
Rule Induction for Classification Using
Multi-objective Genetic Programming

A.P. Reynolds and B. de la Iglesia

School of Computing Sciences,
University of East Anglia,

Norwich

Abstract. Multi-objective metaheuristics have previously been applied
to partial classification, where the objective is to produce simple, easy
to understand rules that describe subsets of a class of interest. While
this provides a useful aid in descriptive data mining, it is difficult to see
how the rules produced can be combined usefully to make a predictive
classifier. This paper describes how, by using a more complex represen-
tation of the rules, it is possible to produce effective classifiers for two
class problems. Furthermore, through the use of multi-objective genetic
programming, the user can be provided with a selection of classifiers
providing different trade-offs between the misclassification costs and the
overall model complexity.

1 Introduction

Earlier work by the authors [1,2,3,4] described the application of multi-objective
metaheuristics to the problem of partial classification [5]. This problem is the
search for simple rules, that represent ‘strong’ or ‘interesting’ descriptions of a
specified class, or subsets of the specified class, even when that class has few
representative cases in the data. These rules are of the form

– if age ≥ 28 and firstDegree = mathematics and attendance ≥ 90% then
result = distinction

where the antecedent is a conjunction of simple attribute tests and the conse-
quent, describing the class of interest, is the same for all rules generated.

Such simple rules may have high confidence, in that the rule produces few false
positives. They may have high coverage, in that they describe a high proportion
of the class of interest. Multi-objective metaheuristics can be used to produce
different trade-offs between confidence and coverage. However, this simple rule
representation is insufficiently descriptive to produce an individual rule with
both high confidence and coverage.

In other work, Ghosh and Nath [6] used a multi-objective genetic algorithm
for association rule mining, optimizing the accuracy, comprehensibility and in-
terestingness of the rules produced. Association rules are similar to that shown
above, but with tests usually limited to equalities and with an unconstrained
consequent that may be any conjunction of such tests.

S. Obayashi et al. (Eds.): EMO 2007, LNCS 4403, pp. 516–530, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Rule Induction for Classification 517

Both partial classification and association rule mining fall primarily into the
category of descriptive data mining. A natural question is, can this work with
simple descriptive rules be extended or modified to create understandable and
highly predictive models that can classify previously unseen records? There are
two approaches to take to this task: select a subset of the simple rules created
to act as a classifier or increase the expressiveness of the rule representation.

Ishibuchi et al. [7,8] take the first of these approaches. In their work, a multi-
objective algorithm is used to select a small subset of association rules produced
by another algorithm, minimizing rule set complexity and error rate. However,
this approach has a number of disadvantages:

– A good rule set may contain individuals that are far from the Pareto-front,
according to the objectives of rule confidence and support [8]. Hence a very
large set of simple rules must be created. For example, from a small training
set of 342 records, 17070 classification rules were extracted, from which the
multi-objective metaheuristic selected no more than 25 [8].

– Ideally, a record should assigned to a class if any of the rules in the rule set
make this prediction. Then each rule provides a useful description of a subset
of the data. However, in practice rules may make conflicting predictions. To
handle conflicts, Ishibuchi et al. essentially create a decision list rather than
a simple rule set [9], with rules lower on the list being used only when none
of the higher rules apply. Converting such a list to a simple rule set reveals
added complexity hidden in the decision list representation.

– A set of rules may not be the simplest way in which to represent a model of
the data. This is illustrated by the example given in section 2.

In this paper we take the alternative approach of using a more expressive
rule representation, specifically by using expression trees. While there is much
literature on the use of genetic programming to optimize trees for the purposes
of classification, this mostly concentrates on the optimization of decision trees,
e.g. [10,11,12,13]. In particular, Mugambi and Hunter [14] apply multi-objective
genetic programming to decision tree induction, optimizing both tree accuracy
and tree simplicity. However, decision trees are different to the expression trees
developed in this paper, with internal nodes that define partitions of the data and
leaf nodes that indicate class membership. While rules may easily be extracted
from such decision trees, we concentrate in this paper on the direct production
and optimization of rules.

The work of Setzkorn and Paton [15,16] is perhaps more relevant to this paper,
applying multi-objective genetic programming directly to fuzzy rule induction.
However, internal nodes are restricted to two fuzzy forms of the boolean ‘and’
operation and the algorithm optimizes sets of these rules.

Section 2 provides details of the expression tree representation used. This
representation is manipulated by a multi-objective metaheuristic to produce
models with different trade-offs between model complexity and model accuracy
(section 3). Section 4 describes the experiments performed and presents the re-
sults of using this approach. Finally, section 5 presents some conclusions and
section 6 describes areas of further research.

