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Abs t r ac t .  In this paper we describe EvoCK, a new approach to the ap- 
plication of genetic programming (GP) to planning. This approach starts 
with a traditional AI planner (PRODIGY) and uses GP to acquire control 
rules to improve its efficiency. We also analyze two ways to introduce 
domain knowledge acquired by another method (HAMLET) into EvoCK: 
seeding the initial population and using a new operator (knowledge-based 
crossover). This operator combines genetic material from both an evolv- 
ing population and a non-evolving population containing background 
knowledge. We tested these ideas in the blocksworld domain and ob- 
tained excellent results. 

1 I n t r o d u c t i o n  

Problem solving aims to achieve a set of goals from an initial s tate by using oper- 
ators that  represent the different actions available in a task domain. Traditional 
approaches [16, 14] use domain independent planners for generating plans. Some 
more innovative approaches to problem solving use genetic programming [9]. 
This approach was star ted by Koza [8, 9], who evolved a planner tha t  solved a 
very specific set of problems in the blocksworld domain. Handley [5-7] used GP 
to evolve plans for specific problems in the blocksworld domain. 1 Muslea [13] 
generalized, extended, and formalized this idea, and showed how any planning 
problem could be t ranslated to an equivalent GP problem. He tested it success- 
fully in several domains. 

Spector [15] proposed and analyzed three ways in which GP could be used 
for planning: 

- to evolve a plan for a specific problem in a specific domain (Handley's and 
Muslea's approach); 

- to evolve a partially universal planner in a specific domain (like Koza 's  ap- 
proach), that  is, a planner that  is able to solve problems which have the 
same initial s tate but different goals states; and 

- to evolve a fully universal planner in a specific domain, "capable of achieving 
a range of goal conditions from a range of initial conditions" [15]. 

1 A similar approach in the GA field was used by Davidor [2] to evolve trajectories for 
a robot arm. 
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All the three approaches were tested in the blocksworld by Spector. Moreover, 
in the third approach, he considered only problems with three blocks, though it 
was shown that  it managed to solve s o m e  problems with four blocks. It  is clear 
tha t  a more general approach is needed. 

In the three approaches considered, it is not always possible to write an 
informative fitness function. I t  is very easy in those problems tha t  involve motion, 
where closeness to a goal can be measured as a distance. But in other cases (like 
Handley's light switch problem) that  is not possible, and the fitness function 
becomes a count of the number  of unsatisfied goals. In problems where there are 
many  goals of this kind, the fitness function becomes informative, like Muslea's 
briefcase problem. However, in an extreme case, with just  one goal to achieve, all 
the feedback the fitness function could return about  the worth of a plan would 
be just 0 or 1. This is too coarse for GP to get much profit from. Even when 
writing an informative fitness function is possible, it requires an extra  domain 
knowledge beyond the description of the domain. So far, this knowledge must 
be supplied by the programmer.  2 

We are interested ill applying GP to planning in a general, problem-independent, 
domain-independent way. So, in this paper  we explore a different approach to 
genetic planning, E v o C K ,  where traditional approaches and GP are successfully 
combined. 

2 E v o C K  C o n t e x t  

Instead of trying to evolve a fully universal domain-independent planner, we 
s tar t  with a tradit ional domain-independent planner, and see where GP can 
help. PRODIGY4.0 is such a domain-independent planner; more specifically, it is 
a means-ends analysis nonlinear planner [16]. However, planning becomes im- 
practical for large problems [1]. At several points in PRODIGY'S reasoning cycle, 
it has no guidance to make a decision, making a weak syntactic-based decision. 
PRODIGY can be supplied with domain-dependent search knowledge so that  its 
decisions are guided. Here is where GP can be used for planning: instead of 
evolving a whole planner, we evolve the domain-dependent  control knowledge 
that  PRODIGY lacks. 

PRODIGY has four kinds of decision points where control knowledge can help 
to make a bet ter  decision in its reasoning cycle: a 

- Select a goal from a set of pending goals. 
- Select an operator  to achieve a goal. 
- Select a binding for the chosen operator. 
- Choose whether to apply the operator  with the bindings or to subgoal on an 

unachieved goal. 

