
Support Vector Machines For Collaborative Filtering
Zhonghang Xia

Department of Computer Science
Western Kentucky University

1906 Collee Heights Blvd.
Bowling Green, KY 42101, U.S.A.

Zhonghang.xia@wku.edu

Yulin Dong
Department of Applied Mathematics

Dalian University of Technology
Dalian, Liaoning, 116023, China

dyl@student.dlut.edu.cn

Guangming Xing
Department of Computer Science

Western Kentucky University

1906 Collee Heights Blvd.
Bowling Green, KY 42101, U.S.A.

Guangming.xing@wku.edu

ABSTRACT

Support Vector Machines (SVMs) have successfully shown

efficiencies in many areas such as text categorization. Although

recommendation systems share many similarities with text

categorization, the performance of SVMs in recommendation

systems is not acceptable due to the sparsity of the user-item

matrix. In this paper, we propose a heuristic method to improve

the predictive accuracy of SVMs by repeatedly correcting the

missing values in the user-item matrix. The performance

comparison to other algorithms has been conducted. The

experimental studies show that the accurate rates of our heuristic

method are the highest.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search

and Retrieval

General Terms
Algorithms, Measurement, Experimentation

Keywords
Recommendation systems, Support Vector Machines, Machine

Learning, Collaborative Filtering

1. INTRODUCTION
Rapid advances of the Internet and the World Wide Web have

greatly facilitated the growth of online applications, such as

distance learning, digital library, news on demand, e-commerce,

etc. As the availability of these applications continues to increase,

users face the tremendous work of retrieving interesting

information that matches their preferences. Consequently, users

are spending more and more time to search their desired targets

and the searching has also drastically increased the consumption

of system resources. According to workload analysis of HPLabs

Media server [7], where 79% of video files belong to a long video

group (longer than 30 minutes), 77%-79% of media sessions last

less than 10 minute long. This implies that many users are not

 interested in watching the selected videos completely. They may

spend a lot of time to search interesting videos. The demand for

efficient and effective tools to help users find their desired targets

is required.

Recommender systems provide automated methods for users to

search for interesting items with respect to users’ preferences. The

underlying techniques used in current recommender systems can

be classified into collaborative filtering (CF) and content-based

filtering (CBF). CF algorithms exploit similarities among users or

items based on users’ feedbacks. CBF systems, on the other hand,

recommend items of interest to the active user by exploiting

content information of the items already rated. Typically, a profile

is formed for a user individually by analyzing information

regarding the content of items, such as desired actors/actresses,

title, and description, etc. Additional items can be inferred from

this profile. In general, the content is difficult to analyze, thus CF

algorithms are more successful in a broad range of areas,

including recommending movies [20], news [3] and research

papers [11].

According to [5], CF algorithms can be categorized into memory-

based and model-based algorithms. Memory-based [15] CF

algorithms find neighbors for a new user (active user) and use

neighbors’ preferences to predict the unknown preferences of the

active user. In contrast, model-based [5] CF algorithms first

develop a model based on the historical data and then use the

model to predict new preferences for users.

Current CF recommender algorithms suffer from a fundamental

problem, called sparsity problem. Since the set of all possible

available items in a system is very large, most users may have

rated very few items, and, hence, it is difficult to find the active

user’s neighborhood with high similarity. As a result the accuracy

of the recommendations may be poor.

A lot of researches have been launched to improve the quality of

recommendation systems. Machine learning is a standard

paradigm of predicting ratings and preferences for users’ interests

by casting the prediction problem as a classification problem.

Compared to other machine learning methods, support vector

machines (SVMs) can be analyzed theoretically using concepts

from computational learning theory, and at the same time they

have been successfully applied to many applications, such as text

classification [8], image classification [19], and face recognition

[14]. Some characteristics of recommender systems are shared by

text categorization. For example, a text document is represented

by a vector of word occurrences in the document, and, similarly, a

user (corresponding to a document) can be represented by a vector

using the user’s ratings as its elements. The success of SVMs in

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

ACM SE’06, March, 10-12, 2006, Melbourne, Florida, USA

Copyright 2006 1-59593-315-8/06/0004…$5.00.

169

text categorization naturally leads to its possible extension to

recommender systems. However, the standard SVM classifier is

not very successful [22] when it is applied in recommender

systems due to the sparsity problem. A simple solution to the

sparsity problem is default voting [5] which inserts default rating

values for unrated items to increase the density of the user-item

matrix. Normally, default voting uses neutral or negative

preference value for those unrated items. This method, however,

can mislead the classifiers in most cases.

