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Abstract

Microarray data often contains multiple missing 

genetic expression values that degrade the performance 

of statistical and machine learning algorithms. This 

paper presents a K ranked diagonal covariance-based 

missing value estimation algorithm (KRCOV) that has 

demonstrated significantly superior performance 

compared to the more commonly used K-nearest 

neighbour (KNN) imputation algorithm when it is applied 

to estimate missing values of BRCA1, BRCA2 and 

Sporadic genetic mutation samples present in ovarian 

cancer. Experimental results confirm KRCOV 

outperformed both KNN and zero imputation techniques 

in terms of their classification accuracies when used to 

impute randomly missing values from 1% to 5%. The 

classifier used for this purpose was the Generalized 

Regression Neural Network. The paper also provides a 

hypothesis for why KRCOV performs better than KNN not 

only for bioinformatics data but also for other data types 

having strong correlated values.

1. Introduction 

Microarray data is used for the simultaneous study of 

multiple genes under different conditions [15]. The 

application of DNA microarrays includes the study of 

human tumours [10] and Yeast sporulation (Chu 1998). 

Various machine learning algorithms are used in the 

molecular classification of DNA microarray data. Golub 

(1999), Ship (2002), Pomery (2002), Bhattacharjee 

(2001) and Ramaswamy (2001) all provide a wide range 

of examples of machine learning algorithms have been 

applied to leukemia, lymphoma, brain cancer, lung cancer 

and multiple primary tumour classification. 

Despite its wide usage however, 90% of the time 

microarrays unfortunately generate missing values in the 

data [5]. Missing values occur for various reasons 

including image artifacts, slide scratches, insufficient 

resolution and hybridization errors (15, 5], which all leads 

to a degradation in the performance of many algorithms 

such as Principal Component Analysis, Singular Value 

Decomposition [11], Clustering, Classification and other 

statistical algorithms [1, 8]. This problem can be handled 

in several ways; one is to repeat the experiment which is 

not feasible for economic reasons, while an alternative is 

to remove the samples containing missing values, but this 

may often be inappropriate because in bioinformatics we 

have a limited number of samples. So the best solution is 

to estimate the missing values. The most common 

methods used so far are zero impute (replace missing 

values with zero) [1], row averages (replace missing 

value by its row average) and row median (replace 

missing value by a row median). However, Troyanskaya 

[14] demonstrated that these methods do not exploit the 

correlation between data in estimating missing values, 

which could improve the performance of classifiers.  

This paper presents a missing value estimation 

technique called K- Ranked Covariance based missing 

value estimation (KRCOV), which is based on the 

principle that the missing values of particular genes can 

be estimated using most correlated genes. We compared 

our proposed estimation technique with the popular 

imputation technique K- Nearest Neighbour (KNN).  

The well known ovarian cancer microarray data by 

Amir [2] is used for comparative purposes. The 

motivation to use this data is that ovarian cancer is the 

fourth most common cause of cancer-related deaths in 

American women of all ages, as well as being the most 

prevalent cause of death from gynecologic malignancies 

(NCH 1991). A reliable test for the type of mutation 

detection will be a significant help for the immunity of 

the cancer. Mutations in BRCA1, BRCA2 and Sporadic 

(without BRCA1 and BRCA2 mutation) can lead to 

carcinogenesis through different molecular pathways so 

disease pathway mapping is very helpful for the treatment 

of this disease.

Tests were conducted by randomly removing 1-5% 

values from the BRCA1, BRCA2 and Sporadic mutation 

data (mutations present in ovarian cancer) [2]. The 

technique has been compared not only based on 

estimation errors but also on classification errors of the 

above described mutations. The classifier used for this 

purpose was the Generalized Regression Neural Network 

(GRNN) because it demonstrates a high capability to 

classify ovarian cancer genetic mutations [11]. In this 

paper, we will also demonstrate a new estimation method, 
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which is quantitatively superior to the KNN imputation

method.

