
Reconsideration of the Effectiveness on
Extracting Computer Diagnostic Rules by

Automatically Defined Groups

Yoshiaki Kurosawa, Akira Hara, Kazuya Mera, and Takumi Ichimura

Graduate School of Information Sciences, Hiroshima City University,
3-4-1, Ozuka-higashi, Asaminami-ku, Hiroshima, Japan

{kurosawa,ahara,mera,ichimura}@its.hiroshima-cu.ac.jp

Abstract. Our aim is to manage computer systems without expert
knowledge. We have proposed a method of diagnostic rule extraction
from log files by using Automatically Defined Groups (ADG) based on
Genetic Programming. However, this work less explained the effective-
ness, especially, the characteristics of the acquired rules. Therefore, we
re-evaluated the effectiveness by performing two experiments: the use of
artificial log files and the use of real log files. As a result, we confirmed
that ADG could acquire the rules composed of multiple terms. This char-
acteristic is very important because we can judge the message that we
must consider the co-occurrence of the words, i.e. ‘Error’ and ‘not’. Thus,
we conclude that the ADG is effective for the diagnosis of the systems.

Keywords: Genetic Programming, Rule Extraction, Data Mining.

1 Introduction

Recently, computer systems have increased in size. With this increase of them
connecting with Local Area Network (LAN), many TCP/IP services such as http
service have been offered for the system users. The administration of the systems,
therefore, have become more complex and difficult to detect some errors.

Several studies have been made to automatically analyze system log files in
order to decrease such administrators’ duty (cf. [1,2,3]). However, the main pur-
pose of these studies was to diagnose the problem of the systems, by focusing
of only one service (http), file (/var/log/messages), or protocol (simple network
management protocol), based on some expert knowledge that the researchers
manually analyzed in detail. Certainly, this aim is useful, but the real purpose
of the administrators is not to focus on only one service but to manage all their
systems including many personal computers (PC), devices, and so on.

Based on the aim, we extended [4] an Automatically Defined Groups (ADG)
based on Genetic Programming (GP) [5,6,7]. However, it was not clear whether
this extended ADG could acquire rules composed of multiple terms. Therefore,
we re-evaluated the effectiveness focusing on these points; ‘Can acquire multiple
rules?’, ‘Can the rules be ordered by the supported agents?’, and ‘Can the rules
consist of multiple terms?’.

B. Apolloni et al. (Eds.): KES 2007/ WIRN 2007, Part II, LNAI 4693, pp. 411–418, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

412 Y. Kurosawa et al.

Fig. 1. Sample Messages in RFC3164 Fig. 2. Sample HTML Messages

2 Descriptions of System Log and Its Analysis

We do not simply deal with system log files because there are various formats. For
example, RFC3164 proposed a syslog protocol [8]. According to the document,
system log files describe messages generated by certain events on various types
of sender such as computer. No concrete detail is described as this definition
mentions, however. Fig.1 shows four valid sample logs described in RFC 3164.
Moreover, we further exemplify the difference of the format; see Fig.2.

By comparing these samples, log files have no unified format to describe some
events.We may automatically analyze even these types of format by using de-
tailed and appropriate knowledge. However, such ambiguous format must make
administrators difficult to maintain the systems in case of lack of appropriate
knowledge. In next section, we will discuss this type of difficulty.

2.1 Problems as to Log Files When Managing Systems

According to the paper previosly mentioned [4], when administrators check their
systems whether they work well or not, the administrators may be confronted
with the following problems at least; ‘lack of knowledge on system’, ‘enormous
data size’, and ‘temporary lack of knowledge by change of some kind’. To solve
them, simple translation method based on regular expressions was proposed.

