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ABSTRACT 

Support Vector Machines (SVMs) have successfully shown 

efficiencies in many areas such as text categorization. Although 

recommendation systems share many similarities with text 

categorization, the performance of SVMs in recommendation 

systems is not acceptable due to the sparsity of the user-item 

matrix. In this paper, we propose a heuristic method to improve 

the predictive accuracy of SVMs by repeatedly correcting the 

missing values in the user-item matrix. The performance 

comparison to other algorithms has been conducted. The 

experimental studies show that the accurate rates of our heuristic 

method are the highest.   

Categories and Subject Descriptors 
H.3.3 [Information Storage and Retrieval]: Information Search 

and Retrieval 

General Terms 
Algorithms, Measurement, Experimentation 

Keywords 
Recommendation systems, Support Vector Machines, Machine 

Learning, Collaborative Filtering 

1. INTRODUCTION 
Rapid advances of the Internet and the World Wide Web have 

greatly facilitated the growth of online applications, such as 

distance learning, digital library, news on demand, e-commerce,        

etc. As the availability of these applications continues to increase, 

users face the tremendous work of retrieving interesting 

information that matches their preferences. Consequently, users 

are spending more and more time to search their desired targets 

and the searching has also drastically increased the consumption 

of system resources. According to workload analysis of HPLabs 

Media server [7], where 79% of video files belong to a long video 

group (longer than 30 minutes), 77%-79% of media sessions last 

less than 10 minute long. This implies that many users are not 

 interested in watching the selected videos completely. They may 

spend a lot of time to search interesting videos. The demand for 

efficient and effective tools to help users find their desired targets 

is required. 

Recommender systems provide automated methods for users to 

search for interesting items with respect to users’ preferences. The 

underlying techniques used in current recommender systems can 

be classified into collaborative filtering (CF) and content-based 

filtering (CBF). CF algorithms exploit similarities among users or 

items based on users’ feedbacks.  CBF systems, on the other hand, 

recommend items of interest to the active user by exploiting 

content information of the items already rated. Typically, a profile 

is formed for a user individually by analyzing information 

regarding the content of items, such as desired actors/actresses, 

title, and description, etc. Additional items can be inferred from 

this profile. In general, the content is difficult to analyze, thus CF 

algorithms are more successful in a broad range of areas, 

including recommending movies [20], news [3] and research 

papers [11].  

According to [5], CF algorithms can be categorized into memory-

based and model-based algorithms. Memory-based [15] CF 

algorithms find neighbors for a new user (active user) and use 

neighbors’ preferences to predict the unknown preferences of the 

active user. In contrast, model-based [5] CF algorithms first 

develop a model based on the historical data and then use the 

model to predict new preferences for users.  

Current CF recommender algorithms suffer from a fundamental 

problem, called sparsity problem. Since the set of all possible 

available items in a system is very large, most users may have 

rated very few items, and, hence, it is difficult to find the active 

user’s neighborhood with high similarity.  As a result the accuracy 

of the recommendations may be poor. 

A lot of researches have been launched to improve the quality of 

recommendation systems. Machine learning is a standard 

paradigm of predicting ratings and preferences for users’ interests 

by casting the prediction problem as a classification problem. 

Compared to other machine learning methods, support vector 

machines (SVMs) can be analyzed theoretically using concepts 

from computational learning theory, and at the same time they 

have been successfully applied to many applications, such as text 

classification [8], image classification [19], and face recognition 

[14]. Some characteristics of recommender systems are shared by 

text categorization. For example, a text document is represented 

by a vector of word occurrences in the document, and, similarly, a 

user (corresponding to a document) can be represented by a vector 

using the user’s ratings as its elements. The success of SVMs in 
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text categorization naturally leads to its possible extension to 

recommender systems. However, the standard SVM classifier is 

not very successful [22] when it is applied in recommender 

systems due to the sparsity problem. A simple solution to the 

sparsity problem is default voting [5] which inserts default rating 

values for unrated items to increase the density of the user-item 

matrix. Normally, default voting uses neutral or negative 

preference value for those unrated items. This method, however, 

can mislead the classifiers in most cases.  

In this paper, we address the sparsity problem by repeatedly 

estimating the missing ratings for the items which users have not 

rated. We first initialize these missing values with default values 

to provide enough training examples for learning machines, and, 

then, build classifiers based on these training examples. After the 

classifiers are obtained, those missing values are re-estimated. 

This procedure is repeated until the termination criterion is met. 

