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Abstract. In the framework of an evolutionary approach to machine
learning, this paper presents the preliminary version of a learning system
that uses Genetic Programming as a tool for automatically inferring the
set of classification rules to be used by a hierarchical handwritten charac-
ter recognition system. In this context, the aim of the learning system is
that of producing a set of rules able to group character shapes, described
by using structural features, into super–classes, each corresponding to
one or more actual classes. In particular, the paper illustrates the struc-
ture of the classification rules and the grammar used to generate them,
the genetic operators devised to manipulate the set of rules and the fit-
ness function used to match the current set of rules against the sample
of the training set. The experimental results obtained by using a set of
5,000 digits randomly extracted from the NIST database are eventually
reported and discussed.

1 Introduction

The recognition of handwritten character involves identifying a correspondence
between the pixels of the image representing the samples to be recognized and
the abstract definitions of characters (models or prototypes). The prevalent ap-
proach to solve the problem is that of implementing a sequential process, each
stage of which progressively reduces the information passed to subsequent ones.
This process, however, requires that decisions about the relevance of a piece of
information have to be taken since the early stages, with the unpleasant conse-
quence that a mistake may prevent the correct operation of the whole system.
For this reason, the last stage of the process is usually by far the most complex
one, in that it must collect and combine in rather complex ways many piece of
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information that, all together, should be able to recover, at least partially, the
loss of information introduced in the previous ones. Moreover, due to the extreme
variability exhibited by samples produced by a large population of writers, pur-
suing such an approach often requires the use of a large number of prototypes for
each class, in order to capture the distinctive features of different writing styles.
The combination of complex classification methods with large set of prototypes
has a dramatic effect on the classifier: larger number of prototypes requires a
finer disciminating power, which, in turn, requires more sophisticated methods
and algorithms to perform the classification. While such complex methods are
certainly useful for dealing with difficult cases, they are useless, and even dan-
gerous, for simple ones; if the input sample happens to be almost noiseless, and
its shape corresponds to the most “natural” human perception of a certain char-
acter, invoking complex classification schemes on large sets of prototypes results
in overloading the classifier without improving the accuracy.

For this reason, we have investigated the possibility of using a preclassification
technique whose main purpose is that of reducing the number of prototypes to
be matched against a given sample while dealing with simple cases. The general
problem of reducing a classifier computational cost has been faced since the 70’s
in the framework of statistical pattern recognition [1] and more recently within
shape–based methods for character recognition [2,3]. The large majority of the
preclassification methods for character recognition proposed in the literature
belongs to one of two categories, depending on whether they differ in the set
of features used to describe the samples or in the strategy adopted for labeling
them [4]. Although they exhibit interesting performance, their main drawback is
that a slight improvement in the performance results in a considerable increase
of the computational costs.

In the framework of an evolutionary approach to character recognition we are
developing [5], this paper reports a preliminary version of a learning system that
uses Genetic Programming [6,7] as a tool for producing a set of prototypes able
to group character shapes, described by using structural features, into super–
classes, each corresponding to one or more actual classes. The proposed tool
works in two different modes. During an off–line unsupervised training phase,
rather rough descriptions of the shape of the samples belonging to the training
set are computed from the feature set, and then allowed to evolve according to
the Genetic Programming paradigm in order to achieve the maximum coverage
of the training set. Then, each prototype is matched and labeled with the classes
whose samples are matched by that prototype. At run time, after the feature
extraction, the same shape description is computed for a given sample. The
labels of the simplest prototype matching the sample represent the classes the
sample most likely belongs to.