518 A.P. Reynolds and B. de la Iglesia

2 Rule Representation and Manipulation

2.1 Attribute Tests

The algorithm described in this paper manipulates rules of the form

antecedent → consequent ,

where both antecedent and consequent are constructed from attribute tests.
Three different types of attribute test (AT) are used:

Value: e.g. colour = red,
Inequality: e.g. colour �= green,
Binary partition: e.g. age ≥ 42 or height ≤ 156.

Value and inequality tests are used exclusively on categorical fields, while binary
partition tests can only be used with a numeric field. A more detailed description
of ATs and some alternative AT types may be found in previous work [4].

2.2 Attribute Test Representation

Values occurring in each field are stored in reference arrays. The index values,
rather than the values from the database, are used in the representation of the
ATs as shown in figure 1. Each AT type is represented and mutated as follows:

Value/Inequality: Represented by the categorical field number and the cate-
gory index. A mutation changes the category index to random value.

Binary partition: Represented by the numeric field number, the index of
the bound value and a flag indicating the type of bound. A mutation changes
the index of the bound by up to 20% of the number of values that occur in the
database, while ensuring that the AT does not become trivial or impossible
to satisfy. The type of the bound is not changed.

The algorithm manipulates rule antecedents constructed from combinations
of different ATs. The consequent is fixed, representing the class of interest. Any
unseen record that matches the rule antecedent is predicted to belong to the
class of interest. However, in contrast to previous work, any record that does
not match the rule antecedent is predicted to belong to some other class.

Categorical fields
0: Sex
1: State
2: Education
3: Hair colour

Categories
0: School
1: Degree
2: Masters
3: Doctorate

2 1 Education = Degree

Numeric fields
0: Age
1: Children
2: Height (cm)
3: Weight

Values
0: 150
1: 152
2: 155
3: 156
4: 157
5: 159
6: 160

Height ≥ 156cm2 3 ≥

Fig. 1. Representation of a categorical value AT and a binary partition AT

Rule Induction for Classification 519

Age ≥ 28 Attendance ≥ 90%

Degree = Maths Degree = Physics

Job = Engineer

Hobby = Chess

OR

AND

AND

OR

OR

Fig. 2. A binary boolean expression tree

2.3 Rule Trees

ATs are combined in expression trees that represent the rule antecedent, as
shown in figure 2. Leaf nodes contain ATs, while internal nodes contain a boolean
operator. These operators have been restricted to be either ‘or’ or ‘and’ in the
experiments reported here, though it is easy to include additional boolean opera-
tors if desired. Notice that the tree contains only 6 ATs, one per leaf node, rather
than the 12 required to represent this antecedent as a set of simple rules. In order
to simplify the genetic operators used, binary trees are used. This increases the
number of internal nodes, but leaves the number of leaf nodes unaltered. Note
that such trees may easily be converted into rule sets if this is how the client
wishes to view the models produced.

2.4 Genetic Operators

Initialization: The population is initialized with randomly generated balanced
trees of depth two, where the root node is considered to be at depth zero.

Mutation: During mutation, there is a 50% probability that a random AT is
mutated, a 25% probability that an AT and its parent node is removed and a
25% probability that a random AT with a new internal node is added.

Crossover: Subtree crossover [17] proceeds by selecting a node at random in
each tree and swapping the subtrees headed by these nodes. As is commonplace
in genetic programming, a choice between crossover and mutation is made when
creating new solutions, rather than both being applied probabilistically.

2.5 Bloat and Rule Simplification

It is well established that solutions generated during genetic programming tend
to suffer from bloat, i.e. they grow excessively, often without any great improve-
ments in fitness [17,18]. Such solutions usually contain redundant sections, re-
ferred to as introns. It has been suggested that the occurrence of such introns

520 A.P. Reynolds and B. de la Iglesia

Age ≥ 28

Age ≥ 27Weight ≥ 55 Age ≤ 16 Sex = Male

OR

AND

ANDAND

Age ≥ 28

AND

FalseTrue

False Weight ≥ 55

Simplify

Fig. 3. Simplifying the right hand subtree by assuming a value of ‘true’ for the left
hand subtree

should not be hindered [19], as they protect solutions from the more destructive
effects of crossover. However, bloat leads to an increase in evaluation times and
may also interfere with finding better solutions, since time is spent manipulat-
ing the introns rather than useful code[20]. Langdon and Poli [18] suggest that
“since no clear benefits offset these detrimental effects, practical solutions to the
code bloat phenomenon are necessary to make GP and related search techniques
feasible for real-world applications”.