In this paper, we address the sparsity problem by repeatedly

estimating the missing ratings for the items which users have not

rated. We first initialize these missing values with default values

to provide enough training examples for learning machines, and,

then, build classifiers based on these training examples. After the

classifiers are obtained, those missing values are re-estimated.

This procedure is repeated until the termination criterion is met.

Our heuristic method is based on the smoothing SVM (SSVM)

method [9]. We compare our heuristic method with item-based

[22] and user-based [5] CF algorithms. The experimental studies

show that our solution outperforms these algorithms.

The rest of the paper is organized as follows. Section 2 discusses

user and item based algorithms. In Section 3, we describe some

existing linear SVM classifiers. Our heuristic method is presented

in Section 4. Experimental studies are presented in Section 5.

Section 6 states the conclusion of the paper.

2. BASIC COLLABORATIVE FILTERING

METHODS
Consider a recommendation system consisting of M users

1{ ,..., }
M

U u u= and N items {1,..., }I N= . There is a particular

user ua, called active user. The task of collaborative filtering is to

predict the preference of the active user based on the opinions of a

set of similar users. Each user uj has given opinions on a set of

items
j

I and its opinion on item n is given as numeric rating
jn

x .

Note that
j

I can be empty. To predict the preference of the active

user, we need to estimate its rating on item
a

n I∉ . Let A be a

user-item matrix, where the value of i-th row and j-th column is

xij. That is,

11 1

22 2

1

 ? ...

? ...

...

 ? ...

n

n

m mn

x x

x x
A

x x

 
 
 =
 
  
 

Note that some elements in A are missing because the users have

not rated the corresponding items. The predication task can now

be treated as filling in those missing values [4].

2.1 Memory-Based Collaborative Filtering
In memory-based collaborative filtering, this estimation depends

on the active user’s mean rate ax and ratings of its similar users

(we also refer to them as ua’s neighbors). Based on the set of

ratings by uj, we can define its mean rating as
1

.
| |

a

a an

n Ia

x x
I ∈

= ∑

Usually a closer neighbor uj to ua, should contribute a larger

weight to the estimation. The weight can be measured by the

similarity between two users. A widespread measure is the

Pearson correlation coefficient which was first introduced in [15].

The weight that uj contributes to ua is defined as

2 2

()()

(,)
() ()

a j

a j a j

a jan jn

n I I

a jan jn

n I I n I I

x x x x

w a j
x x x x

∈ ∩

∈ ∩ ∈ ∩

− −

=
− −

∑

∑ ∑

Without loss of generality, we define (,) 0w a j = if
a j
I I∩ =∅ .

Once we have determined these weights, ua’s rating on item n,

denoted by
an

p , can be predicted by

1

1

(,)()

(,)

M

jjnj
aan M

j

w a j x x
p x

w a j

=

=

−
= +

∑
∑

.

After the prediction on each item
a

n I∉ , the system can

recommend to the active user a list of items which are not in

a
I and have top ratings.

2.2 Model-Based Collaborative Filtering
Since memory-based algorithms seriously suffer from the sparsity

problem, model-based approaches have been studied to overcome

this problem by learning a model for predicting ratings of

unobserved items. These approaches include item-based [16],

clustering [20], and classification [2], etc.

The item-based method assumes that users like to purchase items

similar to those items they have selected in the history. To

measure the similarity between two items, it first searches a set of

users who have rated both of the two items, and, then, compute

the similarity with some techniques. Let Uin={users who have

rated both item i and n}.

The similarity of item i and item n is computed by

2 2

()()

() ()

in

in

ui u un u

u U
in

ui u un u

u U u U

x x x x

S

x x x x

∈

∈ ∈

− −

=
− −

∑

∑ ∑

where ux is the average of the u-th user’s ratings, that is

| |

u
un

n I
u

u

x

x
I

∈
=
∑

After the similarity computation, we can predict the preference of

ua on item n. It is given as follows:

(*)

| |

ni ai
i S

an

ni
i S

S x
P

S

∈

∈

=
∑
∑

,

where S is the set of items similar to item n.

