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Abstract. The learning method is critical for obtaining good gener-
alisation in neural networks with limited training data. The Standard
BackPropagation (SBP ) training algorithm suffers from several prob-
lems such as sensitivity to the initial conditions and very slow conver-
gence. The aim of this work is to use Genetic Programming (GP) to
discover new supervised learning algorithms which can overcome some
of these problems. In previous research a new learning algorithms for
the output layer has been discovered using GP. By comparing this with
SBP on different problems better performance was demonstrated. This
paper shows that GP can also discover better learning algorithms for the
hidden layers to be used in conjunction with the algorithm previously
discovered. Comparing these with SBP on different problems we show
they p rovide better performances. This study indicates that there exist
many supervised learning algorithms better than SBP and that GP can
be used to discover them.

1 Introduction

Supervised learning algorithms are by far the most frequently used methods
to train artificial neural networks [13]. The Standard BackPropagation (SBP )
algorithm represents a computationally effective method for the training of mul-
tilayer networks which has been applied to a number of learning tasks in science,
engineering, finance and other disciplines. The SBP learning algorithm has in-
deed emerged as the standard algorithm for the training of multilayer networks,
against which other learning algorithms are often benchmarked [25,50].

However, SBP presents several drawbacks [10,13,28,41,42,44,46]. For exam-
ple, it is extremely slow, training performance is sensitive to the initial condi-
tions, it may be trapped in local minima before converging to a solution, and
oscillations may occur during learning (this usually happens when the learning
rate is too high).

As a consequence, in the past few years a number of improvements to SBP
have been proposed in the literature (see [44] for a survey). We will review the
SBP rule and mention some of these recent improvements in Section 2.
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All these algorithms are generally faster than the SBP rule (up to one order
of magnitude) but tend to suffer from some of the problems of SBP . Efforts
continue in the direction of solving these problems to produce faster supervised
learning algorithms and, more importantly, to improve their reliability. However,
the progress is extremely slow because any new rule has to be imagined/designed
firstly (using engineering and/or mathematical principles) by a human expert
and then it has to be tested extensively to verify its functionality and efficiency.
In addition, scientists tend to search the space of possible learning algorithms
for neural nets by using a kind of “gradient descent”. So, most algorithms newly
proposed are not very different from or much better than the previous ones.
This way of searching may take a long time to lead to significant breakthroughs
in the field. Indeed, by looking critically at the huge literature on this topic,
it can be inferred that only a few really novel algorithms which demonstrate
much better performance than SBP have been produced in the last 10 years
[2,3,19,30,34,35,48].

This has led some researchers to use optimisation algorithms to explore the
space of the possible learning rules. Given the limited knowledge of such a space,
the tools of choice have been evolutionary algorithms [55] which, although not
optimum for some domains, offer the broadest possible applicability. Very often
the strategy adopted has been to use Genetic Algorithms (GAs) [16] to find
the optimum parameters for prefixed classes of learning rules. The few results
obtained to date are promising. We recall them in Section 3.

By using GAs, we have realised that fixing the class of rules that can be ex-
plored biases the search and prevents the evolutionary algorithm from exploring
the much larger space of rules which we, humans, have not thought about. So,
in line with some work by Benjio [3], which is also summarised in Section 3, we
decided to use Genetic Programming (GP) [21] as this allows the direct evolution
of symbolic learning rules with their coefficients (if any) rather than the simpler
evolution of parameters for a fixed learning rule.

In our previous research [39,40], GP was successful in discovering a number
of learning rules for the output layers of feed-forward neural networks. Among
them we found one which was better than SBP in all problems considered.
This paper extends significantly that work by applying GP to the discovery of
learning rules for the hidden layer.

We describe our approach in Section 4. Section 5 reports the experimental
results obtained on six classes of standard benchmark problems: the parity, the
encoder-decoder, the character recognition, the multiplexer, the vowel recogni-
tion, and the sonar problems. We discuss these results and draw some conclusions
in Section 6.