The paper is organized as follows: Section 2 describes the character shape
description scheme and how it is reduced to a feature vector, which represent
the description the Genetic Programming works on. In Section 3 we present
our approach and its implementation, while Section 4 reports some preliminary
experimental results and a few concluding remarks.
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2 From Character Shape to Feature Vector

In the framework of structural methods for pattern recognition, the most com-
mon approach is based on the decomposition of an initial representation into
elementary parts, each of which is simply describable. In this way a character is
described by means of a structure made up by a set of parts interrelated by more
or less complex links. Such a structure is then described in terms of a sentence
of a language or of a relational graph. Accordingly, the classification, that is the
assignment of a specimen to a class, is performed by parsing the sentence, so as
to establish its accordance with a given grammar or by some graph matching
techniques. The actual procedure we have adopted for decomposing and de-
scribing the character shape is articulated into three main steps: skeletonization,
decomposition and description [8]. During the first step, the character skeleton is
computed by means of a MAT–based algorithm, while in the following one it is
decomposed in parts, each one corresponding to an arc of circle which we have
selected as our basic elements. Eventually, each arc found within the character
is described by the following features:

– size of the arc, referred to the size of its bounding box;
– angle spanned by the arc;
– direction of the arc curvature, represented by the oriented direction of the

normal to the chord subtended by the arc.

The spatial relations among the arcs are computed with reference to arc projec-
tions along both the horizontal and vertical axis of the character bounding box.
In order to further reduce the variability still presents among samples belonging
to the same class, the descriptions of both the arcs and the spatial relations are
given in discrete form. In particular, we have assumed the following ranges of
values:

– size: small, medium, large;
– span: closed, medium, wide;
– direction: N, NE, E, SE, S, SW, W, NW;
– relation: over, below, to–the–right, superimposed, included.

Those descriptions are then encoded into a feature vector of 139 elements. The
first 63 elements of the vector are used to count the occurrences of the different
arcs that can be found within a character, the following 13 elements describe
the set of possible relations and the remaining 63 ones count the number of the
different relations that originates from each type of arc [9].

3 Learning Explicit Classification Rules

Evolutionary Learning Systems seem to offer an effective prototyping method-
ology, as they are based on Evolutionary Algorithms (EAs) that represent a
powerful tool for finding solutions in complex high dimensional search space,
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when there is no a priori information about the distribution of the sample in the
feature space [10]. They perform a parallel and adaptive search by generating
new populations of individuals and evaluating their fitness while interacting with
the environment. Since EAs work by directly manipulating an encoded repre-
sentation of the problem, and because such a representation can hide relevant
information, thus severely limiting the chance of a successful search, problem rep-
resentation is a key issue in EAs. In our case, as in many others, the most natural
representation for a solution is a set of prototypes or rules, whose genotype’s size
and shape are not known in advance, rather than a set of fixed–length strings.
Since classification rules may be thought as computer programs, the most natural
way to introduce them into our learning system is that of adopting the Genetic
Programming paradigm [6,7]. Such a paradigm combines GAs and programming
languages in order to evolve hierarchical computer programs of dynamically vary-
ing complexity (size and shape) according to a given defined behavior. According
to this paradigm, populations of computer programs are evolved by using the
Darwin’s principle that evolution by natural selection occurs when a population
of replicating entities possesses the heritability characteristic and are subject to
genetic variation and struggle to survive.

Typically, Genetic Programming starts with an initial population of ran-
domly generated programs composed of functionals and terminals especially tai-
lored to deal with the problem at hand. The performance of each program in
the population is measured by means of a fitness function, whose nature also
depends on the problem. After the fitness of each program has been evaluated,
a new population is generated by selection, recombination and mutation of the
current programs, and replaces the old one. Then, the whole process is repeated
until a termination criterion is satisfied.

In order to implement the Genetic Programming paradigm, the following
steps has to be executed:

– definition of the structures to be evolved;
– choice of the fitness function;
– definition of the genetic operators.

3.1 Structure Definition

In order to define the individual structures that undergo to adaptation in Genetic
Programming, one needs a program generator, providing syntactically correct
programs, and an interpreter for the structured computer programs, in order to
execute them.

The program generator is based on a grammar written for S–expressions. A
grammar G is a quadruple G = (T ,V, S,P), where T and V are disjoint finite
alphabets. T is the terminal alphabet , V is the non–terminal alphabet , S is the
start symbol , and P is the set of production rules used to define the strings
belonging to our language, usually written as v → w where v is a string on
(T ∪ V) containing at least one non–terminal symbol, while w is an element of
(T ∪ V)∗. For the problem at hand, the set of terminals is the following:
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Table 1. The grammar for the random rules generator.