Our heuristic method is based on the smoothing SVM (SSVM) 

method [9]. We compare our heuristic method with item-based 

[22] and user-based [5] CF algorithms. The experimental studies 

show that our solution outperforms these algorithms. 

The rest of the paper is organized as follows. Section 2 discusses 

user and item based algorithms. In Section 3, we describe some 

existing linear SVM classifiers. Our heuristic method is presented 

in Section 4. Experimental studies are presented in Section 5. 

Section 6 states the conclusion of the paper. 

2. BASIC COLLABORATIVE FILTERING 

METHODS 
Consider a recommendation system consisting of M users 

1{ ,..., }
M

U u u= and N items {1,..., }I N= .  There is a particular 

user ua, called active user. The task of collaborative filtering is to 

predict the preference of the active user based on the opinions of a 

set of similar users. Each user uj  has given opinions on a set of 

items 
j

I  and its opinion on item n is given as numeric rating 
jn

x . 

Note that 
j

I can be empty. To predict the preference of the active 

user, we need to estimate its rating on item 
a

n I∉ . Let A be a 

user-item matrix, where the value of i-th row and j-th column is 

xij. That is, 
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Note that some elements in A are missing because the users have 

not rated the corresponding items. The predication task can now 

be treated as filling in those missing values [4].  

2.1 Memory-Based Collaborative Filtering  
In memory-based collaborative filtering, this estimation depends 

on the active user’s mean rate ax and ratings of its similar users 

(we also refer to them as ua’s neighbors). Based on the set of 

ratings by uj, we can define its mean rating as 
1

.
| |

a

a an

n Ia

x x
I ∈

= ∑  

Usually a closer neighbor uj to ua, should contribute a larger 

weight to the estimation. The weight can be measured by the 

similarity between two users. A widespread measure is the 

Pearson correlation coefficient which was first introduced in [15]. 

The weight that uj contributes to ua is defined as  
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Without loss of generality, we define ( , ) 0w a j = if 
a j
I I∩ =∅ . 

Once we have determined these weights, ua’s rating on item n, 

denoted by
an

p , can be predicted by  

1
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After the prediction on each item 
a

n I∉ , the system can 

recommend to the active user a list of items which are not in 

a
I and have top ratings. 

2.2 Model-Based Collaborative Filtering 
Since memory-based algorithms seriously suffer from the sparsity 

problem, model-based approaches have been studied to overcome 

this problem by learning a model for predicting ratings of 

unobserved items. These approaches include item-based [16], 

clustering [20], and classification [2], etc.  

The item-based method assumes that users like to purchase items 

similar to those items they have selected in the history. To 

measure the similarity between two items, it first searches a set of 

users who have rated both of the two items, and, then, compute 

the similarity with some techniques. Let Uin={users who have 

rated both item i and n}. 

The similarity of item i and item n is computed by 

2 2

( )( )

( ) ( )

in

in

ui u un u

u U
in

ui u un u

u U u U

x x x x

S

x x x x

∈

∈ ∈

− −

=
− −

∑

∑ ∑
                                                         

where ux is the average of the u-th user’s ratings, that is 
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After the similarity computation, we can predict the preference of 

ua on item n. It is given as follows: 
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where S is the set of items similar to item n. 

3. LINEAR SVM CLASSIFIERS 
In this paper, we recast collaborative filtering as a classification 

problem. Based on its numeric rating, an item or a user can be 

classified into a corresponding class. There are two ways to cast 

the problem [1]. One way is to treat every item as a separate 

classification problem. Given an item n, one can build a classifier 

to predict which class the active user belongs to. Every user uj is 
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represented as a vector in the feature space by using uj’s ratings 

on items other than n. A more common way to cast the 

classification problem is to treat every user as a separate problem 

[4]. One can build a classifier for the active user ua by using items 

as training instances. To be specific, training instance n is 

represented as a feature vector 
n
x in which elements are ratings 

provided by other users. Without loss of generality, we consider 

the first user u1 as the active user and u1 has rated the first l items, 

that is,  1 {1,..., }I l= . Then, the feature vector of item 

,1 ,n n l≤ ≤ is
2 3

( , ,..., )T
n n n Mn
x x x x=  and its class label yn is rating 

1nx . We need to predict labels for all other feature vectors 

, 1
n
x l n N+ ≤ ≤ . For simplicity, we classify all items into two 

classes, for example, like and dislike. The class labels are denoted 

by +1 and -1, respectively. For multi-class problems, we can use 

the on-against-rest scheme.  

