  For example, the 
best overall performer, QNET, is the absolute best for only two datasets and ties with two 
other methods for first place in another, but it never ranks below fourth of the thirteen 
classifiers.  And among the weaker performers, the CHAID decision tree has a mean rank 
of 8.25.  It is never better than fifth or worse than twelfth.  It seems that, at least among 
our datasets, it would be difficult to claim any "selective superiority" for it.  These 
findings are presented in the table below. 
 
Table 19.  Algorithm Superiority Across Datasets for Two Algorithms 
 
     Times Best             Average Rank         Range 
 
 QNET                 3(one tie)                      2.71                  1 - 4                                   
 
 CHAID                     0                             8.25                   5 - 12     
 
2.  Newer methods for classification are coming into their own. 
The good performance of several newer algorithms suggests that they have earned their 
place in data classification endeavors.  There have been concerns that expectations for 
neural networks in particular, following a long historical pattern in the artificial 
intelligence field, have been inflated.  But, as Banks (1996) notes: 
 
 The ultimate arbiter among these many competing methods must be performance 

(Banks, 1996). 
 
The present results suggest that neural nets have a contribution to make to classification 
efforts.  The most recent, extensive, and methodologically elegant published comparison 
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of classification algorithms is the work of Lim, Loh, and Shih (1999).  They compared 
twenty-two decision trees, and nine statistical but only two neural network algorithms.  
And one of the two neural network algorithms was LVQ.  Michie, Spiegelhalter, and 
Taylor, (1994) Poddig, (1995) and the present study found this early neural network 
algorithm (circa 1988) to be among the least accurate classifiers (due either to the 
implementation used or to the algorithm itself).  The results of the current study suggest 
that future work in this field will benefit from including a range of the more modern 
neural network algorithms.  They also suggest that neural networks not be left out for 
consideration when the concern is classifying real-world data for some practical purpose. 
 
3.  The amount of divergence between the classifiers on accuracy measures varies as 
a function of the dataset. 
 Examining the error rates and ROC graphs by dataset reveals that for some 
datasets it would seem not to matter which algorithm you selected to do classification - 
they almost all work about the same.  For other datasets there are very definite "winners" 
and "losers" among the classification algorithms.  For instance, looking at the ROC 
curves for the "Earnings" dataset (Figure 5) most overlie each other so closely that they 
cannot be discriminated.  Similarly, the range of error rates for 11 of the classifiers for 
this dataset falls narrowly from 33.82% to 35.27%. For the "Wage Differences" dataset 
inspection of the ROC curves (Figure 7) shows that algorithm performance varies 
substantially across the range of possible cutoff points for classification.  And the error 
rate measures similarly show a broad range of results from 29.09% to 37.31%.  The 
reason for this divergence in the amount of variability of algorithm performance between 
datasets is uncertain. 
 
4.  Accuracy optimization techniques should be a priority in the computer 
programming of classification algorithms. 
 Comments from one of the developers of our best method, QNET, were cited 
above.  They indicate that with dependence upon computers to implement algorithms 
close attention needs to be paid to programming techniques aimed at accuracy 
optimization.  Technical choices about programming issues will greatly affect the 
accuracy of iterative, computationally intensive classification algorithms.  To achieve 
highly accurate classifier performance it is necessary to consider details of the algorithm's 
implementation on a computer system.   
 
5.  Cluster analysis can be explored as a method to indicate confidence levels for 
classifiers. 
 The attempt to increase classification accuracy by first clustering the training and 
testing data, and then developing and testing the classification model within the clusters 
failed.  It was no more accurate than just developing one model by training the algorithm 
on all the data.  Possibly clustering methods other than Ward's method could be tried.  
And it may be that this approach will work on datasets other than those included in the 
present study. 
 
 The error rates within clusters in training sets are highly predictive of error rates 
for those clusters in testing sets.  The relative rankings of the accuracy of the clusters 
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within the training data can be used to indicate a confidence level for predictions within 
those clusters from new data or a testing set.  Thus, if cases are classified at the four 
cluster level predictions on new or test set cases could be ranked from 1 (most 
confidence) to 4 (least confidence).  This would be based upon their membership in 
clusters that in the training set the classification model had greater or lesser success 
classifying correctly. This is a new use for cluster analysis that can be explored further.  
 
 
 

Chapter 6.  Improvements and Future Directions 
 
 As with any large project at its completion, the author can see ways in which it 
could have been improved as well as directions he would like to pursue in the future. 
Here are some of those ideas.   
1. Several interesting new classification algorithms became available as this project 

neared its conclusion.  Tjen-Sien Lim developed an advanced decision tree 
methodology, known as PLUS (Lim, 1999).  Nauck (1999) presented her 
implementation of NEFCLASS - a combined neural network-fuzzy logic approach to 
classification.  Another new type of classifier is support vector machines (SVM).  
SVM's combine linear modeling and instance-based learning.  Software has been 
offered which implements this new technique. (Witten and Frank, 2000).    

2. It is known that with smaller datasets single train and test partitions may provide an 
inaccurate estimation of the true error rate of a classification algorithm (Weiss and 
Kulikowski, 1991).  A random sub-sampling procedure known as 10-fold cross 
validation has been developed to minimize any estimation bias.  Typically, as in Lim, 
(1999) this is implemented by randomly dividing a dataset into ten disjoint subsets, 
each containing the same number of records.  A classification model is constructed 
from nine of the subsets and tested on the one withheld subset.  This process is 
repeated ten times, each with a different subset withheld.  Accuracy across the ten 
subsets is averaged to provide an estimate for the classifier.  This procedure would 
have been interesting to employ with some of the smaller datasets used in the present 
study.   

3. New ways have been discovered to make classification algorithms more accurate.  
For example, it has been found that if a classifier is even weakly accurate more 
accurate results can be obtained by running the algorithm several times on different 
samples of the training set and combining the resulting models.  This is known as 
"bagging."  A procedure called "boosting" is another way of combining several 
models into a single predictive model (Schapire, Freund, Bartlett and Lee, 1998).  
Such unique ways of employing the training and testing data, along with improving 
classification algorithms, offer enhanced opportunities to solve the complex data 
classification problems our technological world presents to us.      

 
 In conclusion, we have seen that to understand and enhance the data mining 
process we have relied upon tools traditionally belonging to both statistics and computer 
science.  As statistician William Shannon (1999) wrote: 
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 I think there is a challenge for statisticians to start learning machine learning and  
computer science, and machine learners to start learning statistics.  These two 
fields rightly fall under the broad umbrella of "data analysis."  
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