3. LINEAR SVM CLASSIFIERS
In this paper, we recast collaborative filtering as a classification

problem. Based on its numeric rating, an item or a user can be

classified into a corresponding class. There are two ways to cast

the problem [1]. One way is to treat every item as a separate

classification problem. Given an item n, one can build a classifier

to predict which class the active user belongs to. Every user uj is

170

represented as a vector in the feature space by using uj’s ratings

on items other than n. A more common way to cast the

classification problem is to treat every user as a separate problem

[4]. One can build a classifier for the active user ua by using items

as training instances. To be specific, training instance n is

represented as a feature vector
n
x in which elements are ratings

provided by other users. Without loss of generality, we consider

the first user u1 as the active user and u1 has rated the first l items,

that is, 1 {1,..., }I l= . Then, the feature vector of item

,1 ,n n l≤ ≤ is
2 3

(, ,...,)T
n n n Mn
x x x x= and its class label yn is rating

1nx . We need to predict labels for all other feature vectors

, 1
n
x l n N+ ≤ ≤ . For simplicity, we classify all items into two

classes, for example, like and dislike. The class labels are denoted

by +1 and -1, respectively. For multi-class problems, we can use

the on-against-rest scheme.

A general notion of the above classification problem can be

described as follows [6][13]. Given a set of training data

1 1 2 2(,),(,),...,(,) { 1,1}n
l lx y x y x y R∈ × − , all drawn i.i.d. from an

unknown distribution (,).P x y The goal is to estimate a function

: { 1,1}, ()nf R x f x→ − � such that it will correctly classify

unseen data (,).x y Errors in prediction will be penalized

according to a loss function, i.e.

1 ()

(, ())
0 otherwise

f x y
c y f x

≠
= 


 (1)

Hence, the best prediction function is the one minimizing the

expected error

() (, ()) (,)R f c y f x dP x y= ∫ .

However, distribution (,)P x y is unknown. In this case, empirical

error is defined (based on the observations):

1

1
() (, ())

l

emp i i

i

R f c y f x
l

=

= ∑ (2)

One might think a function f minimizing ()empR f would also

minimizes R(f). Unfortunately, this is not correct. For example,

one can define a function ()n nf x y= , for all 1 n l≤ ≤ . Then, one

has () 0,empR f = but the prediction errors for unseen data can be

very large, and, so, R(f) is still large. This is the so-called

overfitting problem. To overcome this problem, one can restrict

the complexity of f [18]. This can be done by imposing a penalty

on function f. For example, in [17], authors use a convex and

continuous penalty Q(f) and minimize () () ()empR f R f Q fλ+� ,

where λ is a regularization parameter 0λ ≥ . Vapnik-

Chervonenkis (VC) theory [21] can be used to characterize the

upper bound of ()Q fλ . Let h denote VC dimension of a family

of functions where f is chosen from. For any 0 1η≤ ≤ , the

following inequality

2
(ln 1) ln()

4() ()emp

l
h

hR f R f
l

η
+ −

≤ + (3)

holds with probability of 1 η− . Note that the second term of (3) is

a increasing function of h, denoted by B(h).

According to (3), a simple way to minimize R(f) is to keep

() 0empR f = and minimize B(h). Let us start with a simple case

that training data can separated by a hyperplane. That is, there

exists a linear function () Tg x w x b= + such that

() sgn(()),f x g x= where () ,n ny g x ρ≥ for all 1 n l≤ ≤ , and

0ρ > is defined as the margin between the two classes.

Intuitively, it is desirable to seek classifiers that have large

margins since one expect the classifiers can also predict well on

unseen data. Actually, Vapnik [21] shows

2 2min{ , } 1h R nρ≤ + ,

where R is the radius of the smallest ball enclosing the data [13].

Thus, a large margin ρ results in a tight upper bound for R(f).

SVMs determine the hyperplane by maximizing the margin. One

can solve the following optimization problem

max

. . || || 1,

 (()) ,1T
n n

s t w

y w x b n l

ρ

ρ

=

+ ≥ ≤ ≤

 (4)

After a standard transformation, (4) can be converted to the

standard SVMs formulation

21
min || ||

2

. . (()) 1,1T
n n

w

s t y w x b n l+ ≥ ≤ ≤

 (5)

However, in practice, a given data set may not be linearly

separable. Suppose that two classes overlap due to some noise. A

standard SVMs classifier obtained by solving (3) may perform

poorly.

To deal with this problem, one can introduce the slack variables

0,1n n lξ ≥ ≤ ≤ , in the constraints to allow some classification

errors. Also, consider penalty for each misclassification, one can

redefine the (1) as

1 (), if () 1
(, ())

0 otherwise

T T
n n n ny w x b y w x b

c y f x
 − + + ≥

= 


For xn which satisfies () 1T
n ny w x b+ ≥ , one has 0.nξ =

Generally, empR can be written as

1

1
l

n

n
l

ξ
=
∑ . A standard

optimization problem is given as follows.