A general notion of the above classification problem can be 

described as follows [6][13]. Given a set of training data 

1 1 2 2( , ),( , ),...,( , ) { 1,1}n
l lx y x y x y R∈ × − , all drawn i.i.d. from an 

unknown distribution ( , ).P x y  The goal is to estimate a function 

:  { 1,1}, ( )nf R x f x→ − � such that it will correctly classify 

unseen data ( , ).x y  Errors in prediction will be penalized 

according to a loss function, i.e. 

 
1  ( )

( , ( ))
0  otherwise

f x y
c y f x

≠
= 


                                       (1) 

Hence, the best prediction function is the one minimizing the 

expected error 

( ) ( , ( )) ( , )R f c y f x dP x y= ∫ . 

However, distribution ( , )P x y is unknown. In this case, empirical 

error is defined (based on the observations): 

1

1
( ) ( , ( ))

l

emp i i

i

R f c y f x
l

=

= ∑                                     (2) 

One might think a function f minimizing ( )empR f  would also 

minimizes R(f). Unfortunately, this is not correct. For example, 

one can define a function ( )n nf x y= , for all 1 n l≤ ≤ . Then, one 

has ( ) 0,empR f =  but the prediction errors for unseen data can be 

very large, and, so, R(f) is  still large. This is the so-called 

overfitting problem. To overcome this problem, one can restrict 

the complexity of f [18]. This can be done by imposing a penalty 

on function f. For example, in [17], authors use a convex and 

continuous penalty Q(f) and minimize ( ) ( ) ( )empR f R f Q fλ+� , 

where λ is a regularization parameter 0λ ≥ . Vapnik-

Chervonenkis (VC) theory [21] can be used to characterize the 

upper bound of ( )Q fλ . Let h denote VC dimension of a family 

of functions where f is chosen from. For any 0 1η≤ ≤ , the 

following inequality  

2
(ln 1) ln( )

4( ) ( )emp

l
h

hR f R f
l

η
+ −

≤ +                      (3) 

holds with probability of 1 η− . Note that the second term of (3) is 

a increasing function of h, denoted by B(h). 

According to (3), a simple way to minimize R(f) is to keep 

( ) 0empR f = and minimize B(h). Let us start with a simple case 

that training data can separated by a hyperplane. That is, there 

exists a linear function ( ) Tg x w x b= + such that 

( ) sgn( ( )),f x g x= where ( ) ,n ny g x ρ≥ for all 1 n l≤ ≤ , and 

0ρ >  is defined as the margin between the two classes. 

Intuitively, it is desirable to seek classifiers that have large 

margins since one expect the classifiers can also predict well on 

unseen data. Actually, Vapnik [21] shows  

2 2min{ , } 1h R nρ≤ + , 

where R is the radius of the smallest ball enclosing the data [13]. 

Thus, a large margin ρ results in a tight upper bound for R(f). 

SVMs determine the hyperplane by maximizing the margin. One 

can solve the following optimization problem 

max  

. . || || 1,

       (( ) ) ,1T
n n

s t w

y w x b n l

ρ

ρ

=

+ ≥ ≤ ≤

          (4) 

After a standard transformation, (4) can be converted to the 

standard SVMs formulation 

21
min  || ||

2

. . (( ) ) 1,1T
n n

w

s t y w x b n l+ ≥ ≤ ≤

              (5) 

However, in practice, a given data set may not be linearly 

separable. Suppose that two classes overlap due to some noise. A 

standard SVMs classifier obtained by solving (3) may perform 

poorly.  

To deal with this problem, one can introduce the slack variables 

0,1n n lξ ≥ ≤ ≤ , in the constraints to allow some classification 

errors. Also, consider penalty for each misclassification, one can 

redefine the (1) as 

1 ( ),  if ( ) 1
( , ( ))

0  otherwise

T T
n n n ny w x b y w x b

c y f x
 − + + ≥

= 


 

For xn which satisfies ( ) 1T
n ny w x b+ ≥ , one has 0.nξ =  

Generally, empR  can be written as 

1

1
l

n

n
l

ξ
=
∑ .  A standard 

optimization problem is given as follows. 