In [4], some tags such as <DATE> and <TIME> were given to some fields
because the fields can be easily understood. Furthermore, the other types of
tags were given by using existing databases in the system. For example, tags
such as <HOST> and <REMOTEHOST> relate to hostname. They can be
distinguished each other by using appropriate commands related to the system
database, e.g., “ifconfig.” In the same way, by using the other command “id” or
“groups,” we can distinguish ’username’ or ’groupname’ with words appeared in
the log messages. If the system can not understand the content of the fields, it
gave <EXP> tag including explanation of some sort. Thus, their procedure is
simple because of the realization without knowledge.

3 Extracting Rules Using Automatically Defined Groups

3.1 Concept of Automatically Defined Groups

In this section, we introduce the ADG method [4,5,6,7]. The method is based on
evolutionary computing and can optimize both the grouping of agents and the
program of each group in the process of evolution. By grouping multiple agents,

Reconsideration of the Effectiveness 413

1

2

3
4

Grouping

reference

 program
for role A

 program
for role B

An individual of ADG-GP

Fig. 3. Concept of ADG

{2} {1,2,3,4}

agent 1

2 3

agent
 1,2,3,44

crossover

agent 1
2 3

4

agent
 1,3,4 2

agent 1,2 agent 1,3
3 4

2 4

crossover

agent
 1,2,3

agent
 1,2,34 4

{1,2} {1,3},
{1,2} {1,3}

(type b) (type c)

Fig. 4. Examples of crossover

we can easily analyze the behavior of agents. The acquired group structure is
utilized for understanding how many roles are needed and which agents have
the same role. That is, the following three points are automatically acquired by
using ADG. (1)How many groups are required to solve the problem? , (2)Which
group does each agent belong to? , and (3)What is the program of each group?

A team that consists of all agents is regarded as one GP individual. One
GP individual maintains multiple trees, each of which functions as a specialized
program for a distinct group as shown in Fig. 3. We define a group as the set
of agents referring to the same tree for the determination of their actions. All
agents belonging to the same group use the same program.

Generating an initial population, agents in each GP individual are divided
into groups at random. Crossover operations are restricted to corresponding
tree pairs. For example, a tree referred to by an agent 1 in a team breeds with
a tree referred to by an agent 1 in another team. However, we consider the sets
of agents that refer to the trees used for the crossover. The group structure is
optimized by dividing or unifying the groups according to the relationship of the
sets. The crossover operations are shown in Fig. 4. In addition, the (type a) is
ommited because the structure of each individual is unchanged.

3.2 Extracting Multiple Rules Using ADG

The ADG method can be utilized as a rule extraction method for classifying
positive and negative cases in database. Respective trees in an individual of
ADG represent the logical expressions, and return true or false for each data.
If one or more trees return true for an input data, the data is regarded as a
positive case. The fitness f is calculated by the following equation (1).

f =
HAbnormal/LAbnormal

HNormal/LNormal
− β

∑
NNormal

fault agent

HNormal × Nagent
− δ Vw (1)

In this equation, L means the number of line in log files. Thus, LAbnormal and
LNormal means the number of line in the abnormal/normal state respectively.
H means that one or more trees in an individual return true for a log message.
When the rule returns true for data in the normal state log file, fault agent,
that is, the number of agents who support the wrong rule, was counted. Thus,

414 Y. Kurosawa et al.

the third term represents the average rate of agents who support the wrong rules
when its misrecognition happens. Moreover, Vw is the variance of every agent’s
load, which is introduced from the viewpoint of load balancing among agents.

The concept of each agent’s load arises from the viewpoint of cooperative
problem solving by multiple agents. The load is calculated from the adopted
frequency of each group’s rule and the number of agents in each group. The
adopted frequency of each rule is counted when the rule returns true to the
messages in abnormal state log. If multiple trees return true for a message, the
frequency of the tree with more agents is counted. When the agent a belongs to
the group g, the load of the agent wa is defined as follows:

wa = fg/ng
agent (2)

where ng
agent represents the number of agents which belong the group g, and fg

represents the adopted frequency of g.
In addition, in order to inhibit the redundant division of groups, f is multiplied

by γG−1 according to the increase of the number of groups, G, in the individual.
γ is a penalty coefficient on the number of groups.