2 Of course, this can be seen from a positive perspective too: it allows us to introduce 
more domain knowledge into the planner than traditional methods 

3 There are other decision points that can be guided by control knowledge, but we will 
not use them. 
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There are other methods that have been applied to the production of control 
knowledge. Most of them involve acquiring control rules by observing a large set 
of traces of problems successfully solved by the planner [11, 3]. HAMLET [1] is 
one of such systems. It learns control rules incrementally, and it has been shown 
that HAMLET's control rules improve monotonically when more and more traces 
are supplied. So the question is: why use GP for this task at all? There are two 
main reasons. First, GP search biases are very different from these methods. If 
we can combine search biases from two different methods, it is expected that  we 
will get solutions that  would not have been obtained by using just one of the 
methods alone. In our case, that  combination can be achieved by introducing 
domain knowledge into GP obtained by HAMLET when acquiring the control 
rules. The second advantage is GP's  flexibility: very different search biases can 
be used and changed in GP very easily, without changing the method itself. 

3 E v o C K :  The System 

The main aims of this paper are twofold. First, we want to improve a planning 
system (PRODIGY4.0) by means of GP-generated control-rules. Second, we want 
to study the effects of injecting background knowledge coming from a machine 
learning method into a GP system. 

3.1 O v e r v i e w  

The main relations of our system (EvoCK)  with the planner (PRODIGY) and 
the previous learning system (HAMLET) are shown in Figure 1. The generation of 
control knowledge consists of two learning phases. In the first one (dashed lines 
in the figure), HAMLET learns from a randomly generated set of problems. For 
E v o C K  purposes, there are two main outputs: a set of control rules, tha t  will 
configure the initial population of E v o C K ;  and a set of background knowledge, 
used as a secondary non-evolving population for E v o C K  as explained later. 
For each problem, PRODIGY also generates a search tree, which is stored by the 
Search Monitor for later use in the second phase. During the second phase (solid 
line in the figure), E v o C K  evolves to obtain an individual for guiding the search 
of a solution, using or not using HAMLET outputs. 

, . . . . . . . . . . . . . . . . . . . . . . .  , I n d i v i d u a l  
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Fig. 1. Relations of EvoCK with HAMLET and PRODIGY. 
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EvoCK individuals are sets of PRODIGY control rules. One important point 
is that both initial and genetically generated individuals must be syntactically 
correct. In the literature, such structures are called "constrained structures" [9] 
�9 For that purpose, we use a grammar that describes how individuals must be 
generated�9 Following, a E v o C K  individual with just one control-rule is shown: 

if (and (true (clear <objl>)) 
(candidate-goals (on <objl> <obj2>)) (holding <obj3>)) 

then (select-goal (on <obj l> <obj2>)) 

The previous individual means that  if there is an object A with no objects 
on it and we are trying to achieve either to have that  object A on another object 
B or to hold another object then we should work next in trying to put object A 
on object B. Often, individuals have several control-rules. There are four kinds 
of control-rules, one for each kind of decision PRODIGY makes (see section 2). 

E v o C K  uses a tournament method for selecting the parents as well as for 
choosing an individual that  offspring will replace. The fitness function is made 
of several components. One of them (called "performance in fitness cases") tests 
how well the individual performs when PRODIGY tries to solve the training plan- 
ning problems when guided by the individual (acting as a set of control rules)�9 
The rest of the components test properties of the individual itself, such as the 
number of variables in the rule, the number of rules, the size in nodes, etc. All 
individuals in the tournament are compared according to the first component. If 
there are draws, the second component is used, and so on. The first component 
("performance in fitness cases") will be explained in detail in the subsection 3.2. 

E v o C K  genetic operator set includes the standard set (crossover and mu- 
tation), another set to change, add and remove rules from an individual, the 
knowledge-based crossover (which will be explained in subsection 3.3) and the 
join operator, which has been specially tailored for control-rules. Its effects won't 
be analyzed in this paper. 

