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Abstract. Microarrays have unique ability to probe thousands of genes at a time 
that makes it a useful tool for variety of applications, ranging from diagnosis to 
drug discovery. However, data generated by microarrays often contains multi-
ple missing gene expressions that affect the subsequent analysis, as most of the 
times these missing values are ignored. In this paper we have analyzed how ac-
curate estimation of missing values can lead to better subsequent gene selection 
and class prediction. Collateral Missing Values Estimation (CMVE), which 
demonstrates superior imputation performance compared to Bayesian Principal 
Component Analysis (BPCA) Impute, K-Nearest Neighbour (KNN) algorithm, 
when estimating missing values in the BRCA1, BRCA2 and Sporadic genetic 
mutation samples present in ovarian cancer by exploiting both local/global and 
positive/negative correlation values. CMVE also consistently outperforms, in 
terms of classification accuracies, BPCA, KNN and ZeroImpute techniques. 
The imputation is followed by gene selection using fusion of Between Group to 
within Group Sum of Squares and Weighted Partial Least Squares where Ridge 
Partial Least Square algorithm is used as a class predictor. 

1   Introduction 

Microarrays have has wide range of applicability from diagnosis to drug discovery 
due to their ability to probe tens or thousands genes at a time [1, 2]. Despite this how-
ever, microarray data frequently contains missing values due to spotting problems, 
slide scratches, blemishes on the chip, hybridization error, image corruption or simply 
dust on the slide [3]. These missing values affect subsequent inference from: gene 
selection, class prediction and data dimension reducing techniques such as Between 
Group to within Group Sum of Squares (BSS/WSS) [4], Neural Networks (NN), Sup-
port Vector Machines (SVM), Principal Component Analysis (PCA) and Singular 
Value Decomposition (SVD) [5, 6]. Different strategies to solve the problem of miss-
ing data can be adopted. The simplest method is to repeat the process, though this is 
seldom feasible for economic reasons or ignoring those samples, containing missing 
values, though this again is not recommended due to limited number of samples 
available. The best strategy is to attempt to accurately estimate the missing values. 
Normally missing values are replaced with zero values which doesn’t take advantage 
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of data correlations, so leading to errors in the subsequent analysis [7]. However, if 
the correlation between data is exploited then the missing value prediction error can 
be significantly reduced [8].  

Besides this, the number of samples m in microarray data is relatively much less than 
the number of genes n per sample (usually in thousands) that makes most of the classi-
cal class prediction methods to perform poorly and they overfit to the training data [9]. 
For example, FLD function in Fisher Linear Discriminant (FLD) Analysis is singular 
when m < n + 2 [10]. In spite of this if the genes are included for class prediction by 
classifiers; it includes the associated noise of the data resulting in lower prediction accu-
racy. This problem can be solved if feature selection is applied to the data. 

Most feature selection algorithms are dimension reduction techniques, for example 
PCA [1] and SVD, do not consider class discrimination while converting data to Ei-
gen space resulting in lower class prediction accuracy. Alternatively, univariate algo-
rithms are used, for example; t-test, signal to noise ratio [11], BSS/WSS [4], Signifi-
cance Analysis of Microarray (SAM) [12] which are either made for binary class 
response or they consider each relevant gene individually which selects the genes 
which are highly correlated which it introduces redundancy [13]. The problem can be 
avoided if multivariate gene selection is applied to simultaneously consider multiple 
genes and class information, hence reducing redundancy of covariate genes and keep-
ing the class discrimination intact. However, if multivariate method is coupled with 
class prediction accuracy then it is highly dependent on learning method [13]. There-
fore, a suitable strategy is required which can predict the missing values and also can 
minimize the problems in feature selection techniques. 

In this paper we have proposed an innovative solution to the aforementioned prob-
lems by applying the recently introduced Collateral Missing Value Estimation 
(CMVE) algorithm [14] that not only guarantees lower prediction error than Bayesian 
PCA (BPCA), ZeroImpute and K Nearest Neighbour (KNN), but has also increased 
the classification accuracy for the range of missing values from 1-20% for multiclass 
ovarian cancer data [15]. To select significant genes, a two fold strategy is applied 
which uses both univariate and multivariate methods by stacking both algorithms. The 
p discriminant genes are first selected by univariate BSS/WSS to gain the advantage 
of model independence and then redundant genes are removed by Weighted Partial 
Least Square Method (WPLS). The other benefit of applying BSS/WSS prior to 
WPLS is that it reduces computational time by selecting a smaller search space for 
WPLS. For classification Ridge Partial Least Squares (RPLS) is applied by regress-
ing significant genes with ridge penalty [16]. The motivation to employ RPLS came 
from its better prediction ability than other classification algorithms for multi-class 
microarray data.  