Production Rule No. Production Rule Probability
1 S −→ A 1.0
2 A −→ CBC | (CBC) | (IMX) 0.25 | 0.25 | 0.5
3 I −→ a1 | . . . | a139 uniform
4 X −→ 0 | 1 | . . . | 9 uniform
5 M −→< | ≤ | = | ≥ | > uniform
6 C −→ A | ¬A uniform
7 B −→ ∨ | ∧ uniform

T = {a1, a2, . . . , a139, 0, 1, . . . , 9},

and the set V is composed as follows:

V = {∧,∨,¬, <,≤,=, >,≥, A, X, I, M, C, B},

where ai is a variable atom denoting the i–th element in the feature vector,
and the digits 0, 1, . . . , 9 are constant atoms used to represent the value of each
element in the feature vector. It should be noted that the above sets satisfy the
requirements of closure and sufficiency [6]. The adopted set of production rules
is reported in Table 1.

Each individual in the initial random population is generated starting with
the symbol S that, according to the above grammar, can be replaced only by the
symbol A. This last, on the contrary, can be replaced by itself, by its opposite,
or by any recursive combination of logical operators whose arguments are the
occurrences of the elements in the feature vector. It is worth noticing that, in
order to avoid the generation of very long individual, the clause IMX has a
higher probability of being selected to replace the symbol A with respect to the
other ones that appear in the second production rule listed in Table 1. As it is
obvious, the set of all the possible structures is the set of all possible compositions
of functions that can be obtained recursively from the set of predefined functions.

Finally, the interpreter is a simple model of a computer and is constituted
by an automaton that computes Boolean functions, i.e. an acceptor. Such an
automaton computes the truth value of the rules in the population with respect
to a set of samples.

3.2 Fitness Function

The definitions reported in the previous subsection allow for the generation of
the genotypes of the individuals. The next step to accomplish is the definition
of a fitness function to measure the performance of the individuals. For this
purpose, it should be noted that EAs suffer of a serious drawback while dealing
with multi–peaked (multi–modal) fitness landscape, in that they are not able to
deal with cases where the global solution is represented by different optima, i.e.
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species, rather than by a single one. In fact, they do not allow the evolution of
stable multiple species within the same population, because the fitness of each
individual is evaluated independently on the composition of the population at
any time [11]. As a result, the task of the evolutionary process is reduced to that
of optimizing the average value of the fitness in the population. Consequently, the
solution provided by such a process consists entirely of genetic variations of the
best individual, i.e. of a stable single species distribution. This behaviour is very
appealing whenever it is desirable the uniform convergence to the global optimum
exhibited by the canonical EAs. On the other hand, there exist many applications
of interest that require the discovering and the maintenance of multiple optima,
such as multi–modal optimization, inference induction, classification, machine
learning, and biological, ecological, social and economic systems [12].

In order to evolve several stable distributions of solutions, each represent-
ing a given species, we need a mechanism that prevents the distribution of the
species with highest selective value to replace the competing species inducing
some kind of restorative pressure in order to balance the convergence pressure
of selection. To this end, several strategies for the competition and cooperation
among the individuals have been introduced. The natural mechanism to handle
such cooperation and competition is sharing the environmental resources, i.e.
similar individuals share such resources thus inducing niching or speciation [11,
12,13,14,15].

For the problem at hand, it is obvious that we deal with different species. In
fact, our aim is to perform an unsupervised learning in such a way that the result
of the evolution is the emergence of different rules (species) each of which covers
different sets of samples. Thus, the global solution will be represented by the
disjunctive–normal–form of the discovered species in the final population. More-
over, in case of handwritten characters the situation gets an additional twist.
In fact, it is indisputable that different writers may refer to different prototypes
when drawing samples belonging to a given class. A classical example is that of
the digit ‘7’ that is written with an horizontal stroke crossing the vertical one
in many European countries, while such a stroke is usually not used in North
American countries.