3.2 P e r f o r m a n c e  in f i tness  cases  

The "performance in fitness cases" measure deserves a longer explanation. It 
uses the search trees obtained from PRODIGY in Figure I. Control rules allow 
PRODIGY to prune the search tree, so an immediate performance function could 
be the number of nodes expanded by PRODIGY when trying to solve a problem. 
The better an individual (control rule) would do, the fewer nodes would PRODIGY 

expand. However, this performance measure would discriminate poorly between 
bad individuals: they would just exhaust the maximum time allocated to fitness 
evaluation and return exactly the same performance measure. Therefore, the 
performance function must be made both more efficient and more informative. 
Following paragraphs explain how this is done. 

In the first phase, all of the fitness cases are supplied to PRODIGY. Then, it 
will produce several solutions in the form of a set of paths in the search tree, 



749 

from the initial s tate to the state where the goals are satisfied. Solutions can be 
sorted according to a quality criterion. We retain only the best solutions of the 
set produced by PRODIGY. The set of best solutions is just a par t  of the search 
tree, where all leaf-nodes are goal states of the problem to be solved (and the 
root is the initial state). Let us call it the "best solutions tree." 

The performance of an individual C (a set of control rules) over a set of 
problems Pi is measured as: 

PF(C) = Sc,i + Ei 

For each P~, we calculate the number of steps Sc# tha t  PRODIGY, being 
guided by C, manages to follow in the best solutions tree. Then we divide it by 
the total  number  of steps C should have followed. Ei is the expected number  of 
steps left to get to a leaf node. It is "expected" because not all paths leading from 
a given node to a leaf node will have the same length, so the expected length is 
averaged over all of them. N is the number of problems E v o C K  is being trained 
with. 

This performance function turns out to be much more t ractable  and infor- 
mative. 

3.3 The knowledge-based crossover operator 

This is a crossover operator  that  is very useful if it is possible to represent 
background (or domain knowledge) as GP individuals, that  is, individuals that  
would represent approximations to a solution, a partial  solution, a good building 
block for a solution, or a good start ing point to get to a solution. In some cases, 
we could just seed the initial population with those individuals and let it evolve. 
But we want to explore another possibility: using those individuals as a source 
from where a genetic operator  might get some profit. 

In our case, when HAMLET is in the process of inducing control rules, it 
generates a subproduct  tha t  consists of all the successful and failed decisions that  
PRODIGY made when solving a problem. These decisions were made in each of the 
four kinds of decision points we saw in section 2. It  is straightforward to convert 
those decisions to a control rule format  and then to a E v o C K  individual. Those 
decisions are too specific, and dependent of the point where that  decision was 
made. But  they seemed like a good source of materials for a crossover operator.  
That  is exactly what the knowledge-based crossover is: a s tandard crossover but, 
instead of choosing the second parent from the population, it draws it from a 
population tha t  is known to be a good source of genetic material.  

4 E x p e r i m e n t a l  R e s u l t s  

We carried out several empirical tests to study two ways to inject domain knowl- 
edge coming from HAMLET into E v o C K :  
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- To introduce control rules generated by HAMLET into the initial population 
("HAMLET individual" in Figure 1). 

- To use the knowledge-based crossover operator ("Background Knowledge 
Population" in Figure I). 

Therefore, there are four categories of experiments: 

I. RSRM: Random initial population (that is, a random seed) and random 
mutation. 

2. RSKC: Random seed and knowledge-based crossover. 
3. HSRM: Initial population seeded by HAMLET (HAMLET seed) and random 

mutation. 
4. HSKC: Initial population seeded by HAMLET and knowledge-based crossover. 

Each category is divided into two configurations: 

- E v o C K  with a population of two individuals. As the selection method is 
a tournament,  our genetic search amounts to some sort of hill climbing in 
this case. Besides the knowledge-based crossover operator, no other crossover 
operators will be used, just mutation. 

- E v o C K  with a population of 50 individuals. Even with this small population 
size, in GP terms, we obtained quite impressive results. This configuration 
is identified by prefixing P to the name. Thus, P H S K C  will identify the 
configuration with the following characteristics: HAMLET seed, knowledge- 
based crossover and a population of 50. 