The rest of the paper is organized as follows: Section 2 briefly presents methods 
for Imputation, Gene Selection and Classification used in this paper. Section 3 ana-
lyzes empirical results while conclusions are drawn is Section 4. 
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2   Review of Gene Selection, Missing Value and Classification 
Algorithms 

The following convention is adopted throughout this paper to present Imputation, 

Gene Selection and Classification techniques. m nY ×∈  is assumed to be the gene 
expression matrix, where m is the number of genes and n is the number of samples. In 
Y, every gene I is represented by Ig Y∈ , so Y in n experiments is organized as:- 
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A missing value in gene I for sample J is expressed as:- 

( , ) ( ) .IY I J g J= = Ξ  (2) 

Following three Sections outline the Collateral Missing Value Estimation, BSS/WSS 
Gene Selection and RPLS Class Prediction techniques. 

2.1   Collateral Missing Value Estimation 

Collateral Missing Value Estimation (CMVE) algorithm estimates missing values 
using multiple estimation matrices with Least Square Regression (LS) , Non Negative 

LS and Linear Programming (LP), by regressing k-ranked covariate genes k n×∂ ∈ . 
CMVE imputes missing values by merging three estimation matrices 1Φ , 2Φ and 3Φ , 

computed using LS, NNLS and LP. To estimate Ф1 for gIJ, LS regression method [17] 

is used. LS regression problem for m nY ×∈ be expressed as:-  

1 ,YΦ = + +ζ ρ ξ  (3) 

where ξ is the error term that minimizes the variance in the LS model, ς and ρ are 
unknown coefficients obtained by minimizing least square error. To estimate 

2Φ and 3Φ CMVE finds a linear combination of models that best fit ∂ and g1 using 

NNLS algorithm such as:- 
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whereφ  is the vector that minimizes ξ0 in (6), η is the normal residual and ξ  is the 

actual residual. The objective function in NNLS minimizes, using linear programming 
techniques, the prediction error ξ0 so that:-  
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0, , min( ),=ξ φ η ξ  (6) 

that is 0min( )ξ  is a function that locates the normal vector φ  with minimum predic-

tion error ξ0 and residual η. The value of ξ0 in (6) is obtained from:- 

0 max( ( . )),T
ISV g= −ξ β φ  (7) 

where SV are the singular values of the difference vector between the dot product β 

and prediction coefficientsφ  with the gene expression 1
Tg . The final estimate χ for Ξ 

is formed using:- 

1 2 3. . . ,= ϒ Φ + ∆ Φ + Λ Φχ  (8) 

where probabilities where ϒ=∆=Λ= 0.33 ensures an equal weighting to the respective 
estimates Ф1, Ф2 and Ф3. The rationale for this choice is that as each estimate is highly 
data dependent, it avoids any bias towards one particular estimate [8]. CMVE derives 
its superior imputation performance over BPCA and KNN by considering both lo-
cal/global and positive correlations [14], coupled together with a unique self-
correcting error property, which guards against the danger of a wildly initial predic-
tions of the missing values [14]. 

2.2   Between Group to Within Group Sum of Squares 

This gene selection method identifies those genes which have large inter-class varia-
tions while concomitantly having small intra-class variations. For any gene I in 

m nY ×∈ BSS/WSS is calculated as follows:-  
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where T is the size of a training sample, Q is the number of classes and F(•) is a Boo-

lean function which results in 1 if the condition is true, and zero otherwise, JY
−

de-

notes the average expression level of gene I across all samples and 
q IY
−

is the average 

expression level of gene I across all samples belonging to class q. The genes G are 
ranked from highest to lowest BSS/WSS ratios to form significant gene expression 
matrix ϑ . The first p genes are then selected from ϑ for subsequent class prediction. 
It is followed by Weighted Partial Least Square (WPLS) to eliminate correlated genes 
from p. The motivation to select genes using BSS/WSS and then WPLS is that 
BSS/WSS does not select multiple genes simultaneously and hence account for de-
pendency between the genes. Also, BSS/WSS ignores the model uncertainty by pre-
dicting set of relevant genes and then predicting relevant class [18]. WPLS accounts 
for model uncertainty by considering class prediction accuracy. However, if only 
WPLS is used then selected genes are highly dependent on prediction model [13]. 
Another reason for employing BSS/WSS is that the gene to sample ratio is reduced, 
so resulting in a shorter convergence time for WPLS. 
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2.3   Ridge Partial Least Squares 