The rest of this paper is organized as follows. In 

Section 2 imputation and classification techniques are

presented. Section 3 presents the novel KRCOV

technique and theoretical basis that why KRCOV

performs better than KNN, while experimental

methodology is described in Section 4. Section 5 

discusses missing value estimation results and their

impact on the classification accuracy. Some conclusions 

are given in Section 6.

2. Applied Imputation and Classification 
Methods

This Section presents theoretical basis for the

classification and missing value imputation methods that

are to be compared with KRCOV.. 

2.1. GRNN Classification for Ovarian Cancer 

Generalized Regression Neural Networks (GRNN) are

paradigms of the Radial Basis Functions (RBF) used in

functional approximation [13, 14]. To apply GRNN to

classification, an input vector x (BRCA1, BRCA2 or 

Sporadic genetic data) is formed and weight vectors W

are calculated using (2). The output (BRCA1, BRCA2 or

Sporadic) y(x) is the weighted average of the target values 

ti of training cases xi close to a given input case x, as 

given below:-
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The only weights that are needed to be tuned are the 

smoothing parameters h of the RBF units in (2), which

are defined using a simple grid search method [17].

The GRNN is trained such that the Target Class M is 

selected from the set of classes required to be identified.

The system is trained on a subset of samples Tr labeling

these as positive examples (target value 1). The subsets of

data for remaining classes serve to provide negative

examples to the system (target value 2).

The distance between the computed value y(x) and each 

value in the set of target values T is given by:-

(3){1, 2}T

The values 1 and 2 correspond to the training class and 

all other classes respectively. The class corresponding to

the target value with least square distance is chosen.

2.2. K- Nearest Neighbour (KNN) Estimation

The K-Nearest Neighbour (KNN) method selects

genes with expression values similar to those genes of

interest to impute missing values [15]. In order to

estimate the missing value YIJ, of gene I and experiment J,

k genes are selected whose expression vectors are similar

to YIJ. The similarity measure between the vectors Y1 and 

Y2 is defined by the Euclidian distance reciprocal (see (4)) 

over all observed components in experiment J.
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The missing value is then estimated as the weighted 

average of the corresponding entries in the selected k

expression vectors using (5).
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Where 1

k

ii  and is the Euclidean distance. (6) 

shows the contribution of each gene is weighted by a 

similarity of its expression to that gene I.

The KNN based imputation method has no theoretical 

criteria for selecting the best k-value and distance 

function. Both k-value and distance function have to be 

determined empirically. Choosing a small k value 

produces a poorer classifier performance after imputation

due to overemphasis of a few dominant instances in

estimating the missing values. Conversely, a large 

neighborhood may include instances that are significantly

different from those containing missing values impacting

upon the estimation accuracy and hence classifier

performance. Empirical results show that for small

datasets k = 10 should be used [1]. Troyanskaya [14]

demonstrated that Euclidean distance function performs

best for KNN as this measure is sensitive to outliers that 

may be present in the microarray data, though our 

investigations revealed that log-transforming the data 

reduced their effect on gene similarity determination [15]

These empirical selections of the k- value and distance 

function make the model difficult to use and less reliable.
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3. Covariance Based Missing Value 
Estimation

The new k-ranked covariance-based method presented 

in this paper estimates missing values using expression 

values of genes having covariate genetic expression 

profiles of the target gene. To estimate missing value YEG

of gene expression matrix M of experiment E and gene G,

the absolute diagonal covariance CoV [10] of expression 

values of G is calculated with remaining genes having no 

missing value. Using the absolute covariance means that

the higher the absolute covariance values, the more the 

genes are related. Those genes with missing values in E

are ignored in the estimation. The CoV values are then

ranked, and expression values of K, which are the most

correlated genes , are selected from E. These expression 

values of K covariate genes are used to estimate YEG

using (12), with Wi given by (8). 