2

1

1 1
min  || ||

2

. . (( ) ) 1 ,1

     0,1

l

n

n

T
n n n

n

w
l

s t y w x b n l

n l

ξ

ξ

ξ

=

+

+ ≥ − ≤ ≤

≥ ≤ ≤

∑
             (6) 

Problem (6) is a quadratic programming, thus one can use a 

standard Lagrange multiplier technique to solve it [6]. However, 

the non-smoothness of cost function (1) makes the optimization 

problem more difficult.    
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To overcome this problem some smoothing methods can be used. 

In [22], Zhang replaced the cost function (1) with cost function as 

follows, 

2(1 ( )) ,  if ( ) 1
( , ( ))

0  otherwise

T T
n n n ny w x b y w x b

c y f x
 − + + ≥

= 


 

Then, the problem (6) is converted to  

2 2

1

1 1
min  || ||
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. . (( ) ) 1 ,1
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l

n

n

T
n n n

n

w
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s t y w x b n l
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Another smoothing method, called Smoothing SVM (SSVM), is 

introduced in [9]. With this method, one can extend problem (7) 

to (N+1) dimensional space. In other words, ( , )w b is treated as a 

variable in 1NR + . Then, the standard format of a SVM problem 

can be converted into an equivalent unconstrained optimization 

problem as follows: 

2 2
, 1

1
min || ( ) || ( )

2 2

T
w b

v
A w b w w bγ γ− − + + ,   (8) 

where 0v > is a constant, γ denotes a column vector of ones, and 

( 1)
1

M lA R − ×∈ is a matrix of feature vectors.  

By introducing a smoothing functions 

1
( , ) ln(1 ), 0xp x x e αα α

α
−= + + > , 

One obtains a smooth SVM (SSVM): 

1

2 2
1

( , )

1
min || ( ( ), ) || ( )

2 2n

T

w R

v
p A w b w w b

γ
γ γ α

+∈
− − + + .   (9) 

4. A HEURISTIC METHOD 
Due to the sparsity problem, most elements of feature vectors are 

empty. Learning machines will not do well based on these 

incomplete training instances. A straightforward method is to fill 

those empty elements in the user-item matrix with some default 

values, e.g., zeros or average ratings of the users. However, this 

method may mislead the learning machine because a user has not 

rated an item, it can be either the case that the user is not 

interested in it, or the case that the user is interested in it, but has 

not purchased the item yet. Furthermore, training a good learning 

machine needs a large number of training examples. In practice, 

only a few labeled data are available.  

In this section, we present a SSVM-based heuristic (SSVMBH) 

method to overcome these problems by iteratively estimating 

missing elements in the user-item matrix A. For each element 

mna A∈ , we have 

,     

,   if 

otherwise

mn m
mn

mn

x n I
a

p

∈
= 


 

Initially, We randomly assign 0 or 1 to mnp . Then, for each user 

um and item n where mn I∉ , a linear classifier mnf is trained by a 

SVM algorithm according to feature vector 

1 2( , ,..., )k k k Mka a a a= , 1 k N≤ ≤ , k n≠ . Based on the 

experimental studies in the Section 5, the predictive accuracy of 

the SSVM is higher than that of the MLLS. Hence, we use the 

SSVM in our heuristic method. According to mnf , a new mnp is 

given. After each mnp is re-computed, we test the current 

classifiers with the test data, denoted by T. Let | |cT  be the total 

number of correct labels computed with current classifiers. The 

accurate rate is defined as | | | |cT T . If the difference of accurate 

rates between two consecutive steps is less than a predefined 

value ε , the algorithm stops. Otherwise, this procedure is 

repeated. The details of the algorithm are given as follow.  

0 1

1

Algorithm  

Initialize 1, 0, =0, and =2

Initialize user-item matrix  by randomly filling 0 or 1 

for empty entries

while ( )

   for 1,...,

         for 1,...,

            if ,  t

c c

k k
c c

m

k T T

A

T T

m M

n N

n I

ε ε

ε−

= >

− ≤

=

=

∉ hen

                build a classifier  with SSVM

                predict the value of  with 

                re-assign a label to  based on the prediction

           end

       end

    1

    

mn

mn mn

n

f

a f

a

k k= +

Compute  for test data

end 

k
cT

 

5. EXPERIMENTAL STUDIES 
Our goal is to evaluate the performance of the above heuristic 

method in CF systems. The experimental studies include two 

parts. We first compare the performances of the SSVM and 

MLLS, and, then, compare our heuristic method with the user-

based and item-based method. 