Last, we explain their logical tree in their paper.

(include <SORT> unexpected) ∧ (include <EXP> warning)

The second argument of each term such as <SORT> and <EXP> represents
the attached tag. If the message enclosed in the tag includes the word specified
by the third argument, this expression returns true. In addition, the logical
expression has to return false for any logs in normal state.

3.3 System State Pattern for Supervised Information

In general, when machine learning method is performed, some sort of supervised
information is needed. However, using ‘System State Pattern (SSP)’, we can deal
with log data without supervised information [4]. The SSP means a kind of state
transition of the system: from normal state to abnormal one, or from abnormal
state to normal one. By comparing both states, we may find some differences.
That is to say, this SSP approach is based on the heuristics of an idea that error
messages will appear in the only abnormal log, and is adopt to extract rules
without supervised information.

4 Experiments

We perform two experiments to achieve the aim mentioned above. One is an
experiment (Experiment 1) on the basis of artificial log files, which is performed
to check whether the ADG can extract rules composed of multiple terms. The
other is an experiment (Experiment 2) by adopting log files stored from actual
computers.

Reconsideration of the Effectiveness 415

4.1 Experiment 1: Rule Extraction from Artificial Logs

In this paper, the artificial log files are made by the following procedure. At
first, we assume the situation where we must manage five hosts having the same
two log files. Each file includes 300 messages, that is, 300 lines. In addition,
these 10 log files (two files by five hosts) are exactly the same. Each message
consists of five kinds of tag-and-word set; <LOGNAME>, <TIME>, <HOST>,
<REMHOST>, and <EXP>. The number of word list are 1, 4, 5, 5, and 17,
and each word is arbitrarily selected from actual log files except for <HOST>
and <REMHOST>.

Then, one of two files mentioned above is treated as normal, and the other is
treated as abnormal. At this point, we change some tag-and-word sets only in
the certain abnormal log files according to the following two steps. That is, this
is the case that system errors occur on purpose.

Step 1. We arbitrarily select two hosts, i.e. host1 and host2. Then, we can
change some words including a tag <REMHOST> only in the abnormal
log files of the selected hosts. For example, we replace the word ‘host1’ and
‘host2’ with ‘host5’ including the tag. These replacements means that some
errors occur when sending data from ‘host1’ to ‘host5’ or sending data from
‘host2’ to ‘host5’. In addition, we change the tag once regarding ‘host1’, and
three times regarding ‘host2’. Thus, this means that the number of the error
related to ‘host1’ is three times larger than the one related to ‘host2’.

Step 2. We replace an arbitrary word in the <EXP> with the same word men-
tioned at (Step 1), ‘host5’, in both normal/abnormal files. In this paper, we
perform this replacement five times. The replacement makes it difficult that
we find errors by focusing on the word frequency because the files are almost
equivalent.

Therefore, these log files are assumed that there are five hosts, and two of
them encounter certain accidents.

We applied ADG to these artficial log message data. In this paper, GP func-
tions and terminals are shown in Table 1.

Fig. 5 illustrates the change of the average number of groups. Because each
group refer to one diagnostic rule, the number of groups corresponds to the
number of the extracted rules. These agents belonging to approximately four
groups mainly seek four rules for detecting system errors. Particularly in the
best individual, two rules were extracted. The two extracted rules are shown in
Fig. 7.