Therefore, some kind of niching must be incorporated at different levels into
the fitness function. In our case, we have adopted a niching mechanism based
on resource sharing [14,15]. According to resource sharing the cooperation and
competition among the niches is obtained as follows: for each finite resource si a
subset P of prototypes from the current population is selected. They are let to
compete for the resource si in the training set. Only the best prototype receives
the payoff. In the case of a tie, the resource si is assigned randomly among all
deserving individuals. The winner is detected by matching each individual in
the sample P against the sample of the training set. In our case, a prototype
p matches a sample s if and only if p covers s, i.e. the features present in the
sample are represented also in the prototype and their occurrences satisfy the
constraints expressed in the prototype. At the end of the cycle, the fitness of



510 C. De Stefano et al.

each individual is computed by adding all rewards earned. In formula:

φ(p) =
m∑

i=1

c · µ(p, si),

where φ(p) is the the fitness of the prototype p, m is the number of samples in
the training set, µ(p, si) is a function that takes into account if the prototype p
is the winner for the sample si (it is 1 if p is the winner for the sample si and 0
otherwise) and c is a scaling factor.

3.3 Selection and Genetic Operators

The selection mechanism is responsible for choosing among the individuals in
the current population the ones that are replicated, without alterations, in the
new population. To this aim many different selection mechanisms have been pro-
posed. Nevertheless, we have to choose a mechanism that helps the maintenance
of the discovered niches by reducing the selection pressure and noise [16]. So,
we have used in our Genetic Programming the well known Stochastic Universal
Selection mechanism [16], according to which we have exactly the same expec-
tation as Roulette Wheel selection, but lower variance in the expected number
of individuals generated by the selection process.

As regards the variations operators, we have actually used only the mutation
operator, performing both micro– and macro–mutation. The macro–mutation
is activated when the point to be mutated in the genotype is a node, and it
substitutes the relative subtree with another one randomly generated according
to the grammar described in subsection 3.1. It follows from the above that the
macro–mutation is responsible for modifying the structure of the decision tree
corresponding to each prototype in the same general way with respect to that
implemented by the classical tree–crossover operator. For this reason we have
chosen not to implement the tree-crossover operator.

Eventually, the micro–mutation operator is applied whenever the symbol
selected for mutation is either a terminal or a function, and it is responsible for
changing both the type of the features and their occurrences in the prototype.
Therefore, it resembles closely the classical point–mutation operator.

Finally, we have allowed also insertions, i.e. a new random node is inserted in
a random point, along with the relative subtree if it is necessary, and deletions,
i.e. a node in the tree is selected and deleted. Obviously, such kind of mutations
are effected in a way that ensures the syntactic correctness of the newly generated
programs.

4 Experimental Results and Conclusions

A set of experiments has been performed in order to evaluate the ability of
Genetic Programming to generate classification rules in very complex cases, like
the one at hand, and the efficiency of the preclassifier. The experiments were
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performed on a data set of 10,000 digits extracted from the NIST database and
equally distributed among the 10 classes. This data set was randomly subdivided
into a training and a test set, both including 5,000 samples. Each character
was decomposed, described and eventually coded into a feature vector of 139
elements, as reported in Section 2. Starting from those feature vectors, we have
considered only 76 features, namely the 63 features describing the type of the
arcs found in the specimen and the 13 used for coding the type of the spatial
relations among the arcs, and used that as descriptions for the preclassifier to
work with.