2 Standard Backpropagation Algorithm and Recent
Improvements

A multilayer perceptron is a fully connected feed-forward neural network in
which an arbitrary input vector is propagated forward through the network,
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causing an activation vector to be produced in the output layer [13]. The network
behaves like a function which maps the input vector onto an output vector.
This function is determined by the connection weights of the net. The objective
of SBP is to tune the weights of the network so that the network performs
the desired input/output mapping. In this section we briefly recall the basic
concepts of multilayer feed-forward neural networks, the SBP and some of its
recent improvements. More details can be found in [42,44].

2.1 Standard Backpropagation

Let uli be the ith neuron in the lth layer (the input layer is the 0th layer and the
output layer is the kth layer). Let nl be the number of neurons in the lth layer.
The weight of the connection between neuron ulj and neuron ul+1

i is denoted
by wlij. Let {x1, x2, ..., xm} be the set of input patterns that the network is
supposed to learn and let {t1, t2, ..., tm} be the corresponding target output
patterns. The pairs (xp,tp) p = 1, .., m are called training patterns. Each xp is
an no-dimensional vector with components xip. Each tp is an nk-dimensional
vector with components tip.

The output o0ip of a neuron u0
i in the input layer, when pattern xp is presented,

coincides with its net input netoip i.e. with the ith element, xip, of xp. For the
other layers, the net input netl+1

ip of neuron ul+1
i (when the input pattern xp is

presented to the network) is usually computed as follows:

netl+1
ip =

nl∑
j=1

wlijo
l
jp − θl+1

i ,

where oljp, is the output of neuron ulj (usually oljp = O(netljp) with O a non-
linear activation-function) and θl+1

i is the bias of neuron ul+1
i . For the sake of

a homogeneous representation, in the following, the bias will be interpreted as
the weights of a connection to a ’bias unit’ with a constant output 1.

The error εkip for neuron uki of the output layer for the training pair (xp,tp)
is computed as

εkip = tip − okip.

For the hidden layers the error εlip is computed recursively from the errors
on other layers (see [13])

The SBP rule uses these errors to adjust the weights (usually initialised
randomly) in such a way that the errors gradually reduce.

The network performance can be assessed using the Total Sum of Squared
(TSS) errors given by the following function:

E =
1
2

m∑
p=1

nk∑
i=1

εkip
2
.
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The training process stops when the error E is reduced to an acceptable level,
or when no further improvement is obtained.

In the batched variant of the SBP the updating of wlij in the sth learning
step (often called an ”epoch”) is performed according to the following equations:

wlij(s+ ) = wlij(s) +∆wlij(s)

∆wlij(s) = η
∂E

∂wlij(s)
= ηδl+ip (s)oljp(s)

where δl+1
ip (s) refers to the error signal at neuron i in layer l+ 1 for pattern p

at epoch s, which is the product of the first derivative of the activation function
and the error εl+1

ip (s), and η is a parameter called learning rate.

2.2 Improvements to SBP

Many methods have been proposed to improve generalisation performance and
convergence time of SBP . Current research mostly concentrates on: the opti-
mum setting of learning rates and momentum [5,9,18,41,46,51,52,53]; the opti-
mum setting of the initial weights [6,24,27]; the enhancement of the contrast in
the input patterns [23,29,32,49,57]; changing the error function [1,9,17,33,45,47];
finding optimum architectures using pruning techniques [7,15]. In the following
we will describe two speed-up methods which are relevant to the work described
in the rest of the paper: the Momentum and Rprop methods.

The Momentum method implements a variable learning rate coefficient im-
plicitly by adding to the weight change a fraction of the last weight change as
follows:

∆wlij(s) = η
∂E(s)
∂wlij(s)

+ µ
∂E(s − 1)
∂wlij(s− 1)

where µ is a parameter called momentum. This method decreases the oscillation
which may occur with large learning rates and accelerates the convergence. For
a more detailed discussion see [9,18,51].

