
Application of a Genetic Programming Based
Rule Discovery System to Recurring Miscarriage

Data

Christian Setzkorn1, Ray C. Paton1, Leanne Bricker2, and Roy G.
Farquharson2

1 Department of Computer Science, University of Liverpool, Chadwick Building,
Peach Street, Liverpool L69 7ZF, United Kingdom

Email: chris@csc.liv.ac.uk (Setzkorn), rcp@csc.liv.ac.uk (Paton)
2 Miscarriage Clinic, Liverpool Women’s Hospital, Crown Street, Liverpool L8 7NJ,

United Kingdom
Email: lbricker@dial.pipex.com(Bricker)

Abstract. This paper introduces a rule inference system based on the
paradigm of genetic programming. Rules are deduced from a medical
data set related to recurring miscarriage. A rule consists of an IF-part
(antecedent) and a THEN-part (consequent). The system has to be sup-
plied with the consequent and works out antecedents. An antecedent
classifies the predictive class which is represented by the supplied conse-
quent. The antecedents produced take the form of a tree, where Boolean
operations such as AND, OR and NOT represent nodes, and Boolean
expressions represent the leaves. Boolean expressions can be built from
nominal and numeric attribute values, which makes the system very ver-
satile.

1 Introduction

This paper introduces an approach developed during collaboration between
the Computer Science Department of the University of Liverpool and the
Recurrent Miscarriage Clinic (RMCL) of the Liverpool Women’s Hospital. The
approach uses the paradigm of Genetic Programming (GP) building upon the
work of Freitas [3] [13]. The work can be described as an attempt to perform
a generalised classification task for one prediction class which is represented
by the consequent. The generalised classification task, also referred to as
dependency modelling, has the goal of seeking to discover a few interesting rules
called knowledge nuggets [13].

The objective of this collaboration was to produce computer-aided support
tools that would help medical practitioners at the RMCL in their aim to gain
new insights into the causes and unknown associations of an unfortunately
common condition referred to as recurring miscarriage. Over the last ten years
the staff at the RMCL have collected data from patients suffering from this

R.W. Brause and E. Hanisch (Eds.): ISMDA 2000, LNCS 1933, pp. 250–259, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Application of a Genetic Programming Based Rule Discovery System 251

condition and stored it as a spreadsheet; or rather a data matrix. In the data
matrix a row contains data regarding a particular patient and the columns
represent specific attributes. The attributes depict demographic details, infor-
mation regarding previous pregnancies, other pertinent medical details, and
observations made subsequent to referral to the RMCL.

The developed GP system has the capability of rule inference from data
in the described data matrix form. The rules take the form of IF-THEN. The
THEN-part (consequent) has to be supplied to the system and corresponds to
a predictive class within the supplied data. The IF-part (antecedent) is evolved
so that it classifies the predictive class as precisely as possible. An antecedent
takes the form of a tree whose nodes may consist of Boolean operators: AND,
OR and NOT. Boolean expressions represent the leaves of the tree. Examples
of possible Boolean expressions are: Age ≥ 30, Blood Value X = abnormal and
Occupation Level = High.

This form of rule inference is a promising approach to evolve rules which
have high prediction accuracy and represent new and interesting knowledge. In
addition, evolved rules can be easily understood by users [5]. This, and the fact
that the system can cope with nominal and numeric data, makes this approach
especially attractive.

2 Genetic Programming - A Brief Introduction

John R. Koza introduced GP in 1987 with the objective of ”enabling computers
to solve problems without being explicitly programmed” [6] [7]. Numerous
candidate solutions for a given problem are summarised and evolved within
a population in a biologically inspired manner similar to genetic algorithm
(GA) [8] [9] [10]. This allows a parallel search through the given problem domain
in order to find one or more satisfactory solutions to a given problem.