Therefore, we have eight sets of experiments (or configurations): RSRM, 
RSKC, HSRM, HSKC, PRSRM, PRSKC, PHSRM and PHSKC. 

We use a steady state GP with a generational gap of 1. Tournaments are 
held for both selection and replacement. The number of evaluations is limited to 
100,000 which amounts to about 242 generations. 410 planning cases randomly 
generated for the blocksworld domain were used as fitness cases. They contain 
problems of various degrees of difficulty (their number of goals ranging from 1 
to 5 and their number of objects ranging from 2 to 10). 

To test best of run individuals, 416 test problems were used. Their  number 
of goals ranging from 5 to 50 and their number of objects ranging from 2 to 50. 
The testing cases are extremely harder than the fitness cases, its purpose being 
to check whether GP has generalized well. About 10 experiments were carried 
out for each experimental configuration, obtaining a best-of-run individual from 
each experiment. 

The blocksworld domain consist of blocks that  can be picked up by a robot 
arm, stocked on other blocks or put  down on a table. A problem in this domain 
consists of an initial state, that is, a configuration of blocks, and a final state 
to be reached. The goal state is composed of several predicates (or goals) to 
be fulfilled by the planner. A plan that transforms the initial state in the final 
state is a solution to the problem. The more goals and blocks are included in a 
problem, the more difficult it is to solve that problem. For instance, problems 
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with 3 goals and 4 blocks are easily solved by PRODIGY, but problems with 50 
goals and 50 objects are seldom solved (this will be seen later in Table 2). 

Table 1 summarizes the results obtained from the different configurations. 
The first four columns show data related to the best of the best individuals 
obtained by each configuration: the generation at which the individual was ob- 
tained, the number (and percentage) of testing problems solved by it (P. Solved), 
and the number of control rules (size). Column "averages" shows the average 
number of testing problems solved. It has been obtained by averaging results 
from the several best-of-run individuals belonging to each experimental con- 
figuration. Results for PRODIGY working alone and results for PRODIGY using 
control-rules generated by HAMLET are also shown. 

P. solved 
PRODIGY 86 (21%) 
HAMLET 238 (58%) 12 

I~SRM 236 242 (59%) 5 99 
PRSRM 195 331 (81%) 1 161 

I~SKC 212 196 (48%) 4 165 
PI~SKC 89 331 (81%) 1 ~ 166 
HSRM 202 320 (78%) 4 229 

PHSRM 154 358 (87%) 3! 276 
HSKC 199 358 (87%) 3i 307 

PHSKC 237 358 (87%) 4! 248 

Table 1. This table shows the results obtained by the best individual produced by 
each of the configurations. "P. Solved" is the number of testing problems solved by 
said individuals. 

5 D i s c u s s i o n  

First, Table 1 shows clearly that  E v o C K  improves on PRODIGY even when it 
uses no background knowledge. PRODIGY alone is able to solve 86 test problems 
only, whereas RSRM managed to solve 242 test problems. It even manages to 
perform bet ter  than HAMLET. PRSRM results are even better,  outperforming 
RSRM. However, better  results are obtained when using background knowledge: 
PHSRM, HSKC and PHSKC solve 358 problems. This is better  than the seed 
supplied by HAMLET, which solves 238 problems only. Table 2 shows that  this 
is a qualitative improvement, because HSKC (and PHSKC) manages to solve 
problems of a degree of difficulty (50 goals and 50 objects) that  HAMLET control- 
rules alone were unable to cope with in the allocated time. Also, (P)HSKC 
improves on HAMLET results on all categories of problems, except by a small 
percentage in the (5,10) category. 
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# Goals I #Objects 
50 50 
20 50 
20 20 
10i 50 
10 20 
10 15 
5 5O 
5 2O 
5 15 
5 10 

~0PRODIGY 
0 0 
6 31 
6 27 

21 66 
11 54 
30 46 
15 68 
15 82 I 
40 82 I 
50 84 

~7oHAMLET %EvoCK 
53 
79 
65 
95 
80 
82 
80 
94 
98 
83 

Table 2. This table shows the percentage of testing problems solved by the three 
systems: PRODIGY, HAMLET and EvoCK for each category of problems. 

