
L. De Raedt and A. Siebes (Eds.): PKDD 2001, LNAI 2168, pp. 314-325, 2001.
© Springer-Verlag Berlin Heidelberg 2001

Discovering Fuzzy Classification Rules with Genetic
Programming and Co-evolution

Roberto R.F. Mendes, Fabricio de B. Voznika, Alex A. Freitas, and Julio C. Nievola

PUC-PR
PPGIA - CCET

Av. Imaculada Conceição, 1155
Curitiba - PR, 80215-901 Brazil

{alex,nievola}@ppgia.pucpr.br
http://www.ppgia.pucpr.br/~alex

+55 41 330-1669

Abstract. In essence, data mining consists of extracting knowledge from data.
This paper proposes a co-evolutionary system for discovering fuzzy classifica-
tion rules. The system uses two evolutionary algorithms: a genetic programming
(GP) algorithm evolving a population of fuzzy rule sets and a simple evolution-
ary algorithm evolving a population of membership function definitions. The
two populations co-evolve, so that the final result of the co-evolutionary proc-
ess is a fuzzy rule set and a set of membership function definitions which are
well adapted to each other. In addition, our system also has some innovative
ideas with respect to the encoding of GP individuals representing rule sets. The
basic idea is that our individual encoding scheme incorporates several syntacti-
cal restrictions that facilitate the handling of rule sets in disjunctive normal
form. We have also adapted GP operators to better work with the proposed in-
dividual encoding scheme.

1 Introduction

In the context of machine learning and data mining, one popular way of expressing
knowledge consists of IF-THEN rules. This is due to the fact that they are intuitively
comprehensible to a human being [5]. In addition, they represent independent units of
knowledge, so that alterations can easily take place in their contents. IF-THEN rules
are composed of two parts. The first part (IF component, or rule antecedent) corre-
sponds to a conjunction of conditions that, if verified true, imply that the condition
contained in the second part (THEN component, or rule consequent) is also consid-
ered true.

Rules in their classic format are appropriate when their conditions are constituted
by discrete or categorical variables. However, the presence of continuous variables
creates situations that thwart the common sense. Let's consider the rule: “IF age < 25
THEN safe_driver = no”. The problem here is the sudden and unnatural transition
between categories: an individual can be classified as not being a safe driver today
but, in the following day, he might have completed 25 years and thus be classified as

Discovering Fuzzy Classification Rules with Genetic Programming and Co-evolution 315

being a safe driver. This could lead a data mining system to completely different pre-
dictions in the interval of a single day. One promising alternative to work with con-
tinuous variables and to overcome this inconvenience is the use of fuzzy logic. Be-
sides expressing knowledge in a more natural way, fuzzy logic is also a flexible and
powerful method for uncertainty management [13], [6].

In the literature several techniques have been used for discovery of fuzzy IF-THEN
rules. Several recent projects have proposed the use of evolutionary algorithms for
fuzzy rule discovery [2], [10], [11], [19], [21], [17], because it allows a global search
in the state space, increasing the probability of converging to the globally-optimal
solution.

The main characteristic of our proposed system that makes it different from the
above systems it that our system is based on the co-evolution of fuzzy rule sets and
membership function definitions, using two separate populations, whereas in general
the above projects are based on the evolution of a single population. The population of
fuzzy rule sets is evolved by a Genetic Programming (GP) algorithm, whereas the
population of membership function definitions is evolved by a simple evolutionary
algorithm.

In addition, our system also has some innovative ideas with respect to the encoding
of GP individuals representing rule sets. The basic idea is that our individual encoding
scheme incorporates several syntactical restrictions that facilitate the handling of rule
sets in disjunctive normal form. We have also adapted GP operators to better work
with the proposed individual encoding scheme.

The remainder of this paper is organized as follows. Section 2 describes in detail
our proposed co-evolutionary system. Section 3 discusses computational results. Fi-
nally, section 4 concludes the paper.