Rprop is one of the fastest variations of the SBP algorithm [41,44,56]. Rprop
stands for ’Resilient backpropagation’. It is a local adaptive learning scheme,
performing supervised batch learning. The basic principle of Rprop is to elim-
inate the harmful influence of the magnitude of the partial derivative ∂E

∂wlij
on

the weight changes. The sign of the derivative is used to indicate the direction
of the weight update while the magnitude of the weight change is exclusively
determined by a weight-specific update-value ∆l

ij(s) as follows

∆wlij(s) =


−∆l

ij(s) if ∂E(s)
∂wl

ij
(s)

> 0,

+∆l
ij(s) if ∂E(s)

∂wl
ij

(s)
< 0,

0 otherwise.
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The update-values ∆l
ij(s) are modified according to the following equation:

∆l
ij(s) =


η+∆l

ij(s− 1) if ∂E(s−1)

∂wlij(s−1)
· ∂E(s)

∂wlij(s)
> 0,

η−∆l
ij(s− 1) if ∂E(s−1)

∂wlij(s−1)
· ∂E(s)

∂wlij(s)
< 0,

∆l
ij(s− 1) otherwise.

where η− and η+ are constants such that 0 < η− < 1 < η+.
The Rprop algorithm has three parameters: the initial update-value ∆l

ij(0)
which directly determines the size of the first weight step (default setting ∆l

ij(0)
= 0.1) and the limits for the step update values ∆max and ∆min which prevent
the weights from becoming too large or too small. Typically ∆max=50.0 and
∆min=0.0000001. Convergence with Rprop is rather insensitive to the choice of
these parameters. Nevertheless, for some problems it can be advantageous to
allow only very cautious (namely small) steps, in order to prevent the algorithm
from getting stuck too quickly in local minima. For a detailed discussion see also
[41,42].

Although the Momentum method and Rprop are considerably faster than
SBP , they still suffer from same of the problems mentioned in Section 1 [11,41].

3 Previous Work on the Evolution of Neural Network
Learning Rules

A considerable amount of work has been done on the evolution of the weights
and/or the topology of neural networks. See for example [20,36,37,38,54]. How-
ever only a relatively small amount of previous work has been reported on the
evolution of learning rules for neural networks. Given the topology of the net-
work, GAs have been used to find the optimum learning rules. For example,
Montana [31] used GAs for training feedforward networks and created a new
method of training which is similar to SBP . Chalmers [4] applied GAs to dis-
cover supervised learning rules for single-layer neural networks. He discussed the
role of different kinds of connectionist systems and verified the optimality of the
Delta rule, a simpler variant of SBP applicable to single-layer neural networks
[43]. The author noticed that discovering more complex learning rules like the
SBP using GAs is not easy because either one uses a highly complex genetic
coding, or one uses a simpler coding which allows SBP as a possibility. In the
first case the search space is huge, in the second case we bias the search using
our own prejudices.

All the methods mentioned above are limited as they choose a fixed number
of parameters and a rigid form for the learning rule. GP may be a good way of
getting around the limitations inherent to fixed genetic coding which GAs suffer
from. GP has been applied successfully to a large number of difficult problems
like automatic design, pattern recognition, robotics control, synthesis of neural
networks, symbolic regression, music and picture generation, etc. However only,
one attempt to use GP to induce new learning rules for neural networks has been
reported before our own work
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Bengio [3] used GP to find learning rules. Bengio used the output of the input
neuron oljp, the error of the output neuron εl+1

ip and the first derivative of the
activation function of the output neuron as terminals and algebraic operators as
functions for GP. Bengio used a very strong search bias towards a certain class of
SBP -like learning rules as only the ingredients to rediscover the SBP algorithm
were used. GP found a better learning rule compared to the rules discovered
by simulated annealing and GAs. However, the new learning rule suffered from
the same problems as SBP and was only tested on a very specific problem. We
will describe our approach to discovering learning rules based on GP in the next
section.

4 Evolution of Neural Network Learning Rules with GP

Our work is an extension of Bengio’s work with the objective to explore a larger
space of rules using different parameters and different rules for the hidden and
output layers. Our objective is to obtain a rule which is general like SBP but
faster, more stable, and which can work in different conditions. We want to
discover learning rules of the following form:

∆wlij(s) =

{
F (wlij, o

l
jp, tip, o

l
ip) if for the output layer,

F (wlij, o
l
jp, o

l+1
ip , Eljp) if for the hidden layers

where oljp is the output of neuron ulj when pattern p is presented to the network
and Eljp =

∑
i w

l+1
ji δl+1

ip , So, in our approach we used two different learning rules
one for the output layer and one for the hidden layers, like in the SBP learning
rule. In preliminary tests in which we tried to evolve both rules at the same
time we obtain relatively poor results. This has to be attributed to the huge
size of the search space and to the limited memory and CPU power of current
workstations.