Second, E v o C K  individuals tend to be much smaller than HAMLET ones 
(even when they are better).  Table 1 shows that  even though HSKC best in- 
dividual performs bet ter  than HAMLET one, it only has 3 control rules (vs. 12 
in HAMLET). Smaller individuals will be interpreted faster by PRODIGY. This 
results show how HAMLET search biases (which result in the HAMLET gener- 
ated control-rules) and E v o C K  search biases (the parsimony component in the 
fitness function) can be successfully combined. 

Third, the use of the knowledge-based crossover operator makes a significant 
difference. To see whether the results are consistent in most of the runs, average 
results will be analyzed (see Table 1). RSKC consistently beats RSRM results 
(165 vs. 99 on average), while HSKC is also better  than HSRM. PRSKC ira- 
provement with respect to PRSRM is less noticeable (166 vs. 161 on average) 
and there is no improvement at all in PHSKC on PHSRM results (248 vs. 276 on 
average). This latter anomaly is a mat ter  for further research. Seeding the initial 
population with a good individual (HAMLET generated control rules) makes also 
a significant difference: all HAMLET-seeded configurations beat the corresponding 
randomly seeded ones on average. 

Fourth, experiments with a population size of 50 tend to outperform (on 
average) pseudo hill-climbing. This suggests that  either crossover or bigger pop- 
ulation sizes are having a noticeable effect (there is an anomaly in the fourth set 
of experiments, though: HSKC beats PHSKC). 

6 A N e w  P e r s p e c t i v e  f o r  I n j e c t i n g  B a c k g r o u n d  

K n o w l e d g e  i n t o  G P  

We believe to have identified a possible new way to inject domain knowledge (or 
background knowledge) into GP. There are many ways in which it is possible to 
give background knowledge to a GA. For instance, seeding the initial population 
with good individuals, adapting the genetic operators to the problem at hand 
(or creating new ones specially tailored for the task), etc. We ourselves have used 
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those methods in this article (HAMLET seed, the knowledge-based crossover and 
the join operator).  Also, in GP it is possible to use constrains (to constraint the 
evolving structures [9, 12]) and therefore, they reduce the search space. And of 
course, it is always possible to select the function and terminals most appropriate  
to the domain or to the problem. 

We think our work points to a new direction: do not evolve the whole pro- 
gram, evolve only that  part  of the program that  you do not know how to program, 
or that  could be improved. In our case, we star ted with a program (PRODIGY, a 
domain independent planner), we saw tha t  there were some par ts  of the program 
that could be improved (PRODIGY'S four decision points) and we let GP evolve 
those parts.  But  what was actually evolving was a population of whole planners, 
because the fitness function was computed from the performance of the entire 
planner, not only of the control rules. PRODIGY was designed with that  sort of 
decomposition of the planning process in mind. But we believe tha t  this idea 
could be applied to other problems as well. For instance, if a p rogrammer  con- 
siders tha t  a problem solution needs two nested loops, s /he could just fix that  
in the program and leave the rest blank. Then, GP would fill in the blanks. 

7 C o n c l u s i o n s  

The major  contribution of this paper  is to show that  Genetic Programming  can 
be successfully applied in a new way to traditional planning problems, by means 
of acquiring control rules for a domain independent planner. For tha t  purpose, 
we have studied two ways in which domain knowledge can be injected into GP: 
by seeding the initial population with a good individual coming from another 
learning method (HAMLET) and by means of the knowledge-based crossover op- 
erator. Both of them work very well in this case. Although knowledge-based 
crossover is specially adequate for this task, we believe it could be used in other 
GP problems as well. 

Along the way, we have realized we were also introducing domain knowledge 
into GP implicitly, by fixing part  of the program that  was to evolve (PRODIGY), 
and evolving the rest (PRODIGY'S decision points). We believe tha t  this idea, 
obvious as it seems, could be exploited in many other GP problems. 

We have shown tha t  different biases from different search methods (HAMLET 
and E v o C K ,  in this case) can be combined successfully. This allowed us to 
obtain very good and very small and efficient individuals from a Hamlet  seed. 
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