Candidate solutions are also referred to as representation schemes or
individuals, and are usually represented in the form of a tree with changeable
size. A tree consists of so-called functions, which represent the nodes, and
terminals representing leaves. Functions and terminals, available for building
an individual, are respectively summarised within a function or a terminal set.
The chosen sets must be suitable to the problem.

The more sophisticated tree representation scheme for GP reflects a
crucial difference with GA’s, where the representation scheme is normally
unchangeable in size and form. This makes GP a more attractive and powerful
candidate for the task of data mining due to the effectiveness of GP in
searching very large spaces. On the other hand, the structure of a GP system
itself is very similar to those of a GA. Figure 1 shows one such possible structure.

252 C. Setzkorn et al.

Fig. 1. Structure of a genetic algorithm.

During step 1 an initial population of candidate solutions is produced
randomly. In step 2 each individual in this current population is evaluated with
respect to its capability of representing a good solution for the given problem.
An individual capability of solving the given problem is referred to as fitness and
is calculated using an externally imposed fitness function, appropriate to the
given problem. Step 3 consists of selecting individuals for the next generation
according to their fitness. The selection process enables fitter individuals to
be selected with a higher probability in comparison to individuals with lower
fitness. There exist several selection processes such as roulette wheel selection,
tournament selection, and ranking. [11] provides a summary and comparison of
selection processes. Step 4 consists in employing the so-called genetic operators,
such as crossover and mutation. The latter was not used in Koza’s original form
of GP. Figure 2 illustrates mutation in the case of GP.

Each individual, or rather its parts, has a specific probability of undergoing
a mutation, determined by the parameter mutation probability. A random
generator is used to decide whether or not a particular part of an individual
undergoes mutation. If the value produced by the random generator is less
than or equal to the mutation probability then the part of the tree is created
anew using the supplied function and terminal set. Figure 3 illustrates crossover.

Two individuals are required in order to perform crossover in its simplest
form. One possible implementation of crossover is to build a sub-population
by randomly removing individuals from the current population. The choice
of an individual for that sub-population works on the same principle as
described for mutation, by using a random generator. Whether or not an
individual is chosen is determined by the parameter crossover probability.

Application of a Genetic Programming Based Rule Discovery System 253

Fig. 2. Example of genetic operation mutation for genetic programming. On the left
is an individual before mutation (parts to be mutated are marked), on the right of the
figure is the result of the mutation.

Fig. 3. Example of genetic operation crossover for genetic programming (D0 - D2
represent terminals).

254 C. Setzkorn et al.

Note, that it must be ensured that the sub-population has an even number of
individuals. Consequently, individual pairs are taken from this sub-population,
undergo crossover and are returned to the original population. For each
individual a so-called crossover point is randomly determined, as shown at the
top of figure 3. The parts below each crossover point are exchanged between
the two individuals. The bottom of the same figure shows the result of crossover.

The next step is to perform the convergence test, which determines whether
or not the system terminates and presents the individuals in the current pop-
ulation as solutions to the given problem, or evolves the population further by
repeating steps 2 to 5 (see figure 1). A termination criterion may be a spe-
cific number of iterations or a specific fitness level to be achieved by the fittest
individuals.

3 Details of the Implemented GP System

This section supplies some details of the implemented GP system. More
information is available in [4].

Representation Scheme: An individual takes the form of a tree, where
the function set may consist of three Boolean operations: OR; AND; NOT.
The terminals take the form of Boolean expressions built depending on the
supplied data set. A Boolean expression is composed of an attribute name,
relational operator, and an attribute value. Three conditions are introduced
which must be fulfilled during the creation of a tree: (1) Each attribute from
the supplied data set can only be used once to build a Boolean expression.
(2) The attribute(s) used to build the consequent must not be used to build
a Boolean expression. (3) The depth of the tree is limited by the number of
available attributes within the supplied data set minus the attribute(s) used for
building the consequent. The user also can limit the depth of a tree.