2

1

1 1
min || ||

2

. . (()) 1 ,1

 0,1

l

n

n

T
n n n

n

w
l

s t y w x b n l

n l

ξ

ξ

ξ

=

+

+ ≥ − ≤ ≤

≥ ≤ ≤

∑
 (6)

Problem (6) is a quadratic programming, thus one can use a

standard Lagrange multiplier technique to solve it [6]. However,

the non-smoothness of cost function (1) makes the optimization

problem more difficult.

171

To overcome this problem some smoothing methods can be used.

In [22], Zhang replaced the cost function (1) with cost function as

follows,

2(1 ()) , if () 1
(, ())

0 otherwise

T T
n n n ny w x b y w x b

c y f x
 − + + ≥

= 


Then, the problem (6) is converted to

2 2

1

1 1
min || ||

2

. . (()) 1 ,1

 0,1

l

n

n

T
n n n

n

w
l

s t y w x b n l

n l

ξ

ξ

ξ

=

+

+ ≥ − ≤ ≤

≥ ≤ ≤

∑
 (7)

Another smoothing method, called Smoothing SVM (SSVM), is

introduced in [9]. With this method, one can extend problem (7)

to (N+1) dimensional space. In other words, (,)w b is treated as a

variable in 1NR + . Then, the standard format of a SVM problem

can be converted into an equivalent unconstrained optimization

problem as follows:

2 2
, 1

1
min || () || ()

2 2

T
w b

v
A w b w w bγ γ− − + + , (8)

where 0v > is a constant, γ denotes a column vector of ones, and

(1)
1

M lA R − ×∈ is a matrix of feature vectors.

By introducing a smoothing functions

1
(,) ln(1), 0xp x x e αα α

α
−= + + > ,

One obtains a smooth SVM (SSVM):

1

2 2
1

(,)

1
min || ((),) || ()

2 2n

T

w R

v
p A w b w w b

γ
γ γ α

+∈
− − + + . (9)

4. A HEURISTIC METHOD
Due to the sparsity problem, most elements of feature vectors are

empty. Learning machines will not do well based on these

incomplete training instances. A straightforward method is to fill

those empty elements in the user-item matrix with some default

values, e.g., zeros or average ratings of the users. However, this

method may mislead the learning machine because a user has not

rated an item, it can be either the case that the user is not

interested in it, or the case that the user is interested in it, but has

not purchased the item yet. Furthermore, training a good learning

machine needs a large number of training examples. In practice,

only a few labeled data are available.

In this section, we present a SSVM-based heuristic (SSVMBH)

method to overcome these problems by iteratively estimating

missing elements in the user-item matrix A. For each element

mna A∈ , we have

,

, if

otherwise

mn m
mn

mn

x n I
a

p

∈
= 


Initially, We randomly assign 0 or 1 to mnp . Then, for each user

um and item n where mn I∉ , a linear classifier mnf is trained by a

SVM algorithm according to feature vector

1 2(, ,...,)k k k Mka a a a= , 1 k N≤ ≤ , k n≠ . Based on the

experimental studies in the Section 5, the predictive accuracy of

the SSVM is higher than that of the MLLS. Hence, we use the

SSVM in our heuristic method. According to mnf , a new mnp is

given. After each mnp is re-computed, we test the current

classifiers with the test data, denoted by T. Let | |cT be the total

number of correct labels computed with current classifiers. The

accurate rate is defined as | | | |cT T . If the difference of accurate

rates between two consecutive steps is less than a predefined

value ε , the algorithm stops. Otherwise, this procedure is

repeated. The details of the algorithm are given as follow.

0 1

1

Algorithm

Initialize 1, 0, =0, and =2

Initialize user-item matrix by randomly filling 0 or 1

for empty entries

while ()

 for 1,...,

 for 1,...,

 if , t

c c

k k
c c

m

k T T

A

T T

m M

n N

n I

ε ε

ε−

= >

− ≤

=

=

∉ hen

 build a classifier with SSVM

 predict the value of with

 re-assign a label to based on the prediction

 end

 end

 1

mn

mn mn

n

f

a f

a

k k= +

Compute for test data

end

k
cT

5. EXPERIMENTAL STUDIES
Our goal is to evaluate the performance of the above heuristic

method in CF systems. The experimental studies include two

parts. We first compare the performances of the SSVM and

MLLS, and, then, compare our heuristic method with the user-

based and item-based method.