2 The Proposed Co-evolutionary System for Fuzzy Rule Discovery

2.1 An Overview of the System

This section presents an overview of our CEFR-MINER (Co-Evolutionary Fuzzy Rule
Miner) system. CEFR-MINER is a system developed for the classification task of data
mining. It consists of two co-evolving evolutionary algorithms. The first one is a Ge-
netic Programming (GP) algorithm where each individual represents a fuzzy rule set.
A GP individual specifies only the attribute-value pairs composing the rule conditions
of that individual’s rule set. The definitions of the membership functions necessary to
interpret the fuzzy rule conditions of an individual are provided by the second popula-
tion. The second algorithm is a simple evolutionary algorithm, which works with a
“population” of a single individual. This population evolves via the principle of natu-
ral selection and application of mutation, but not crossover. This single individual
specifies definitions of all the membership functions for all attributes being fuzzified
(all originally continuous attributes). These definitions are used by the first population
of GP individuals, as mentioned above. Note that categorical attributes are not fuzzi-
fied – their values are handled only by the GP population.

316 R.R.F. Mendes et al.

As a result, the system simultaneously evolves both fuzzy rule sets and membership
function definitions specifically suited for the fuzzy rule sets. The main advantage of
this co-evolutionary approach is that the fitness of a given set of membership function
definitions is evaluated across several fuzzy rule sets, encoded into several different
GP individuals, rather than on a single fuzzy set. This improves the robustness of that
evaluation.

This basic idea of co-evolution for fuzzy-rule discovery has been recently proposed
by [4]. The main differences between this work and our system are as follows. (a)
Delgado et al.’s work uses three co-evolving populations and our work uses only two;
(b) Delgado et al.’s work uses genetic algorithms for evolving two of its three popula-
tions. By contrast, we use genetic programming to evolve the rule set population; (c)
our work addresses the classification task of data mining, whereas Delgado et al.’s
work addresses the problem of numeric function approximation.

2.2 The Genetic Programming Population

2.2.1 Rule Representation
Our system follows the Pittsburgh approach [7] and thus each individual represents a
set of rules. Each rule has the form: IF conditions THEN prediction. The prediction of
the rule has the form: “goal attribute = class”, where class is one of the values that can
be taken on by the goal attribute. In each run of the system all individuals of the GP
population are associated with the same prediction. Therefore, there is no need to
explicitly encode this prediction into the genome of an individual. Since each run
discovers rules predicting a single class, the system must be run c times, where c is the
number of classes. Although this approach increases processing time, it has two im-
portant advantages: (a) it simplifies individual encoding; and (b) it avoids the problem
of mating between individuals that predict different classes, which could produce low-
quality offspring. Each individual actually corresponds to a set of rule antecedents
encoded in disjunctive normal form (DNF), such as: (sore throat = true AND age =
low) OR (headache = true AND NOT temperature = low).

In our system the function set contains the logical operators {AND, OR, NOT}.
Since each individual represents fuzzy rules, a fuzzy version of these logical operators
must be used. We have used the standard fuzzy AND (intersection), OR (union) and
NOT (complement) operators [13]. More precisely, let µA(x) denote the membership
degree of an element x in the fuzzy set A, i.e. the degree to which x belongs to the
fuzzy set A. The standard AND of two fuzzy sets A and B, denoted A AND B, is de-
fined as µA-AND-B(x) = min[µA(x),µB(x)], where min denotes the minimum operator.
The standard OR of two fuzzy sets A and B, denoted A OR B, is defined as µA-OR-B(x)
= max[µA(x),µ B(x)], where max denotes the maximum operator. The standard NOT of
a fuzzy set A, denoted NOT A, is defined as µNOT-A(x) = 1 - µA(x).

The terminal set consists of all possible conditions of the form: “Attri = Valij”,
where Attri is the i-th attribute of the dataset. If attribute Attri is categorical, Valij is the
j-th value of the domain of Attri. If attribute Attri is continuous - which means it is
being fuzzified by the system - Valij is a linguistic value in {low, medium, high}. We
use only three linguistic values in order to reduce the size of the search space.