The first two lines means a rule to check whether <HOST> includes ‘host1’
and <REMHOST> includes ‘host5’, respectively. We clearly understand that
this extracted IF-THEN rule can detect the error related to ‘host5’, made by
the two steps mentioned above. In addition, these two terms are minimum, and
this rule composed of the terms is the best one in order to detect the errors.
If this type of error should not be detect by focusing on the frequency of the
host ‘host5’ because this host name is even distribution in the log files. On the
other hand, our proposed method can detect this type of error. Therefore, we

416 Y. Kurosawa et al.

Table 1. GP Functions and Terminals

symbol #args functions
and 2 arg0 ∧ arg1

include 2 if arg0 (Tag) includes arg1 (Word), return T else return F
<HOST>,<EXP>, . . . 0 Tag name

0,. . . ,N-1 0 selected number in word list

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 0 100 200 300 400 500

A
ve

ra
ge

 o
f n

um
be

r
of

 g
ro

up
s

Generation

Fig. 5. Change of the average of the num-
ber of groups : Experiment 1

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 200 400 600 800 1000

A
ve

ra
ge

 o
f n

um
be

r
of

 g
ro

up
s

Generation

Fig. 6. Change of the average of the num-
ber of groups : Experiment 2

conclude that the method is effective to extract diagnostic rules from log files
even including co-occurrence relations such as “error” and “not find.”

Next, the second rule in Fig. 7 is complicated because the rule consists of
many terms, and the same term exists in the rule: “(include <HOST> host2).”
This rule, in a sense, is redundant because this type of error can be detect by only
two terms as we previously mentioned. However, no misdetection could occur by
using this rule. Therefore, all these terms work to identify the messages only in
the abnormal message.

Last, we take the number of agents which support the rules into account. The
support number of the first rule is 50, and the one of the second rule is 150. This
means that all 200 agents is appropriately divided into two groups according to
the error rate between ‘host1’ and ‘host2’ mentioned at Step 1.

4.2 Experiment 2: Rule Extraction from Actual System Logs

In Experiment 2, we apply ADG to the actual log message data. Our 322 target
files, such as syslog files and html logs, were collected on a server. These files
consisted of 90,762 normal state lines, and 88,336 abnormal state lines. The files
differed from the ones collected in our previous work [4]. In order to describe these
log files, we needed 25 tags as well as the previous work. However, maximum
word list size N was 935, and the word list with max size belonged to the <EXP>
tag. The respective weights in equation (1) and the other parameters were the
same in Experiment 1.

Reconsideration of the Effectiveness 417

Fig. 7. Extracted
Rules: Ex.1

Fig. 8. Extracted
Rules: Ex.2

Fig. 9. Extracted Logs: Ex.2

Fig. 6 illustrates the change of the average number of groups1. These agents
in each individual seem to be divided into approximately eight groups although
these numbers fluctuate greatly. In the best individual, 200 agents were divided
into 17 groups, that is, 17 rules were extracted. By using these rules, we tried to
detect errors from the same log files, the abnormal state files, which were used
when extracting the rules, that is, as closed testing procedure. As a result, we
can detect 16,877 messages.

Fig. 8 shows a part of the acquired rules that correspond to the tree struc-
tured presentation in the best individual. These rules are arranged according
to the number of agents. This figure illustrates the effectiveness of the ADG
method because the first rule consists of multiple terms. In addition, this case
has something to do with the ‘DHCP’ as shown in Fig. 9.

Both the third rule and fourth rule in Fig. 9 include “***.***.***/AAAA/IN,”
related to ‘host name’ in the tag <EXP>. This description is not to easy to
understood at the first glance. However, by referring the description from the
log files, we understand that the words have something to do with the DNS error
because the message includes “unexpected RCODE(SERVFAIL).”

4.3 The Effectiveness of the ADG

We confirmed the following points from our experiments: (a)we could acquire mul-
tiple rules, (b)the rules could be ordered by the number of agents, and, (c)the rules
could consist of multiple terms from both the artificial data and the real data.

These points are the ones which previous work less explained [7]. Especially,
the third point is very important because the real log files include the message
such as “Error was not found” and we can not detect whether the message is
normal or abnormal without focusing on the co-occurrence of the word such as
‘error’ and ‘not’. Therefore, the ADG method is effective in such case.

5 Conclusions and Future Work

We re-evaluated the ADG on the basis of evolutionary computation. As a result,
we found 17 rules and one of them had two terms in Experiment 2. That is,
1 We selected 1000 generations to unify the experimental condition in the paper [9].