Ridge Partial Least Squares (RPLS) method uses Partial Least Squares (PLS) with 
the Penalized Logistic Regression (PLR) for class prediction. To apply PLS for class 
prediction, class labels are replace by a pseudo-response variable that has expected 
value in linear relationship with the covariates because PLS can only handle continu-
ous responses. Therefore, in order to extend PLS to Generalized Linear Models, 

RPLS replaces pseudo-response variable Z ∞ at the convergence of Iterative Re-
weighted Least Square (RIRLS) algorithm with ridge penalty. The other advantage of 

choosing Z ∞  is that this allows the combination of a regularization and dimension-
reduction step. RPLS comprises of three major steps:- 

1- Pseudo-response variable Z ∞ and weighted matrix W ∞ are computed using:- 

( , ) ( , , ),Z W RIRLS L Y∞ ∞ = λ  (10) 

where λ is some positive real constant which is calculated by minimizing the Bayes-
ian Information Criterion (BIC) [19] and L is a set containing discrete class labels.  

2- Matrices Z ∞ and W ∞  are then used to compute 
^

1pα +∈ by WPLS method using:- 

,^
( , , , ),

PLS

WPLS Z Y W∞ ∞=
κ

α κ  
(11) 

where Y is the input matrix and κ is a positive integer which determines number of 
iterations.  
3- Finally, class response is determined using Linear Logistic Discrimination (LLD). 

In LLD the conditional class probability of response L for a given data Y is:- 

^
P(L = 1|Y = y;  ) ,α  (12) 

where parameter
^

1pα +∈  is estimated using (11) and p are number of predictor 
genes determined using BSS/WSS (Section 2.2). The probability P in (12) is com-
puted using:- 

^ ^
),P(L = 1|Y = y;  )  = h([1  y]α α  (13) 

where h(η) = 1/[1+exp(−η)]. The quantity 
^

)h([1  y]α  is a linear predictor. The log-

likelihood of the observations for the parameter 
^
α  is given by:- 
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which for all 
^ ^

1 , ( ) ( )i ii n Zυ α α≤ ≤ = and Z = [ϒn Y] of size n × (p+1) and ϒn is the 
column matrix of size n. The class label L is 1 if >1-℘ ℘ and zero otherwise where  

^
).h([1  y]℘ = α  (15) 
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3   Results Analysis 

Well tested, ovarian cancer microarray data [20] was used as a test data in all the 
experiments. The motivation to use this data set is that cancer data contains up/down 
regulated genes and hence are difficult to predict using estimation algorithms [5]. The 
data set contained 18, 16 and 27 samples of BRCA1, BRCA2 and sporadic mutations 
(neither BRCA1 nor BRCA2) respectively. Each data sample contained logarithmic 
microarray data of 6445 genes. To quantitatively evaluate the performance of CMVE 
imputation technique, the following imputation error and classification error estima-
tion measures were employed. 

3.1   Imputation Error Measure 

For the comparison of different imputation techniques, between 1% and 20% of the 
values were randomly removed from the BRCA1, BRCA2 and Sporadic dataset sam-
ples and the Normalized  Root Mean Square (NRMS) imputation error ξ computed 
as:- 

( )
,

( )
estRMS Y Y

RMS Y

−
=ξ  

(16) 

where Y is the original data matrix and Yest is the estimated matrix using either CMVE, 
BPCA or KNN. The advantage of using (16) for error estimation is that ξ=1 for zero 
imputation [5].  

Different values of k were tested for both KNN and CMVE, with k =10 exhibiting 
the best results. The plots in Fig. 1(a-e) show the NRMS error in estimating randomly 
introduced missing values from 1% to 20% for BRCA1, BRCA2 and Sporadic data-
sets. The results confirm that CMVE performed better than BPCA and KNN (see  
Fig. 1(a-e)). It is also obvious from the graphs that CMVE exhibited improved ro-
bustness at higher missing values, with the reason for these improvements being 
traced back to the reason explained in Section 2.1, that CMVE exploits the relation-
ship between gene expression values more effectively than BPCA and KNN by con-
sidering both global and local, as well as positive and negative data correlations. 

3.2   Classification Error Measure 

Missing values inevitably affect classification accuracy and gene selection, yet many 
classifiers only use zero imputation [8]. Our cross validation results show that with the 
proper estimation of missing values, the gene selection and classification accuracy can 
be significantly improved [12, 14]. So, for the proof of concept, an alternative way is to 
test imputation methods by randomly removing values from the data and testing the 
impact on decision making techniques such as gene selections and classification.  