Discovering Fuzzy Classification Rules with Genetic Programming and Co-evolution 317

In order to produce individual trees with only valid rule antecedents and in DNF we
propose some syntactic restrictions in the tree representation, as follows: (a) the root
node is always an OR node; (b) with the exception of the root node, each OR node
must have as its parent another OR node, and can have as its children any kind of
node; (c) each AND node must have as its parent either an OR node or another AND
node, and can have as its children AND, NOT or terminal nodes; (d) a NOT node can
have as its parent an OR node, an AND node or a NOT node; and it can have as its
child either another NOT node or a terminal node (we allow conditions of the form
“NOT NOT ...” to allow the possibility of a NOT being cancelled by another NOT as
a result of genetic operators) and (e) there cannot be two or more terminal nodes refer-
ring to the same attribute in the same rule antecedent, since this would tend to produce
invalid rule antecedents such as (sex = male AND sex = female). Fig. 1 shows an
individual with five rule antecedents.

These syntactic constraints are enforced both when creating individuals of the ini-
tial population and when modifying individuals due to the action of a genetic operator.
This approach can be regarded as a kind of strongly-typed GP [16] proposed specifi-
cally for the discovery of rule sets in disjunctive normal form, which makes it attrac-
tive for data mining applications.

Fig. 1. A tree representing five rule antecedents

The main advantage of working with the DNF directly into the tree representation,
rather than converting a rule set into DNF after GP has evolved, is that this makes it
easier to fulfil the aforementioned restriction (e). Because of the hierarchical position
of the nodes, it is easy to collect the terminal nodes of an individual rule, as shown in
Fig. 1, in order to check whether or not a condition can be inserted into that rule.

Another possible approach to assure that the GP will run only with syntactically
valid individuals would be to use a context-free grammar to implement the aforemen-
tioned syntactic restrictions. The drawback of this approach would be the difficulty in
checking syntactic restriction (e), which would lead to an explosion of the number of
production rules in the grammar. To avoid this, a logic grammar could be used [20],
but this would introduce some complexity to the system. Thus, we have preferred the
above-described direct implementation of syntactic constraints.

318 R.R.F. Mendes et al.

2.2.2 Selection and Genetic Operators
We use the tournament selection method, with tournament size 2 and with a simple
extension: if two individuals have the same fitness, the one with smaller complexity is
selected. Complexity is measured by the following formula [12]:

complexity = 2 × number_of_rules + number_of_conditions . (1)

This extension was motivated by observations in our experiments: sometimes the
two individuals competing in the tournament had the same fitness value, even though
they were different individuals.

Once two individuals are selected crossover is performed in a similar way to con-
ventional GP crossover, with the difference that in our case the crossover operator
respects the above-discussed syntactic restrictions, in order to guarantee that crossover
always generates syntactically-valid offspring. (If crossover cannot produce syntacti-
cally-valid individuals, the crossover operation fails and no children are produced.)

The current version of the system uses a crossover probability of 80%, a relatively
common setting in the literature. However, in our system the offspring produced by
crossover is not necessarily inserted into the population. Our population updating
strategy is as follows. Once all crossovers have been performed, all the produced
offspring are added to the population of individuals. Therefore, the population size is
provisionally increased by 80%. Then all individuals are sorted by fitness value, and
the worst individuals are removed from the population. The number of removed indi-
viduals is chosen in such a way that the number of individuals left in the population is
always a constant population size, set to 250 individuals (an empirically-determined
setting) in our experiments. We chose this population-updating strategy mainly be-
cause it increases selection pressure, in comparison with a conventional generational-
replacement strategy. This is analogous to the (µ+λ)-strategy employed in the second
EA of this system, described in Section 2.3.2. The main difference is that here we use
a (µ+λ) strategy on top of tournament selection, whereas the classic (µ+λ) strategy
uses no such scheme.