(7)
^

1

k

EG i ii
Y W C

^

1

( )
i

i

W

C

(8)

Where  is set to 10-2  to avoid divide by zero. 
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3.1. Reasons why KRCOV Performs Better than
KNN

There are two fundamental reasons why KRCOV

gives better estimation than KCOV.

Firstly KRCOV uses both negative and positive 

correlation values while KNN due to Gaussian distance 

function, only searches for positive covariate values. In 

estimating missing gene values it therefore ignores those 

genes which are inversely proportional to each other. 

Lemma 1: KNN only considers positive correlations. 

Proof:  If there are 2 sets  and  which are inversely

proportional to each other, then the distance d between 

and  will be larger in those sets which are directly

proportional to each other. Several distance functions are 

used for KNN and the most common is Gaussian which is 

given by:-

d (10)

Which always results in higher value of d when  is 

inversely proportional to .

Lemma 2: KRCOV considers both positive and negative 

correlation values. 

Proof: Assume two sets  and  which are inversely

proportional, so 
c v 0 ,o

 where 

1

1
cov ( )( )

( 1)

k

i iin
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From (11) it is clear that if a high correlation exists

between the gene values (either directly proportional and 

positively correlated values or inversely proportional and 

negatively correlated values) there will be a higher 

absolute cov value. 

The second reason for the better performance of KRCOV

is that it exploits estimated a priori values in the 

estimation of current missing values.

Lemma 3: KRCOV gives better estimation of missing

values in case of transitive gene dependency (Gene 

A B C) than KNN. 

Proof: Assume in an experiment E gene Ga1 is correlated 

with S1. as:- 

a1 1 1 b1 b2 bnG S  such that S  = {G , G ...G }  (12) 

Similarly gene Gb1 is correlated with S2. as:- 

b1 2 2 c1 c2 cnG  S such that S = {G , G ...G }  (13)

If the values of both Ga1 and Gb1 are missing then we

can predict expression value of Gb1 using set S2 and 

finally predict the value of Ga1 more accurately using S1

including Gb rather than ignoring it. However, KNN 

based estimation does not consider estimated values in

predicting future missing values.

4. Methodology 

Ovarian cancer microarray data [2] was used in our 

experiments. The data set contains 18, 16 and 27 samples

of BRCA1 mutations, BRCA2 and sporadic mutations

(neither BRCA1 nor BRCA2) respectively. Each data

sample contains logarithmic microarray data of 6445 

genes. The missing value estimation techniques were

tested using the following two approaches.

4.1. Imputation Error Estimation
This involves randomly removing values from the data

and then computing the estimation error. For test 

purposes, between 1% and 5% of the values were 

removed from each the BRCA1, BRCA2 and Sporadic 

dataset samples and the Root Mean Square (RMS) errors

 of imputation computed as :- 

)(

( )

estRMS M M

RMS M
 (14) 
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where M is the original data matrix and Mest is the 

estimated matrix using either KNN or KRCOV. The 

advantage of using (11) for error estimation is that =1

for zero imputation [5].

4.2. Classification Error Estimation

An alternative way to test imputation method is by

randomly removing values from the data and testing the 

impact on decision making techniques like classification

and clustering. Thus between 1% and 5% data values

were randomly removed and tested using GRNN by zero 

value imputation, KNN and KRCOV. The validation 

results were generated using k-fold cross validation. To

correctly identify the classification accuracy, the data was

divided evenly into k folds and the system processed for

k-iterations. For each kth experiment, k-1 folds were used 

for training and just one for testing such that the selection 

probability Pv of each fold to become a part of validation 

data for a particular iteration is:

v
N L

P
(15)

while the probability Pt of the remaining subset being 

selected as training data for a particular iteration is:

( 1)
t

k

N L
P

(16)

where N = total data items per class, k = number of folds, 

L = number of classes and  = number of samples in each 

subset.