So, we decided to proceed in two stages. In the first stage, we used GP to
evolve rules for the output layer, while the hidden layers were trained with the
SBP rule (this was done in previous research [40]). In the second stage, we used
GP to evolve rules for the hidden layers, while the output layer was trained with
the rule discovered in the first stage. This second stage is described in this paper.

The tasks that the networks are supposed to learn with each learning rule
in the population. These are described in the next section together with the
functions and the terminals used by GP.

5 Experimental Results

It is not easy to perform a fair comparison between the many variants of super-
vised learning techniques. There are as many benchmark problems reported in
the literature as there are new learning algorithms. Here, we consider six prob-
lems which have been widely used: 1) the ’exclusive or’ (XOR) problem and
its more general form, the N-input parity problem, 2) the family of the N-M-N
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encoder problems which force the network to generalise and to map input pat-
terns into similar output activations [39], 3) the character recognition problem
with 7 inputs representing the state of a 7-segment light emitting diode (LED)
display and 4 outputs which represent the digits 1 to 9 binary encoded [3], 4) the
display problem with 4 inputs which represent a digit from 1 to 9 in binary and
7 outputs which represent the LED configuration to visualise the digit, 5) the
vowel recognition problem for independent speakers of the eleven steady state
vowels of British English (for more information see [8]) where each training pat-
tern has 10 input coefficients for each vowel and 4 outputs which represent the
eleven different vowels, 6) the classification of sonar signals problem [12], where
the task is to discriminate between the sonar signals (60 inputs) bounced off a
metal cylinder and those bounced off a roughly cylindrical rock.

For the XOR problem, we used a three-layer network consisting of 2 input, 2
hidden, and 1 output neurons with hyperbolic tangent activation functions with
output in the range [-1,1]. The weights were randomly initialised within the
range [-1,1]. For the Encoder problems we used a three-layer network consisting
of 10 input, 5 hidden, and 10 output neurons. Here, we used logistic activation
functions with output in the range of [0,1]. For the character recognition prob-
lem we used a three-layer network consisting of 7 input, 10 hidden, and 4 output
neurons. We used logistic activation functions with output in the range of [-1,1].
For the display problem we used a three-layer network consisting of 4 input, 10
hidden, and 7 output neurons. We used logistic activation functions with output
in the range of [0,1]. For the vowels recognition problem we used a three-layer
network consisting of 10 input, 8 hidden, and 4 output neurons with logistic acti-
vation functions with output in the range of [-1,1]. For the classification of sonar
signals we used a three-layer network consisting of 60 input, 12 hidden, and 1
output neurons. We used logistic activation functions with output in the range
of [-0.3,0.3] (same range as in [12]). These parameters and network topologies
were determined by experimenting with different configurations (number of lay-
ers, number of hidden layers, learning rate, and range of random initial weights)
and selecting the ones on which the SBP algorithm worked best. We tested each
problem with 100 independent runs (i.e each run with different initial weights).

The fitness of each learning rule was computed using the TSS error E for the
six problems mentioned above:

f =
{
λ(Emax − E) if the network does not learn,
Cmax −Cmin otherwise

where Cmin is the minimum number of epochs needed for convergence and Emax
and Cmax are constants such that f ≥ 0. λ is factor that makes the value
of (Emax − E) greater than Cmax −Cmin in any condition. The value of E is
measured at the maximum number of learning epochs. For the XOR, the encoder,
character recognition, display, vowel recognition, and sonar signals we used 1000,
200, 500, 500, 300 and 500 epochs, respectively.

The experiments were performed using our own SBP and GP simulators.
The simulators are written in POP11 and run on Digital Alpha machines with
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233 MHz processors. In these conditions each GP run took six days of CPU time
on average. For this reason we were able to perform only 25 GP runs for second
stage. In the first stage GP discovered several rules[40]. The best is as follows:

NLRo = ∆wlij = ηoljpε
l+
ip .