Our system uses a mutation operator where a node is randomly chosen and then the
subtree rooted at that node is replaced by another randomly-generated subtree. In the
current version of the system an individual undergoes mutation with a probability of
20% (an empirically-determined setting), with just one exception. The best individual
of each generation never undergoes mutation, so that its fitness will never be wors-
ened.

2.2.3 Fitness Function
In order to calculate the fitness of a GP individual, the first step is to compute the
following counters:
! TP (true positives) is the number of examples that are covered by at least one of the

individual’s rules and have the class predicted by those rules;
! FP (false positives) is the number of examples that are covered by at least one of

the individual’s rules but have a class different from the class predicted by those
rules;

! FN (false negatives) is the number of examples that are not covered by any of the
individual’s rules but have the class predicted by those rules;

Discovering Fuzzy Classification Rules with Genetic Programming and Co-evolution 319

! TN (true negatives) is the number of examples that are not covered by any of the
individual’s rules and do not have the class predicted by those rules.
Note that the true positives and true negatives correspond to correct predictions

made by the individual being evaluated, whereas the false positives and the false nega-
tives correspond to wrong predictions made by that individual. In our system the fit-
ness of a GP individual is computed by the following formula [9]:

(TP / (TP + FN)) × (TN / (FP + TN)) . (2)

In the data mining literature, in general it is implicitly assumed that the values of
TP, FP, FN and TN are crisp. This very commonplace assumption is invalid in our
case, since our system discovers fuzzy rules. In our system an example can be covered
by a rule antecedent to a certain degree in the range [0..1], which corresponds to the
membership degree of that example in that rule antecedent. Therefore, the system
computes fuzzy values for TP, FP, FN and TN.

The membership degree of record r into the rule set encoded by the individual I is
computed as follows. For each rule of I, the system computes the membership degree
of r into each of the conditions of that rule. Then the membership degree for the entire
rule antecedent is computed by a fuzzy AND of the membership degrees for all the
rule conditions. This process is repeated for all the rules of the individual I. Then the
membership degree of the entire rule set is computed by a fuzzy OR of the member-
ship degrees for all the rules of I.

For instance, suppose a training example has the class predicted by the individual
I’s rules. Ideally, we would like that example to be covered by at least one of I’s rules
to a degree of 1, so that the entire rule set of I would cover that example to a degree of
1. Suppose that I has two rules, and that the current training example is covered by
those rules to degrees of 0.6 and 0.8. Then the fuzzy OR would return a membership
degree of 0.8 for the entire rule set. This means that the prediction made by the indi-
vidual is 80% correct and 20% wrong. As a result, this example contributes a value of
0.8 for the number of true positives and a value of 0.2 for the number of false nega-
tives.

2.2.4 Tree Pruning
Rule pruning is important not only in data mining [3] but also in GP, due to the well-
known effects of code bloat [14], [1]. Code bloat has greatly affected our system’s
performance. In our initial experiments, with no pruning at all, some datasets required
an unacceptable amount of running time. Therefore, we have designed an operator to
prune GP trees. The basic idea of this operator is to randomly remove conditions from
a rule with a null coverage – i.e. a rule which does not cover any record – until it cov-
ers at least one record or until all conditions are removed, which corresponds to re-
moving the entire rule from its rule set.

More precisely, each rule of the individual is separated and evaluated by itself. The
ones that have a null coverage will have some conditions dropped according to the
following criteria:
! If a rule has more than 7 conditions, some conditions are randomly removed until

the rule has between 5 and 7 conditions (a randomly chosen number). If even after
this step the rule remains with a null coverage, the next criterion will be applied;

320 R.R.F. Mendes et al.

! If the number of conditions of a rule is less than or equal to 7, its conditions will be
dropped randomly one by one until the rule covers at least one record or all of its
conditions are dropped, removing the rule completely from the individual.
This operator is applied to an individual with a 20% probability. However, as an

individual might be worsened by this operator, it is never applied to the best individ-
ual of the current generation. The motivation to apply the above operator only to 20%
of the individuals is to save processing time, since this is a relatively computationally-
expensive operator.