It must be noted that the Genetic Programming paradigm is controlled by
a set of parameters whose values affect in different ways the operation of the
system. Therefore, before starting the experiments, suitable values should be
assigned to the system parameters. To this purpose, we have divided this set
of parameters into external parameters, that mainly affect the performance of
the learning system and internal parameters, that are responsible for the effec-
tiveness and efficiency of the search, As external parameters we have assumed
the population size N , the number of generations G and the maximum depth
of the trees representing the rules in the initial population D. The internal pa-
rameters are the mutation probability pm, the number of rules n competing for
environmental resources in the resourse sharing and the maximum size of the
subtree generated by the macro–mutation operator d. The results reported in
the sequel has been obtained with N = 1000, G = 350, D = 10, pm = 0.6,
n = N and d = 3. Eventually, let us recall that, as mentioned in subsection
3.2, the fitness function requires to select the winner among the prototypes that
match a given sample. We have adopted the Occam’s razor principle of simplic-
ity closely related to Kolmogorov Complexity definition [17,18], i.e. “if there are
alternative explanations for a phenomenon, then, all other things being equal,
we should select the simplest one”. In the current system, it is implemented by
choosing as winner the prototype whose genotype is the shortest one. With such
a criterion we expect the learning to produce the simplest prototypes covering
as many samples as possible, in accordance with the main goal of our work:
to design a method for reducing the computational cost of the classifier while
dealing with simple cases by reducing the number of classes to be searched for
by the classifier.

As mentioned before, the first experiment was aimed at evaluating the ca-
pability of the Genetic Programming paradigm to deal with complex cases such
as the one at hand. For this purpose, we have monitored the covering rate C,
i.e. the percentage of the samples belonging to the training set covered by the
set of prototypes produced by the system during the learning. Let us recall now
that, in our case, a prototype p matches a sample s if and only if p covers s,
i.e. the features present in the sample are represented also in the prototype and
their occurrences satisfy the constraints. The learning was implemented by pro-
viding the system with the descriptions of the samples without their labels, so
as to implement un unsupervised learning, and let it evolve the set of prototypes
for achieving the highest covering rate. Despite the loss of the information due
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Table 2. The experimental results obtained on the Test Set.

C R ≤ 3 ≤ 5 ≤ 7 E ≤ 3 ≤ 5 ≤ 7
87.00 67.16 74.18 24.72 1.10 19.84 81.65 17.64 0.10

to both the discrete values allowed for the features and the reduced number of
features considered in the experiment, the system achieved a covering rate of
91.38% In other words, there were 431 samples in the training set for which the
system was unable to generate or to maintain a suitable set of prototypes with
the time limit of 350 generations.

In order to measure the efficiency of the classifier, we preliminarily labeled
the prototypes obtained at the end of the learning phase. The labeling was such
that each time a prototype matched a sample of the training set, the label of
the sample, i.e. its class, was added to the list of labels for that prototype. At
the end of the labeling, thus, each prototype had a list of labels of the classes
it covered, as well as the number of samples matched in each class. A detailed
analysis of these lists showed that there were many prototypes covering many
samples of very few classes and very few samples of many other classes. This was
due to “confusing” samples, i.e. samples belonging to different classes but having
the same feature values, thus looking indistinguishable for the system. In order
to reduce this effect, the labels corresponding to the classes whose number of
samples covered by the prototype was smaller than 10% of the total number of
matchings for that prototype were removed from the list. Finally, a classification
experiment on the test set was performed, that yielded to the results reported
in Table 2 in terms of covering rate C, correct recognition rate R and error rate
E .

Such results were obtained by assuming that a sample was correctly preclas-
sified if its label appeared within the list of labels associated to the prototype
covering it. To emphasize the efficiency of the preclassifier, Table 2 reports the
experimental results by grouping the prototypes depending on the number of
classes they cover. For instance, the third column shows that 74.18% of the total
number of samples correctly preclassified were covered by prototypes whose lists
have at most 3 classes.

The experimental results reported above allow for two concluding remarks.
The first one is that Genetic Programming represents a promising tool for learn-
ing classification rules in very complex and structured domains, as the one we
have considered in our experiments. In particular, it is very appealing in develop-
ing hierarchical handwritten character recognition system, since it may produce
prototypes at different level of abstraction, depending on the way the system is
trained. The second one is that the learning system developed by us, although
makes use of a fraction of the information carried by the character shape, is
higly efficient. Since the classification is performed by matching the unknown
sample against the whole prototype set to determine the winner, reducing the
number of classes reduces the number of prototype to consider, thus resulting in
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an overall reduction of the classification time. Therefore, roughly speaking, the
preclassifier proposed by us is able to reduce the classification time to 50% or
less in more than 65% of the cases.
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