In all sample problems considered NLRo is much faster than SBP even
by applying both of NLRo and SBP with Rprop. This suggests that NLRo
outperforms SBP by allowing bigger weight changes when the output of the
neuron is nearly saturated

In the second stage GP was run for 500 to 1000 generations with a pop-
ulation size of 200 to 1000, and a crossover probability of 0.9. After apply-
ing crossover we applied subtree mutation with a probability of 0.01 to all
of the population. We used the function set {+,−,×}, and the terminal set
{wlij, oljp, ol+1

ip , Eljp, 1, 0.5, 0.1}. We used the “full” initialisation method with an
initial maximum depth from 3 to 5 [22].

In these experiments GP was allowed to evolve learning rules for the hidden
layers, while the learning rule for the output layer was NLRo. GP discovered
several rules such as

NLR1 = ∆wlij(s) = η[.ol+ip (− ol+ip )Eljp(o
l
jp − .)oljpoljp]

NLR2 = ∆wlij(s) = η[oljpo
l+
ip ol+ip (− ol+ip )Eljp + .(ol+ip − .)oljp]

NLR3 = ∆wlij(s) = η[oljpo
l+
ip (− ol+ip )Eljp + .(ol+ip − .)oljp]

and

NLR4 = ∆wlij(s) = η[oljpo
l+
ip (− ol+ip )Eljp + .(oljp − .)ol+ip ]

We tested these rules on four problems obtaining the results in Tables 3 and
1. It was found that the last two rules (NLR3 and NLR4) are the best rules
discovered in our runs. We studied them in different conditions to determine
their reliability and efficiency with respect to SBP . It should be noted that for
the XOR, Encoder, and Display problems the difference between the minimum
and maximum number of epochs required by NLR to converge is smaller than
for NLRo although the average number of epochs for NLRo is better on XOR
and Character recognition problems. In any case this compares very favourably
with the results obtained with SBP .

By looking to the last two learning rules (NLR3 and NLR4), we can see that
they include two terms. The first one is the term: ηoljpo

l+1
ip (1 − ol+1

ip )Eljp which
is the SBP rule in the case of logistic activation functions (which has deriva-
tive ol+1

ip (1 − ol+1
ip )). This makes sense since in Encoder, display and character

recognition problems, we use the logistic activation function. However, this is not
beneficial for the XOR problem where we used the hyperbolic tangent activation
function (which has derivative 1− (ol+1

ip )
2
).
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It is clear from the Table 3 that the convergence efficiency in the XOR prob-
lem increases by changing the term ol+1

ip (1 − ol+1
ip ) into 1 − (ol+1

ip )
2

to obtain
NLR3(m) and NLR4(m).

The second term in NLR3(m) and NLR4(m) is η0.1(ol+1
ip − 0.55)oljp and

η0.1(oljp − 0.55)ol+1
ip , respectively. These two equations are similar to the Heb-

bian learning rule (HB) as explained in by Linsker [26]. A Hebbian rule for
synaptic plasticity is one in which a synaptic strength is increased when pre-and
post-synaptic firing are correlated, and possibly decreased when are anticorre-
lated [14]. The Hebb-type learning rule used by Linsker for weigh update is:

HB = (ol+1
ip − k1)(oljp − k2) + k3

where k1, k2, and k3 are constants. k3 and either k1 or k2 are zero in NLR6 and
NLR7.

So, the experiments with GP suggested that a good learning rule for the
hidden layers could have the form:

NLRh = η(βSBP + (1− β)HB)

which corresponds to:

NLRh = η[βoljpo
l+1
ip (1− ol+1

ip )Eljp + (1 − β)(ol+1
ip − k1)(oljp − k2)]

The complete learning rule is NLRo for the output layer and NLRh for the
hidden layers.

The interest of this result is that GP suggested a NLR in which the weak-
ness of a supervised learning rule (SBP) are removed by combining it with an
unsupervised learning rule (HB).

Table 2 shows the results of the two algorithms (SBP and NLRowithNLRh)
for the vowel and sonar problems. By changing the parameters of the NLRh
(β, k1, and k2) we found that β = 0.01, k1 = 0.5, and k2 = 0 give the best
results on the vowel problem while on the sonar problem the best parameters
are β = 0.1, k1 = 0.5, and k2 = 0.