After the end of the evolution, the best individual also undergoes a different tree
pruning. This operator removes two kinds of redundant rules: rules with a null cover-
age and duplicate rules. This final tree pruning does not alter the fitness of the indi-
vidual, since the removal of null-coverage/duplicate rules does not alter the set of
examples covered by an individual’s rule set.

2.3 The “Population” of Membership Functions

As mentioned above, in our system the values of all continuous attributes are fuzzified
into three linguistic values, namely low, medium, and high. These linguistics values
are defined by trapezoidal membership functions. Each continuous attribute is associ-
ated with its own membership functions. Hence, the membership functions are dy-
namically evolved, modifying a set of parameters defining the membership functions,
to get better adapted to their corresponding attribute. All the parameters of all mem-
bership functions are encoded into a single individual. This individual is considered as
a “population” (in a loose sense of the term, of course) separated from the GP popula-
tion. As mentioned in section 2.1, this single-individual population co-evolves with
the GP population.

2.3.1 Individual Representation
The individual is divided into k parts (or “chromosomes”, loosely speaking), where k
is the number of attributes being fuzzified. Each chromosome consists of four genes,
denoted g1, g2, g3 and g4, which collectively define the three membership functions
(low, medium, and high) for the corresponding attribute, as shown in Fig. 2. Each
gene represents an attribute value that is used to specify the coordinate of two trape-
zoid vertices belonging to a pair of “adjacent” membership functions. The system
ensures that g1 ≤ g2 ≤ g3 ≤ g4.

This individual representation has two advantages. First, it reduces the search space
of the evolutionary algorithm and saves processing time, since the number of parame-
ters to be optimized by the evolutionary algorithm is reduced. Second, this representa-
tion enforces some overlapping between “adjacent” membership functions and guaran-
tees that, for each original value of the continuous attribute, the sum of its degrees of
membership into the three linguistic values will be 1, which is intuitively sensible.

Discovering Fuzzy Classification Rules with Genetic Programming and Co-evolution 321

Fig. 2. Definition of 3 trapezoidal membership functions by 4 genes (g1, g2, g3, g4)

2.3.2 Evolutionary Algorithm to Evolve Membership Functions
Obviously, it is not possible to perform crossover in the single-individual “population”
of membership functions. Therefore, the evolution of the single individual represent-
ing membership functions is the result of a simple evolutionary algorithm, which
evolves by means of a (µ+λ)-evolution strategy (more specifically the (1+5)-strategy),
described as follows.

First of all, the individual is cloned 5 times. Each clone is an exact copy of the
original individual. Then the system applies to each clone a relatively high rate of
mutation. Each chromosome (i.e. a block of four contiguous genes, g1, g2, g3 and g4,
defining the membership functions of a single attribute) has an 80% probability of
undergoing a single-gene mutation. The mutation in question consists of adding or
subtracting a small randomly-generated value to the current gene value. This has the
effect of shifting the coordinate of the trapezoid vertices associated with that gene a
little to the right or to the left.

Note that, since a chromosome has four genes and only one of those genes is mu-
tated, a mutation rate of 80% per chromosome corresponds to a mutation rate of 20%
per gene. Our motivation to use this relatively high mutation rate is the desire to per-
form a more global search in the space of candidate membership function definitions.
If we used a much smaller mutation rate, say 1% or 0.1%, probably at most one gene
of an entire individual (corresponding to all attributes being fuzzified) would be modi-
fied. This would correspond to a kind of local search, where a new candidate solution
being evaluated (via fitness function) would differ from its “parent” solution by only
one gene, without taking into account gene interactions. By contrast, in our (1+5)-
evolution strategy scheme a new candidate solution being evaluated differs from its
“parent” solution by several genes, and the effect of all these gene modifications is
evaluated as a whole, taking into account gene interactions. This is important, since
the attributes being fuzzified can interact in such a way that modifications in their
membership functions should be evaluated as a whole. Actually, the ability to take into
account attribute interactions can be considered one of the main motivations for using
an evolutionary algorithm, rather than a local search algorithm.