These conditions and the nature of the supplied data set determine the
composition of a Boolean expression. The composition is divided into three
steps. The first step is determination of the attribute (name). The second step
is random selection of one attribute value from all available values for the
chosen attribute. The final step is the determination of the relational operator,
which is constrained by the chosen attribute value. Obviously, if the available
attribute values consist of nominal values, only the relational operator ’=’
would be appropriated. In a case where the attribute consists of numbers, other
relational operators such as: <;≤;>;≥; = are appropriated. However, there are
two special cases. For numbers representing the smallest or greatest possible
values of a particular attribute, the use of relational operators: <;≤ and >;≥
respectively would not be sensible.

Application of a Genetic Programming Based Rule Discovery System 255

Genetic Operators: Two genetic operators, crossover and mutation, were
implemented in this study. These operators work on the same principle as
described above. However, the maximum depth of a tree represents a restriction
for crossover because insertion and/or exchange of sub-trees may cause an
individual taking part in crossover to exceed its maximum depth. Also the
inserted/exchanged sub-tree must not contain any attributes already contained
within the recipient tree. Mutation can take place on functions and terminals.
If a terminal mutates, it may create a new terminal (Boolean expression)
or another function (Boolean operation) if the tree did not reach its maxi-
mum depth. Naturally, the building of a new Boolean expression (or several, if
the terminal changes to a function) has the same restrictions as described above.

Fitness Measurement: The employed fitness function is based on the so-
called J-measure [12]. The higher the J-measure for a particular individual,
the higher its fitness. There are some weak points in the original J-measure as
described in [13]. Due to this fact, this work used only the modified version of
the J-measure. The modified version is presented as follows and referred to as
J1measure.




a =
|P |
N

b =
|C&P |

|C|

J1measure =
|C|
N

(
b · log

(
b

a

))
(1)

Here C represents the number of cases in which the antecedent of a partic-
ular rule is fulfilled, whereas P describes the number of cases which fulfil the
consequent. The expression C&P stands for the number of cases in which both
the antecedent and the consequent are fulfilled at the same time. The resulting
fitness function is:

fitness =
w1 · (J1) + w2 ·

(
npu

nT

)

w1 + w2
(2)

Where nT is the number of attributes within the antecedent, npu is the
number of potential useful attributes within the antecedent, and J1 corre-
sponds to the modified J-measure. An attribute is potentially useful, if the
Boolean expression built from it, and the consequent, are fulfilled for at least
one data entry at the same time. The values for w1 and w2 are user-defined
weights and are assigned values of 0.6 for w1 and 0.4 for w2, as suggested in [13].

256 C. Setzkorn et al.

Selection: Three different selection mechanisms were implemented: roulette
wheel selection, rank selection, and tournament selection. All three selection
mechanisms produced similar results.

The Structure: The structure of the implemented GP system is the same
as depicted in figure 1.

4 Experimental Investigations

The data set utilised during these experiments consisted of 353 complete cases
(individual patients) and 13 attributes. These were obtained from the original
data set consisting of many more cases (904) and attributes (50). Only specific
attributes were selected. These were assumed to be valuable for the discovery of
new knowledge regarding the causes and associations of recurring miscarriage.
No feature selection has been employed so far. Since the original data set also
contains incomplete cases, the number of actually available complete cases
depends on the choice of attributes.

The data set was split into a training set and test set. The former contained
two-thirds of the available cases and the latter the remaining third. It was
ensured that each class was properly represented in both data sets. This is also
referred to as stratification [16].

Figure 4 contains one example rule evolved for the consequent Outcome Code
= B. It should be noted that the meaning of the presented rules and their Boolean
expressions, cannot be explained in this paper. However, the data dictionary
supplied in [4] can serve as a reference.

AND[45/210]
___________________|___________________

/ \
OR[57/328] AND

___________|___________ _____|______
/ \ / \

1ST.TRIM LOSS>2[54/317] HB1=abnormal value[5/20] REGY/N=1[62/418] AGE>28[66/398]

Fig. 4. Antecedent evolved for consequent Outcome Code = B.