The estimation results in Fig. 2(a-f) confirm that CMVE consistently perform bet-
ter than BPCA, KNN and ZeroImpute. The overall classification accuracy by CMVE 
(See Fig. (f)) clearly shows higher classification accuracy for the range of missing 
values from 1-20% when values are imputed using CMVE as compared to other esti-
mation algorithms. The reason for this better performance is that CMVE exploits all  
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Fig. 1. NRMS Error for KNN, BPCA and CMVE for 1-20% Missing Values 

types of correlation structure of the data as compared to KNN that only considers 
positive correlations, BPCA that only considers global correlation and ZeroImpute 
that doesn’t consider any correlation. 

Results in Fig. 2 (a-f) also draw attention to some interesting observation, RPLS 
followed by gene selection step, performed better when ZeroImpute was used as com-
pared to KNN (See Fig. 2(f)). Because the data between classes was more separable 
and thus easier to classify, that is zero values actually improved separability. The 
other reason of poor performance of KNN is that if smaller k is used by KNN it in-
creases the variance of the data leading to false selection of significant genes, how-
ever large value of k increases bias and leads to coarse estimates. In practice however, 
for the vast majority of datasets, zero imputation will not improve separability be-
cause for instance, if a particular gene has missing values, for both classes to be clas-
sified, ZeroImpute results in the same value, namely zero [5]. This means the gene has 
same value for both classes despite some genes being more significant than others. 
Also, BPCA performed better than KNN and ZeroImpute due to better estimation of 
missing values because of considering both positive and negative correlations [14].   
 



 CMVE: Robust MVE for Consequent Microarray Data Processing 281 

Classification Accuray with 1% Missing Values

90

91

92

93

94

95

96

97

98

99

100

B1 B2 SP
Data

%
 A

cc
ur

ac
y CMVE

ZeroImpute
BPCA
KNN

a)

Classification Accuray with 5% Missing Values

90

91

92

93

94

95

96

97

98

99

100

B1 B2 SP

Data

%
 A

cc
ur

ac
y CMVE

ZeroImpute
BPCA
KNN

b)

Classification Accuray with 10% Missing Values

86

88

90

92

94

96

98

100

B1 B2 SP

Data

%
 A

cc
ur

ac
y CMVE

ZeroImpute
BPCA
KNN

c)

Classification Accuray with 15% Missing Values

80

82

84

86

88

90

92

94

96

98

100

B1 B2 SP

Data

%
 A

cc
ur

ac
y CMVE

ZeroImpute
BPCA
KNN

d)

Classification Accuray with 20% Missing Values

90

91

92

93

94

95

96

97

98

99

100

B1 B2 SP

Data

%
 A

cc
ur

ac
y CMVE

ZeroImpute
BPCA
KNN

e)

Overall Classification Accuracy

88

90

92

94

96

98

100

1% 5% 10% 15% 20%

% Missing Values

%
 A

cc
ur

ac
y CMVE

ZeroImpute
BPCA
KNN

f)

 

Fig. 2. Class Prediction Accuracy using CMVE, BPCA, KNN and ZeroImpute to estimate 
between 1% and 20% Missing Values 

For this reason, it is always better to exploits all sort of correlation structure for esti-
mation in the data. 

4   Conclusions 

This paper has presented a new Collateral Missing Value Estimation (CMVE) algo-
rithm for accurate missing value estimation which leads to better gene selection and 
classification. CMVE has demonstrated superior imputation performance compared to 
the Bayesian Principal Component Analysis (BPCA), K Nearest Neighbour (KNN) 
algorithm and ZeroImpute methods, for estimating randomly missing values over the 
probability range from 0.01 to 0.2 in the BRCA1, BRCA2 and Sporadic genetic muta-
tion samples present in ovarian cancer. Experimental results also reveal that CMVE 
consistently outperformed BPCA, KNN and ZeroImpute techniques in terms of their 
classification accuracies by exploiting all types of correlations between the data. The 
Ridge Partial Least Squares (RPLS) classifier was applied for the class prediction 
followed by the fusion of genes selection method, Between Group to within Group 
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Sum of Squares (BSS/WSS) and Weighted Partial Least Square (WPLS), and these 
afforded consistently improved classification performance for all experiments on 
ovarian cancer microarray data, when used in combination with CMVE. The results 
also corroborate the theoretical basis for the better performance of CMVE which 
means it can be successfully applied to any correlated data. 
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