5.1 Data Set 
To compare the two SVM algorithms, we use five datasets 

obtained from the UCI repository: WPBC, Ionosphere, Cleveland 

Heart, Pima Indians, and BUPA Liver. The first dataset WPBC 

provides diagnostic information of breast cancer patients. This 

dataset contains 569 instances, 2 classes (malignant and benign), 

and 30 numeric attributes. The second dataset Ionosphere contains 

351 complete instances of radar returns from the ionosphere. 

There are 2 classes and 34 numeric attributes. The third dataset 

Cleveland Heart contains 297 instances. 13 of 75 attributes are 

chosen. The fourth dataset Pima Indians Diabetes contains 768 

instances of tested data for diabetes. There are 2 classes and 8 

attributes. The last dataset BUPA Liver contains 345 instances of 

patients with liver disorders. The data has 7 attributes and belongs 

to 2 classes. 

For the second part of experimental studies, we use a dataset from 

MovieLens[12]. In this database, there are about 43000 users who 
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have given ratings on 3500 different movies. Before the training 

process, some data, e.g., some users who just rated on very few 

movies and some movies which were rated by very few users, 

have to be cleaned out. The remaining data were randomly 

divided into training set and test set according to 80/20 ratio.  We 

follow the experimental procedures introduced in [16][22]. Two 

training set dataset A and dataset B were created. 

5.2 Results 
We use the average accurate rate to evaluate the predictive 

accuracy. Each data set is run 10 times with different random 

choices for the training data and test data. Mean values are 

computed over 10 experiments. 

 

Table 1. Comparison of the accurate rate between the SSVM 

and MLLS methods 

 SSVM (%) MLLS (%) 

WPBC (24 months) 81.29 82.79 

WPBC (60 months) 75.05 72.53 

Ionosphere 87.17 86.89 

Cleveland Heart 83.82 81.81 

Pima Indians 77.34 70.17 

BUPA Liver 68.10 65.50 

 

All accurate rates of the two algorithms are shown in Table 1. As 

we can see, the accurate rates of the SSVM are usually higher 

than those of the MLLS except the dataset WPBC (24 months). 

We note that it takes the SSVM a little longer training time than 

the MLLS. The reason is that the complexity of the SSVM is 

higher than that of the MLLS. It uses Newton method and Armijo 

linear search to solve problem (9). It is well known that Newton 

method is quadratic. Also, we find that parameter v is critical to 

the accurate rates. According to our experimental studies, we fix it 

as 0.001v = . In recommendation systems, the time of training a 

classifier is not critical because this process can be done off-line. 

Hence, we select the SSVM as the classifier of our heuristic 

method. 

In the second part of our experimental studies, we will show the 

efficiency of the SSVMBH method by comparing it with the user-

based, item-based, and SSVM algorithms aforementioned (all 

missing values are initialized with zeros). We still use the average 

accurate rate as a metric to evaluate the performance of 

algorithms. ε is selected as 0.005 in the entire experiment. Since 

we only consider binary classification problem in this paper, the 

accurate rates achieved by SSVMBH cannot be directly compared 

with the user-based and item-based algorithms. We re-assigned 

label +1 to the data with rating 4 or 5, and label 0 to the data with 

rating 1,2, or 3.  

The results achieved by four algorithms for two datasets are given 

in Table 2. As we can see, the accurate rates of the SVM methods 

are higher than the user-based and item-based approaches. The 

SSVMBH method outperforms all other approaches. The accurate 

rates of the SSVMBH method have been increased by about 3% 

compared with the SSVM method. Note that since we transformed 

all ratings from five ratings to 0 or 1, the accurate rates of the 

user-based and item-based are reasonable worse than the results 

reported in [16]. 

Table  2. Comparisons of the SSVMBH with other approaches 

 Dataset A(%) Dataset B(%)   

SSVMBH 71.255 69.760 

SSVM 68.580 66.834 

Item-based 61.326 60.132 

User-based 61.271 60.321 

6. CONCLUSIONS 
Using machine learning algorithms for recommendations is an 

interesting topic in collaborative filtering system. In this paper, we 

have proposed a SVM-based heuristic method to overcome the 

problem caused by the sparsity of user-item matrix. The feature 

vectors based on a sparse user-item matrix can mislead a learning 

machine and cause a bad result. In our heuristic method, we 

repeatedly estimated the missing values in the user-item matrix 

according to the results obtained from the previous iteration. We 

compared the SVMBH method with standard SSVM, user-based, 

and item-based algorithms. The performance data has shown that 

the accurate rates of the SVMBH method are higher than those of 

other algorithms. 
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