5.1 Data Set
To compare the two SVM algorithms, we use five datasets

obtained from the UCI repository: WPBC, Ionosphere, Cleveland

Heart, Pima Indians, and BUPA Liver. The first dataset WPBC

provides diagnostic information of breast cancer patients. This

dataset contains 569 instances, 2 classes (malignant and benign),

and 30 numeric attributes. The second dataset Ionosphere contains

351 complete instances of radar returns from the ionosphere.

There are 2 classes and 34 numeric attributes. The third dataset

Cleveland Heart contains 297 instances. 13 of 75 attributes are

chosen. The fourth dataset Pima Indians Diabetes contains 768

instances of tested data for diabetes. There are 2 classes and 8

attributes. The last dataset BUPA Liver contains 345 instances of

patients with liver disorders. The data has 7 attributes and belongs

to 2 classes.

For the second part of experimental studies, we use a dataset from

MovieLens[12]. In this database, there are about 43000 users who

172

have given ratings on 3500 different movies. Before the training

process, some data, e.g., some users who just rated on very few

movies and some movies which were rated by very few users,

have to be cleaned out. The remaining data were randomly

divided into training set and test set according to 80/20 ratio. We

follow the experimental procedures introduced in [16][22]. Two

training set dataset A and dataset B were created.

5.2 Results
We use the average accurate rate to evaluate the predictive

accuracy. Each data set is run 10 times with different random

choices for the training data and test data. Mean values are

computed over 10 experiments.

Table 1. Comparison of the accurate rate between the SSVM

and MLLS methods

 SSVM (%) MLLS (%)

WPBC (24 months) 81.29 82.79

WPBC (60 months) 75.05 72.53

Ionosphere 87.17 86.89

Cleveland Heart 83.82 81.81

Pima Indians 77.34 70.17

BUPA Liver 68.10 65.50

All accurate rates of the two algorithms are shown in Table 1. As

we can see, the accurate rates of the SSVM are usually higher

than those of the MLLS except the dataset WPBC (24 months).

We note that it takes the SSVM a little longer training time than

the MLLS. The reason is that the complexity of the SSVM is

higher than that of the MLLS. It uses Newton method and Armijo

linear search to solve problem (9). It is well known that Newton

method is quadratic. Also, we find that parameter v is critical to

the accurate rates. According to our experimental studies, we fix it

as 0.001v = . In recommendation systems, the time of training a

classifier is not critical because this process can be done off-line.

Hence, we select the SSVM as the classifier of our heuristic

method.

In the second part of our experimental studies, we will show the

efficiency of the SSVMBH method by comparing it with the user-

based, item-based, and SSVM algorithms aforementioned (all

missing values are initialized with zeros). We still use the average

accurate rate as a metric to evaluate the performance of

algorithms. ε is selected as 0.005 in the entire experiment. Since

we only consider binary classification problem in this paper, the

accurate rates achieved by SSVMBH cannot be directly compared

with the user-based and item-based algorithms. We re-assigned

label +1 to the data with rating 4 or 5, and label 0 to the data with

rating 1,2, or 3.

The results achieved by four algorithms for two datasets are given

in Table 2. As we can see, the accurate rates of the SVM methods

are higher than the user-based and item-based approaches. The

SSVMBH method outperforms all other approaches. The accurate

rates of the SSVMBH method have been increased by about 3%

compared with the SSVM method. Note that since we transformed

all ratings from five ratings to 0 or 1, the accurate rates of the

user-based and item-based are reasonable worse than the results

reported in [16].

Table 2. Comparisons of the SSVMBH with other approaches

 Dataset A(%) Dataset B(%)

SSVMBH 71.255 69.760

SSVM 68.580 66.834

Item-based 61.326 60.132

User-based 61.271 60.321

6. CONCLUSIONS
Using machine learning algorithms for recommendations is an

interesting topic in collaborative filtering system. In this paper, we

have proposed a SVM-based heuristic method to overcome the

problem caused by the sparsity of user-item matrix. The feature

vectors based on a sparse user-item matrix can mislead a learning

machine and cause a bad result. In our heuristic method, we

repeatedly estimated the missing values in the user-item matrix

according to the results obtained from the previous iteration. We

compared the SVMBH method with standard SSVM, user-based,

and item-based algorithms. The performance data has shown that

the accurate rates of the SVMBH method are higher than those of

other algorithms.