In any case, once the 5 clones have undergone mutation, the 5 just-generated indi-
viduals are evaluated according to a fitness function – which is discussed in the next
subsection. The best individual is kept and all others are discarded.

The number of clones (5) used in our experiments was empirically determined as a
good trade-off between membership-function quality and processing time.

322 R.R.F. Mendes et al.

2.3.3 Fitness Function
Recall that the individual of the membership-function population represents defini-
tions of membership functions to be used for defining rule antecedents being evolved
by the GP population. Hence, the quality of the individual of the former population
depends on the predictive accuracy of individuals of the latter population. More pre-
cisely, in our co-evolutionary scheme the fitness value of the membership-function
individual is computed as the sum of the fitness values of a group of individuals of the
GP population. To compute the fitness, the system uses only a small portion of the GP
population – for the experiments reported in this paper we used the best five individu-
als – , in order to reduce processing time.

2.4 Classifying New Examples
Recall that a complete execution of our system generates one rule set for each class
found in the data set. These rule sets are then used to classify the examples of the test
set. For each test example the system computes the degree of membership of that
example to each rule set (each one predicting a different class). Then the example is
assigned the class of the rule set in which the example has the largest degree of mem-
bership. The accuracy rate on the test set is computed as the number of correctly clas-
sified test examples divided by the total number of test examples, as usual in the clas-
sification literature.

3 Computational Results

We have evaluated our system across four public-domain data sets from the UCI
(University of California at Irvine) data set repository. These data sets are available
from http://www.ics.uci.edu/~mlearn/MLRepository.html. Some of these data sets had
a small number of records with unknown values. Since the current version of our sys-
tem cannot cope with this problem, those records were removed. All the results re-
ported below were produced by using a 10-fold cross-validation procedure [9].

In order to evaluate the performance of our system we have compared it to two
other evolutionary systems found in the literature: ESIA [15] and BGP [18]. Both
ESIA and BGP discover crisp rules. They were chosen for comparison because they
have been applied to some of the data sets used in our experiments and because they
have obtained good results in comparison with other data mining systems. The results
for ESIA and BGP reported here are taken directly from the above-mentioned papers.
The results for ESIA were also produced by 10-fold cross-validation, whereas the
results for BGP were produced by generating 30 training and test sets.

As can be seen in Table 1, our system and ESIA obtained the same accuracy rate on
the Iris data set. (The numbers between brackets for our system are standard devia-
tions.) On the other two data sets (CRX and Heart), our system considerably outper-
forms ESIA. Our system outperforms BGP on the Iris data set, but BGP outperforms
our system on the Ionosphere data set.

A possible explanation for the lower performance of the fuzzy rules discovered by
our system in the Ionosphere data set is suggested by the large number (34) of con-

Discovering Fuzzy Classification Rules with Genetic Programming and Co-evolution 323

tinuous attributes in that data set. This suggests the possibility that the simple evolu-
tionary algorithm described in section 2.3 has difficulty in coping with such a rela-
tively high number of attributes being fuzzified. In other words, in this case the size of
the search space may be too large for such a simple evolutionary algorithm. This hy-
pothesis will be further investigated in future work.

Table 1. Accuracy rate (on test set), in %, of our system , ESIA and BGP

Data set Our system ESIA BGP
CRX 84.7 (±3.5) 77.39 N/A
Heart (statlog) 82.2 (±7.1) 74.44 N/A
Ionosphere 88.6 (±6.0) N/A 89.2
Iris 95.3 (±7.1) 95.33 94.1

Overall, we consider these results very promising, bearing in mind that, unlike
ESIA and BGP, our system has the advantage of discovering fuzzy rules, which tend
to be more intuitive for a user than the “hard” thresholds associated with continuous
attributes in crisp rules. On the other hand, like most evolutionary algorithms, our co-
evolutionary system needs a good amount of computational time to run. More pre-
cisely, a single iteration of cross-validation took a processing time varying from a
couple of minutes for the Iris data set to about one hour for the CRX data set – results
obtained for a dual-processor Pentium II 350. Shorter processing times may be ob-
tained by the use of parallel data mining techniques [8], but this point is left for future
research.