After k iterations all subsets will have been part of the

validation set, so the overall probability of the data as test 

data is unity, thereby giving the results a higher

confidence level. The classification accuracy is given by:-

1

1 k

i

i

Accuracy Acc
k

 (17) 

Where Acc is the intermediate accuracy after each 

iteration.

The motivation to use k-fold cross validation over the

classical hold out or random resampling methods was that 

it uses data sets evenly both for training and testing, 

thereby giving better estimation of the classification rates.

5. Discussions of Results 

As mentioned in Section 4, to test the new imputation

technique, the Imputation Error and Classification Error 

Estimation techniques were used. This section discusses

the results of these experiments.

5.1. Imputation Error Estimation

Different values of K were tested for both KNN and 

KRCOV, with K =10 exhibiting the best results. The plots 

in Figure 1 show the RMS error for the estimation of

randomly missing values from 1% to 5% for BRCA1 

samples which confirms that KRCOV performed

significantly better than KNN. It is also clear from the 

graphs that KRCOV exhibits far better robustness for 

higher missing values compared with KNN.

Similarly, Figure 2 depicts the RMS Error for the

estimation of missing values for the BRCA2 data set, with 

again the results endorsing the improved performance of 

KRCOV over KNN especially at higher percentages. A 

similar observation is also apparent in Figure 3 for the 

Sporadic data set.
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Figure 1: Estimation RMS error for BRCA1 with k=10

The reason of these improved results is that if there is a 

relationship between gene expression values then they

can be predicted by calculating the degree of variation 

with respect to each other. KRCOV determines

relationship between gene expression values in a better

way than KNN due to the reasons provided in Section

3.1.
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Figure 2: Estimation RMS error for BRCA2 with k=10
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Sporadic
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Figure 3: Estimation RMS error for Sporadic with
k=10.

5.2. Classification Error Estimation 

Missing values inevitably affect classification

accuracy, yet many classifiers simply use zero Imputation

[8]. However, our cross validation results show that with 

proper estimation of missing values classification 

accuracy can be significantly improved [11].
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Figure 4: Classification Accuracies of BRCA1 
Mutation

We tested the classification error of GRNN by

introducing various missing values percentage by

randomly removing values. The imputation method used 

were zero impute, KNN impute and the new KRCOV

impute. Different GRNN trained in one-verses-all method

were tested for the classification of BRCA1, BRCA2 and

Sporadic genetic mutations by using the above imputation

methods. Figure 4 shows that KRCOV and KNN both

performed much better than zero imputation due to the 

accurate estimation of missing values. Results in Figure 5

demonstrate that KRCOV has outperformed KNN and 

zero imputation. Similarly, Figure 6 shows the same

observation however zero impute has performed better 

than KRCOV when Sporadic samples had 2 percent 

missing values. The reason for this is that if the data 

between classes is more separable and thus easier to 

classify, i.e. the zero values included actually improved

separability. In reality however, zero imputation does not 

improve separability most of the time. For example, if a

particular gene has missing values, for both classes to be 

classified, zero imputation will result in the same value

(i.e. zero). This means the gene has same value for both 

classes despite some genes being more significant than

others. For this reason it is always better to have accurate

estimation of missing values. 
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Figure 5: Classification Accuracies of BRCA2 Mutation
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Figure 6: Classification Accuracies of Sporadic 
Mutation

6. Conclusions 

This paper has presented a novel diagonal covariance-

based (KRCOV) algorithm for missing value estimation,

with its performance analyzed using ovarian cancer

microarray data. The results show that KRCOV compared

very favorably with K-nearest neighbour (KNN) and zero 

impute methods, both in terms of normalized RMS error 

rates and classification accuracy. This improvement is

significant as it has been previously demonstrated that 

KNN performs better than other techniques including row 

average and zero impute. Also, while KRCOV performed

better for ovarian cancer microarray data it is likely to

performed significantly better for estimation for other 

bioinformatics data because of its ability to find the 

correlations between rows in the data.
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