In order to generate such a tree structure, a freely available program [15]
was used since the rules produced by the implemented GP system were in form
of s-expressions. S-expression are not easily comprehensible, but had to be used
here due to lack of space.

Each node and leaf of the presented tree contains two numbers. The first
number indicates how often the logical expression built by the particular part

Application of a Genetic Programming Based Rule Discovery System 257

of the tree and the logical expression built by the consequent are fulfilled in
respect to the supplied data set at the same time. The second number indicates
how often this is the case without considering the logical expression built by
the consequent. These numbers are thought to be an additional comprehensible
judgement of the quality of the particular tree and its parts.

Table 1 contains some of the best rules evolved by the GP system. A
particular rule, in form of a s-expressions, was applied to the training and
test data set and the value for a and J1measure (see formula 1 are supplied.
In addition, the fitness achieved by a particular individual is also shown. The
value of a is also referred to as confidence factor [13] and serves as a simple
judgement of the performance of a particular rule applied to the unseen test
data. The number consequent hits contains the number of cases in which the
particular consequent is fulfilled in respect to the supplied data set.

Table 1. Certain results in the form of s-expressions.

Supplied

Consequent

S-Expression Fitness J1measure b Consequnet

Hits

APS = 0 (OR [139/200] (AND [48/64]
(T4 1 = normal value [220/331])
(REG Y/N = 0 [53/71])) (AND
[112/166] (OP1 = P [118/174])
(TSH 1 = normal value [219/329]
)))

0.4111 0.0186 0.695 234

(OR [61/78] (AND [23/26] (T4 1
= normal value [100/144]) (REG
Y/N = 0 [24/27])) (AND [49/66]
(OP1 = P [51/71]) (TSH 1 = nor-
mal value [102/144])))

0.4241 0.0401 0.7821 112

APS = 1 (AND [94/259] (OR [110/322]
(OP1 = S [63/179]) (2TL =

0 [96/284])) (REG Y/N = 1
[101/282]))

0.4118 0.0197 0.3629 119

(AND [30/80] (OR [30/93] (OP1
= S [27/88]) (TSH 1 = abnormal
value [5/15])) (REG Y/N = 1
[44/132]))

0.4269 0.0449 0.375 47

REG Y/N = 0 (AND [52/73] (OR [69/345] (TSH
1 = normal value [66/329]) (OP1 =
S [34/179])) (DTNP1 = 0 [52/74]
))

0.5118 0.1863 0.7123 71

(AND [23/30] (OR [27/154] (TSH
1 = normal value [26/144]) (OP1
= S [13/88])) (DTNP1 = 0 [23/30]
))

0.5308 0.2180 0.7666 27

REG Y/N = 1 (AND [255/272] (NOT [260/279]
(DTNP1 = 0 [22/74])) (OR
[276/345] (TSH 1 = normal value
[263/329]) (OP1 = S [145/179]))
)

0.4694 0.1156 0.9375 282

(AND [120/124] (NOT [125/129]
(DTNP1 = 0 [7/30])) (OR
[127/154] (TSH 1 = normal value
[118/144]) (OP1 = S [75/88])))

0.4694 0.1157 0.9677 132

258 C. Setzkorn et al.

5 Conclusions and Further Work

The results demonstrated in this paper, yielded from the data set and the
positive feedback obtained from the medical practitioners, led to the generation
of conclusions regarding the system’s practical potential. The presented results
show that the rules perform well on unseen test data. Further research may
reveal additional improvements in the quality of rules evolved by the system,
and the system’s performance.

Parallelisation of the GP system, as suggested in [13], is planned for future
work. As well as enhancing the system’s performance this may also lead to the
discovery of qualitatively superior rules by using, for example, an island model
as suggested in [2].