7. REFERENCES
[1] Justin Basilico, Thomas Hofmann: Unifying collaborative

and content-based filtering. ICML 2004

[2] Basu, C., Hirsh, H., and Cohen, W. (1998).

Recommendation as Classification: Using Social and

Content-based Information in Recommendation. In

Recommender System Workshop '98. pp. 11-15.

[3] Bharat, K., T. Kamba, and M. Albers. Personalized,

Interactive News on the Web. Multimedia Systems, 6(5),

1998, pp. 249-358.

[4] Billsus, D. and Pazzani, M. J. 1998. Learning collaborative

information filters. In Proceedings of the 15th International

Conference on Machine Learning. Morgan Kaufmann, San

Francisco, CA, 46–54.

[5] Breese, J. S., Heckerman, D., and Kadie, C. (1998).

Empirical Analysis of Predictive Algorithms for

Collaborative Filtering. In Proceedings of the 14th

Conference on Uncertainty in Artificial Intelligence, pp. 43-

52.

[6] C. Burges. A tutorial on support vector machines for pattern

recognition. Data Mining and Knowledge Discovery,

2:121–167, 1998.

[7] M. Chesire, A. Wolman, G. M. Voelker, and H. M. Levy,

“Measurement and analysis of a streaming media

workload,” Proc. 3rd USENIX Symposium on Internet

173

Technologies and Systems, San Francisco, CA, March 26-

28, 2001.

[8] T. Joachims. Text categorization with support vector

machines. In European Conference on Machine Learning

(ECML), 1998.

[9] Yuh-Jye Lee and O.L. Mangasarian, SSVM: Smooth

Support Vector Machine. Philadelphia INFORMS, 1999

[10] Melville, P., R.J. Mooney, and R. Nagarajan. Content-

Boosted Collaborative Filtering. ACM SIGIR 2001

Workshop on Recommender Systems, New Orleans, LA,

2001.

[11] McNee, S., I. Albert, D. Cosley, P. Gopalkrishnan, S.K.

Lam, A.M. Rashid, J.A. Konstan, and J. Riedl. On the

Recommending of Citations for Research Papers. In

Proceedings of the ACM 2002 Conference on Computer

Supported Cooperative Work (CSCW 2002), New Orleans,

LA, 2002, pp. 116-125. 17.

[12] MovieLens, http://www.cs.umn.edu/Research/GroupLens/

[13] Müller, K.-R., S. Mika, Rätsch, G., K. Tsuda and B.

Schölkopf: An Introduction to Kernel-Based Learning

Algorithms. IEEE Transactions on Neural Networks 12(2),

181-201 (2001)

[14] P. Jonathon Phillips: Support Vector Machines Applied to

Face Recognition. NIPS 1998: 803-809.

[15] Resnick, P., N. Iacovou, M. Sushak, P. Bergstrom, and J.

Riedl. GroupLens: An open architecture for collaborative

filtering of netnews. In Proceedings of the ACM 1994

Conference on Computer Supported Collaborative Work

(CSCW ’94), Chapel Hill, NC, 1994, pp. 175-186.

[16] Sarwar, B. M., Karypis, G., Konstan, J. A., and Riedl, J.

2001. Item-based collaborative filtering recommendation

algorithms. In Proceedings of the 10th International World

Wide Web Conference (WWW10). Hong Kong.

[17] A.J. Smola, A. Elisseeff, B. Schölkopf, and R.C.

Williamson. Entropy numbers for convex combinations and

MLPs. In A.J. Smola, P.L. Bartlett, B. Schölkopf, and

D. Schuurmans, editors, Advances in Large Margin

Classifiers, pages 369-388, Cambridge, MA, 2000. MIT

Press.

[18] A. J. Smola. Learning with Kernels. PhD thesis, Technische

Universität Berlin, 1998. GMD Research Series No. 25

[19] Olivier Teytaud, David Sarrut: Kernel Based Image

Classification. ICANN 2001: 369-375

[20] Ungar, L. and Foster, D. 1998. Clustering methods for

collaborative filtering. In Proceedings of the Workshop on

Recommendation Systems. AAAI Press, Menlo Park

California.

[21] Vapnik, V. (1998). Statistical learning theory. New York:
JohnWiley.

[22] Tong Zhang and Vijay S. Iyengar, Recommender Systems

Using Linear Classifiers, Journal of Machine Learning

Research, 2:313-334, 2002.

174