In this paper, bloat is counteracted in three ways. Firstly, although the sim-
plicity of a rule is already considered as an objective of the problem, counter-
acting bloat provides an additional reason for using this objective. Using rule
simplicity in this way has been found to be effective in reducing code bloat in
the literature [20]. Secondly, rule simplification is performed, removing redun-
dant sections from rules. Finally, since these measures alone are insufficient to
eliminate bloat, a simple limit on rule size is imposed. If, after simplification, a
rule exceeds this AT limit, ATs and their parent nodes are removed until the
constraint is satisfied. In this paper, this limit has been set to 20 ATs, in order
to demonstrate the effect of rule size on misclassification costs. In practice, this
limit is likely to be set to a smaller value, since 20 AT rules are too large for
easy human comprehension and smaller rules can be evaluated more quickly.

Figure 3 illustrates the rule simplification performed. Here, the right hand sub-
tree need only be evaluated if the left hand subtree evaluates to ‘true’. Therefore,
assuming that the left hand subtree is ‘true’, we determine which nodes in the
right hand subtree must be ‘false’ or must be ‘true’, simplifying as shown. Sim-
ilarly, if the root node of a tree contains the boolean operation ‘or’, the right
hand subtree need only be evaluated if the left evaluates to false. Note that such
simplifications can still be made if the left hand subtree has more than one node.
All simplifications of this form are made at every internal node in the rule tree.

Note that this does not ensure that the rule is as simple as possible. For ex-
ample, we do not currently use the distributivity law to simplify rules. Similarly,
given three colours, red, green and blue, the rule antecedent colour �= red and
colour �= blue could be simplified to colour = green.

Rule Induction for Classification 521

3 Rule Evaluation

If the understandability of the rule is not a concern, then the overall aim is to
produce a rule that, when applied to previously unseen data, minimizes the ex-
pected costs of misclassification. In practice, we minimize total misclassification
costs on the training data and rule complexity.

There are two reasons for minimizing rule complexity:

– The more complex a rule is permitted to be, the more likely it is that overfit-
ting [9] will occur, making accuracy on training data an unreliable measure
of accuracy on unseen data.

– Simple rules are easier to understand. If part of the aim of classification
is the extraction of knowledge, for example when attempting to discover
patterns in scientific data, it has been argued [21] that the classifier must
be comprehensible to a human expert. Also, a client is more likely to use a
classifier if he understands it.

3.1 Misclassification Costs

Rule antecedents generated by our algorithm describe the class of interest, with
any record not matching the antecedent assumed to be not in the class. A ‘false
positive’ occurs when the rule predicts that a record belongs to the class of
interest when it does not, and a ‘false negative’ occurs when the rule predicts
that a records does not belong to the class of interest when it does.

Using equal false positive and false negative costs results in the minimization
of the simple error rate. This commonly used measure of performance is not
always appropriate, for example when a false positive results in additional labour
while a false negative results in injury or death. Also, if the class of interest is
small, minimizing the simple error rate may merely result in the rule that predicts
that all records are not in the class. If the class is truly of special interest, the
false negative cost must be increased to discover of patterns of interest.

In the experiments reported, we have also used the balanced error rate:

BER =
1
2

(
No. of false positives

Total number of positives
+

No. of false negatives
Total number of negatives

)

Other experiments were performed with a false positive cost of 1 and a false
negative cost of 10.

3.2 Measuring Rule Complexity

In most of our experiments, the complexity of a rule is given by the number of
ATs in the rule tree. This simplifies the comparison of results obtained with dif-
ferent parameter settings and ensures that the complement of the rule, describing
records that do not belong to the selected class, has the same complexity. (Note
that the same could not be said if the categorical inequality AT type was not

522 A.P. Reynolds and B. de la Iglesia

Age ≤ 27

AND

Colour = Orange

Colour = Red

Colour = Yellow

OR

OR

OR

Sex = Male

Age ≤ 27

AND

Weight ≥ 55

Colour = Red

Height = Tall

AND

OR

OR

Sex = Male

Fig. 4. Rules of the same size need not be equally understandable to the human reader

used.) While counting the ATs has the advantage of simplicity, it may not ac-
curately portray the ease with which a rule can be understood. In figure 4 the
first tree is easier to comprehend than the second, due to the repeated use of the
both the same operator and the same attribute in the right hand subtree.