418 Y. Kurosawa et al.

we confirmed that we could extract multiple rules composed of multiple terms.
Moreover, It is important that we could perform the extraction without any
expert knowledge and supervised information compared with [1,2,3].

However, the optimization may not be sufficient in the real data as shown
in Fig.6 because the number of tags (25) is relatively large and the number of
terminals (935 words) is considerably large. Thus, the optimization such as the
decrease of tags and terminals is planned for one of our future works.

In addition, we did not apply any natural language processing, e.g., morpho-
logical analysis, to log files. However, the files include various messages written
by natural language, especially Japanese. Thus, we will adopt natural language
processing techniques (i.e. [10,11]) as preprocessing, and apply to GP.

References

1. Andrews, J.H.: Theory and practice of log file analysis. Technical Report 524,
Department of Computer Science, University of Western Ontario (1998)

2. Cooley, R., Mobasher, B., Srivastava, J.: Data preparation for mining world wide
web browsing patterns. Knowledge and Information Systems 1(1), 5–32 (1999)

3. Büchner, A.G., Baumgarten, M., Anand, S.S., Mulvenna, M.D., Hughes, J.G.: Nav-
igation pattern discovery from internet data. In: Proc. of the Web Usage Analysis
and User Profiling Workshop, pp. 25–30 (1999)

4. Kurosawa, Y., Hara, A., Ichimura, T., Kawano, Y.: Extraction of Error Detection
Rules without Supervised Information from Log Files Using Automatically Defined
Groups. In: Proc. of the IEEE International Conference on Systems, Man and
Cybernetics (SMC2006), pp. 5314–5319 (2006)

5. Hara, A., Ichimura, T., Yoshida, K.: Discovering Multiple Diagnostic Rules from
Coronary Heart Disease Database Using Automatically Defined Groups. Interna-
tional Journal of Manufacturing 16(6), 645–661 (2005)

6. Hara, A., Ichimura, T., Takahama, T., Isomichi, Y.: Discovery of Cluster Struc-
ture and The Clustering Rules from Medical Database Using ADG; Automatically
Defined Groups. In: Ichimura, T., Yoshida, K. (eds.) Knowledge-Based Intelligent
Systems for Healthcare, pp. 51–86 (2004)

7. Hara, A., Nagao, T.: Construction and analysis of stock market model using ADG;
Automatically Defined Groups. International Journal of Computational Intelli-
gence and Applications (IJCIA) 2(4), 433–446 (2002)

8. Lonvick, C.: The BSD Syslog Protocol, RFC3164 (August 2001)
9. Kurosawa, Y., Hara, A., Ichimura, T.: Preprocessing techniques for extracting com-

puter diagnostic rules by ADG. In: Proc. of the IEEE Three-Rivers Workshop on
Soft Computing in Industrial Applications (SMCia2007), IEEE Computer Society
Press, Los Alamitos (to appear, 2007)

10. Kurosawa, Y., et al.: A description method of syntactic rules on filmscripts. Journal
of Natural Language Processing (in Japanese) 12(6), 25–62 (2005)

11. Mera, K., Kurosawa, Y., Ichimura, T.: Emotion Oriented Interaction system for
Elderly People. In: Ichimura, T., Yoshida, K. (eds.) Knowledge Based Intelligent
Systems for Health Care, Advanced Knowledge International (2004)

	Reconsideration of the Effectiveness on Extracting Computer Diagnostic Rules by Automatically Defined Groups
	Introduction
	Descriptions of System Log and Its Analysis
	Problems as to Log Files When Managing Systems

	Extracting Rules Using Automatically Defined Groups
	Concept of Automatically Defined Groups
	Extracting Multiple Rules Using ADG
	 System State Pattern for Supervised Information

	Experiments
	Experiment 1: Rule Extraction from Artificial Logs
	Experiment 2: Rule Extraction from Actual System Logs
	The Effectiveness of the ADG

	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