4 Conclusions and Future Research

We have proposed a co-evolutionary system for discovering fuzzy classification rules.
The system uses two evolutionary algorithms: a genetic programming (GP) algorithm
evolving a population of fuzzy rule sets and a simple evolutionary algorithm evolving
a population of membership function definitions. The two populations co-evolve, so
that the final result of the co-evolutionary process is a fuzzy rule set and a set of mem-
bership function definitions that are well adapted to each other.

The main advantage of this co-evolutionary approach is that the fitness of a given
set of membership function definitions is evaluated across several fuzzy rule sets,
encoded into several different GP individuals, rather than on a single fuzzy set. This
makes that evaluation more robust. In order to mitigate the problem of long processing
times, our system evaluates a set of membership function definitions only across the
few best GP individuals.

In addition, our system also has some innovative ideas with respect to the encoding
of GP individuals representing rule sets. The basic idea is that our individual encoding
scheme incorporates several syntactical restrictions that facilitate the handling of rule
sets in disjunctive normal form. We have also adapted GP operators to better work
with the proposed individual encoding scheme.

324 R.R.F. Mendes et al.

We have evaluated our system across four public domain data sets and compared it
with two other evolutionary systems (ESIA and BGP) found in the literature which
used the same data sets. Our results can be summarized as follows:

(a) Our co-evolutionary system considerably outperforms ESIA in two out of three
datasets and equals it in the other data set, with respect to predictive accuracy.

(b) Our system is competitive with BGP in two data sets. (In one data set our sys-
tem outperforms BGP, whereas BGP outperforms our system in the other data set.)

(c) Our system has the advantage of discovering fuzzy rules, which tend to be more
intuitive for the user than the crisp rules discovered by ESIA and BGP.

There are several directions for future research. For instance, the GP tree pruning
operator currently used in our system is a “blind” operator, in the sense that tree nodes
to be pruned are randomly chosen. It seems that a promising research direction would
be to design a more “intelligent” pruning operator, which would choose the tree nodes
to be pruned based on some estimate of the predictive power of those tree nodes.

Note that the above suggested research direction concerns improvement in the GP
algorithm used by our system. However it seems that the most important point to in-
vestigate in future research is the performance of the simple evolutionary algorithm
for evolving membership function definitions. It is possible that the current version of
this algorithm is not robust enough to cope with data sets having a large number of
attributes being fuzzified. This hypothesis must be further investigated in the future,
which might lead to improvements in the current version of this simple evolutionary
algorithm.

References

1. W. Banzhaf, P. Nordin, R.E. Keller, Francone FD Genetic Programming ~ an Introduc-
tion. Morgan Kaufmann, 1998.

2. P.J. Bentley. “Evolutionary, my dear Watson” - investigating committee-based evolution
of fuzzy rules for the detection of suspicious insurance claims. Proc. Genetic and Evolu-
tionary Computation Conf. (GECCO-2000), 702-709. Morgan Kaufmann, 2000.

3. L.A. Breslow and D.W. Aha. Simplifying decision trees: a survey. The Knowledge Engi-
neering Review, 12(1), 1-40. Mar. 1997.

4. M. Delgado, F.V. Zuben and F. Gomide. Modular and hierarchical evolutionary design of
fuzzy systems. Proc. Genetic and Evolutionary Computation Conf. (GECCO-99), 180-187.
Morgan Kaufmann, 1999.

5. U.M. Fayyad, G. Piatetsky-Shapiro and P. Smyth. From data mining to knowledge discov-
ery: an overview. In: U.M. Fayyad et al. (Eds.) Advances in Knowledge Discovery & Data
Mining, 1-34. AAAI/MIT, 1996.

6. C.S. Fertig, A.A. Freitas, L.V.R. Arruda and C. Kaestner. A Fuzzy Beam-Search Rule
Induction Algorithm. Principles of Data Mining and Knowledge Discovery (Proc. 3rd
European Conf. - PKDD-99). Lecture Notes in Artificial Intelligence 1704, 341-347.
Springer-Verlag, 1999.