Furthermore, alternative fitness evaluation may prove more successful. In
some cases the GP system is prone to developing rules of low interest value
and thus truism knowledge. Ways to overcome this problem are suggested in [14].

Another possibility for improving the systems capability could be offered
by feature selection. It results in an appropriate choice of features (attributes)
for the current prediction class and thus a smaller search space for valuable rules.

More elaborated genetic operators might also prove to be more successful, as
described in [4]. Other data sets have already been used to validate the developed
system and proved its practical potential.

6 Acknowledgements

We would like to thank Dr. Alex A. Freitas for his support during the develop-
ment of this approach.

References

1. Alex A. Freitas, Heitor S. Lopes, and Dieferson Luis Alves de Aranjo (1999). A
Parallel Genetic Algorithm for Rule Discovery in Large Databases. Available at
http://www.ppgia.pucpr.br/˜alex/papers.html.

2. John R. Koza and David Andre (1995). Parallel Genetic
Programming on a Network of Transputers. Available at
ftp://elib.stanford.edu/pub/reports/cs/tr/95/1542/

3. Alex A. Freitas, Heitor S. Lopes, and Celia C. Bojarczuk (1999). Discovering
comprehensible classification rules using Genetic Programming: A case Study in
a medical domain. Available at http://www.ppgia.pucpr.br/˜alex/papers.html.

4. Christian Setzkorn (2000). Investigation into the Application of Artifi-
cial Intelligence Methods to the Analysis of Medical Data . Available at
http://www.csc.liv.ac.uk/˜chris /Publications.html.

Application of a Genetic Programming Based Rule Discovery System 259

5. U. M. Fayyad, G. Piatetsky-Shapiro and P. Smyth (1996). From data mining to
knowledge discovery: an overview. In: U. M. Fayyad, G. Piatetsky-Shapiro, P.
Smyth and R. Uthurusamy (eds.), Advanced in Knowledge Discovery & Data
Mining, 1-34, AAAI/MIT

6. John R. Koza (1993). Genetic Programming I. MIT Press London
7. John R. Koza (1994). Genetic Programming II. MIT Press London
8. Lawrence Davis (1991). Handbook of Genetic Algorithm. Van Nostrand Reinhold;

ISBN: 0442001738
9. Thomas Baeck (1999). Evolutionary Algorithm in Theory and Practice. Inst of

Physics Pub; ISBN: 0750306653
10. K.F. Man, K.S. Tang, and S. Kwong (1999). Genetic Algorithm. Springer-Verlag

Berlin
11. Tobias Blickle and Lothar Thiele (1995). A Comparison of

Selection Schemes used in Genetic Algorithm. Available at
http://www.handshake.de/user/blickle/publications/index.html

12. Smyth P., Goodman R. M. (1991). Rule induction using information theory. In
Piatetsky-Shapiro G. and Frawley J. Knowledge Discovery in Databases MIT
Press

13. Alex A. Freitas, Heitor S. Lopes, and Dieferson Luis Alves de Aranjo (1999). A
Parallel Genetic Algorithm for Rule Discovery in Large Databases. Available at
http://www.ppgia.pucpr.br/˜alex/papers.html.

14. Edgar Noda, Alex A. Freitas, and Heitor S. Lopes (1999). Discover-
ing Interesting Predictive Rules with a Genetic Algorithm. Available at
http://www.ppgia.pucpr.br//̃ alex/papers.html.

15. Available at: http://www.dai.ed.ac.uk/daidb/students/chrisg/
16. Ian H. Witten and Eibe Frank (2000). Data Mining: Practical Machine Learning

Tools and Techniques with Java Implementations. Morgan Kaufmann Publishers;
ISBN: 1558605525

	Introduction
	Genetic Programming - A Brief Introduction
	Details of the Implemented GP System
	Experimental Investigations
	Conclusions and Further Work
	Acknowledgements
	References