The combination of NLRo and NLRh, which we will term NLR from now
on, is very efficient and provides good performance on the six problems. So, in an
other set of tests, we have decided to compare its convergence behaviour with
the SBP with and without the Momentum and Rprop speed-up algorithms.
Figure 1 shows the TSS error of SBP and NLR with and without Momentum
on the character recognition problem. The results obtained indicate that NLR
achieves its target output at the same epoch as SBP with Momentum, while
NLR with Momentum converges much more quickly than the other algorithms.
Also, Figure 2 shows that the NLR with Rprop outperforms SBP with Rprop
in the character recognition problem. All runs used the same initial random
weights.
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Fig. 1. Plot of the TSS error of SBP , NLR, SBP expand with Momentum,
and NLR expand with Momentum in the character recognition problem.

Fig. 2. Plot of the TSS error of SBP with Rprop and NLR with Rprop in the
character recognition problem.
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6 Conclusions and Future Work

In this paper we have applied GP to find new supervised learning rules for
the hidden layers of neural networks. In previous researches GP has discovered
for the output layer a useful way of using the Delta learning rule (originally
developed for single-layer neural networks) to speed up learning. This rule has
performed much better than the SBP learning rule on all the sample problems
considered. Then, using this rule to train the output layer GP discovered new
learning rules for the hidden layer. In particular GP has discovered a useful way
of using the generalised Delta rule and the Hebbian learning rule together. These
two learning rules together have performed much better than the SBP learning
rule on all the sample problems considered, with and without different speed up
algorithms. Whether these rules have the same performed in general remains to
be seen.

This study indicates that there are supervised learning algorithms that per-
form better and are more stable than the SBP learning rule and that GP can
discover them.
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Table 1. Summary of Table 3 where Yes = better than SBP and No = worse
than SBP.

Problems
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NLRo + SBP Yes Yes Yes Yes
NLRo +NLR1 No No Yes Yes
NLRo +NLR2 No Yes Yes Yes
NLRo +NLR3 No Yes Yes Yes
NLRo +NLR4 No Yes Yes Yes

NLRo +NLR3(m) Yes – – –
NLRo +NLR4(m) Yes – – –

Table 2. Performance of NLRowithNLRh and SBP on two hard problems.
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Algorithm η Min. Max. Mean Runs
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Table 3. Performance of the discovered learning rules on four different problems.

XOR
Learning Epochs Successful

Algorithm η Min. Max. Mean Runs
SBP 0.96 101 870 163.95 100

NLRo + SBP 0.96 50 197 63.39 100
NLRo +NLR1 0.96 44 1000 832.54 18
NLRo +NLR2 0.96 1000 1000 1000 0
NLRo +NLR3 0.96 16 1000 926.8 16
NLRo +NLR4 0.96 2 1000 688.26 17

NLRo +NLR3(m) 0.96 49 1000 161.68 89
NLRo +NLR4(m) 0.96 58 88 70.95 100

Encoder
Learning Epochs Successful

Algorithm η Min. Max. Mean Runs
SBP 0.4 44 303 118.67 100

NLRo + SBP 0.4 15 108 36.85 100
NLRo +NLR1 0.4 500 500 500 0
NLRo +NLR2 0.4 15 105 50.66 100
NLRo +NLR3 0.4 10 118 34.74 100
NLRo +NLR4 0.4 16 78 34.37 100

Character Recognition
Learning Epochs Successful

Algorithm η Min. Max. Mean Runs
SBP 0.3 179 358 226.54 100

NLRo + SBP 0.3 34 76 51.29 100
NLRo +NLR1 0.3 43 94 61.26 100
NLRo +NLR2 0.3 71 331 149.35 100
NLRo +NLR3 0.3 54 160 83.21 100
NLRo +NLR4 0.3 40 108 64.31 100

Display
Learning Epochs Successful

Algorithm η Min. Max. Mean Runs
SBP 0.8 130 500 250.514 87

NLRo + SBP 0.8 46 204 79.069 100
NLRo +NLR1 0.8 46 180 79.94 100
NLRo +NLR2 0.8 71 331 149.35 100
NLRo +NLR3 0.8 41 108 66.81 100
NLRo +NLR4 0.8 46 116 72.6 100
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