7. A.A. Freitas. A survey of evolutionary algorithms for data mining and knowledge discov-
ery. To appear in: A. Ghosh and S. Tsutsui. (Eds.) Advances in Evolutionary Computation.
Springer-Verlag, 2001.

8. A.A. Freitas and S.H. Lavington. Mining Very Large Databases with Parallel Processing.
Kluwer Academic Publishers, 1998.

Discovering Fuzzy Classification Rules with Genetic Programming and Co-evolution 325

9. D.J. Hand. Construction and Assessment of Classification Rules. John Wiley&Sons, 1997.
10. H. Ishibuchi and T. Nakashima. Linguistic rule extraction by genetics-based machine

learning. Proc. Genetic and Evolutionary Computation Conf. (GECCO-2000), 195-202.
Morgan Kaufmann, 2000.

11. H. Ishibuchi, T. Nakashima and T. Kuroda. A hybrid fuzzy GBML algorithm for designing
compact fuzzy rule-based classification systems. Proc. 9th IEEE Int. Conf. Fuzzy Systems
(FUZZ IEEE 2000), 706-711. San Antonio, TX, USA. May 2000.

12. C.Z. Janikow. A knowledge-intensive genetic algorithm for supervised learning. Machine
Learning 13, 189-228. 1993.

13. G.J. Klir and B. Yuan. Fuzzy Sets and Fuzzy Logic. Prentice-Hall, 1995.
14. W.B. Langdon, T. Soule, R. Poli and J.A. Foster. The evolution of size and shape. In: L.

Spector, W.B. Langdon, U-M. O’Reilly and P.J. Angeline. (Eds.) Advances in Genetic
Programming Volume 3, 163-190. MIT Press, 1999.

15. J.J. Liu and J.T. Kwok. An Extended Genetic Rule Induction Algorithm. Proc. Congress
on Evolutionary Computation (CEC-2000). La Jolla, CA, USA. July 2000.

16. D.J. Montana. Strongly typed genetic programming. Evolutionary Computation 3(2), 199-
230. 1995.

17. C.A. Pena-Reyes and M. Sipper. Designing breast cancer diagnostic systems via a hybrid
fuzzy-genetic methodology. Proc. 8th IEEE Int. Conf. Fuzzy Systems. 1999.

18. S.E. Rouwhorst and A.P.Engelbrecht. Searching the Forest: Using Decision Tree as Build-
ing Blocks for Evolutionary Search in Classification. Proc. Congress on Evolutionary
Computation (CEC-2000), 633-638. La Jolla, CA, USA. July 2000.

19. D. Walter and C.K. Mohan. ClaDia: a fuzzy classifier system for disease diagnosis. Proc.
Congress on Evolutionary Computation (CEC-2000), 1429-1435. La Jolla, CA. 2000.

20. M.L. Wong and K.S. Leung. Data Mining Using Grammar Based Genetic Programming
and Applications. Kluwer, 2000.

21. N. Xiong and L. Litz. Generating linguistic fuzzy rules for pattern classification with
genetic algorithms. Principles of Data Mining and Knowledge Discovery (Proc. PKDD-
99) Lecture Notes in Artificial Intelligence 1704, 574-579. Springer-Verlag, 1999.

	1 Introduction
	2 The Proposed Co-evolutionary System for Fuzzy Rule Discovery
	2.1 An Overview of the System
	2.2 The Genetic Programming Population
	2.2.1 Rule Representation
	2.2.2 Selection and Genetic Operators
	2.2.3 Fitness Function
	2.2.4 Tree Pruning

	2.3 The “Population” of Membership Functions
	2.3.1 Individual Representation
	2.3.2 Evolutionary Algorithm to Evolve Membership Functions
	2.3.3 Fitness Function

	2.4 Classifying New Examples

	3 Computational Results
	4 Conclusions and Future Research