In practice, rule complexity also depends upon the client and upon his or her
preferences regarding rule presentation. For example, the client may prefer to
see the second rule in figure 4 presented as the following rule set.

– if age ≤ 27 and sex = male then...
– if age ≤ 27 and colour = red and weight ≥ 55 then...
– if age ≤ 27 and colour = red and height = tall then...

In this case, the rule complexity may be given as eight ATs rather than the five
in the original rule tree. Fortunately, the algorithm used can easily be adapted
to use this and other measures of rule complexity and an example is given at
the end of section 4.

4 Experimentation and Results

4.1 Data

Rules were extracted from five datasets from the UCI machine learning repos-
itory [22]: the Adult, Forest Cover Type, Contraception, Breast Cancer (Wis-
consin) and the Pima Indians Diabetes datasets. Any records containing missing
data were removed prior to applying the algorithm. Table 1 describes the datasets
in more detail.

The Adult dataset and on 10,000 records selected at random from the Cover
Type dataset were used to tune algorithm parameters (section 4.2), before run-
ning the algorithm on all five of the datasets.

4.2 Algorithm and Parameter Tuning

The multi-objective metaheuristic selected for the optimization of rule trees was
NSGA II [23,24], using an external store to hold the best solutions found. This

Rule Induction for Classification 523

Table 1. Datasets used and classes of interest

Fields: Class of Class
Name Records Numeric Categorical Classes Interest Prevalence
Adult 45222 6 8 2 Salary > $50,000 24.8%
Cover type 581012 10 2 7 Spruce-fir 36.5%
Contraception 1473 5 4 3 No contraceptive use 42.7%
Breast cancer 683 10 0 2 Malignant 35.0%
Pima Indians 532 7 0 2 Test positive 33.3%

10 20 50 100 200

0%
20%

40%
60%

80%

302%

303%

304%

305%

306%

307%

308%

309%

310%

T
o

ta
l c

o
st

s

Population size

Crossover
rate

10 20 50 100 200

0%
20%

40%
60%

80%

302%

303%

304%

305%

306%

307%

308%

309%

310%

T
o

ta
l c

o
st

s

Population size

Crossover
rate

Fig. 5. Comparison of different crossover rates and population sizes for the Adult and
Cover Type datasets, using equal false positive and false negative costs

algorithm has been shown to be an effective multi-objective optimizer, both in
general and when optimizing rules [1,2,3,4]. Parameter tuning was performed
on the Adult dataset and on 10,000 records selected at random from the Cover
Type dataset, minimizing the simple error rate and the number of ATs.

The number of different parameters and potential variations of the algorithm
made the cost of exhaustive experimentation with parameter settings prohibitive.
Instead, effort was focused on finding the best values for crossover rate and
population size only. Experiments were performed with six population sizes, 10,
20, 50, 100, 200 and 500, and six crossover rates, 0%, 20%, 40%, 60%, 80% and
100%. Each experiment consisted of 30 runs of the algorithm, with 200,000 rule
evaluations per run. Results were compared by summing the error rates of the
best rule at each level of rule complexity, up to 20 ATs. This is equivalent to
comparing on the dominated area in the objective space [25]. Mean results are
shown in figure 5. Results with a population size of 500 or a crossover rate of
100% are omitted since these were considerably worse than the results displayed.
Similar graphs were obtained when minimizing the balanced error rate and when
the false negative cost was increased to ten times the false positive cost. In each
case, best performance was obtained using a crossover rate of 20% or 40% and a
population size of 100 for the Adult dataset and 50 for the Cover Type dataset.

524 A.P. Reynolds and B. de la Iglesia

0.99

0.995

1

1.005

1.01

1.015

0 2 4 6 8 10 12 14 16 18 20
Number of ATs

S
ca

le
d

 c
o

st
s

0% crossover

20% crossover

40% crossover

60% crossover

80% crossover

Fig. 6. Comparison of performance at different crossover rates, using a population of
100 rules, the adult dataset and simple error rate. Results are scaled with respect to
the performance at 0% crossover, 100% mutation.

Figure 6 shows how performance varies with the crossover rate, at different
levels of rule complexity. While a certain amount of crossover is required to
produce good results, too much crossover (and hence too little mutation) results
in degraded performance for large rules. There are two possible reasons for this:

– Crossover applied to large rules results in major, disruptive changes when
subtle modifications may be more appropriate. Adapting the crossover op-
erator to be biased towards smaller changes is a matter for further research.

– A loss of diversity in the population, early in the search process, requires the
use of mutation to reintroduce useful ATs and subtrees. This would explain
the very poor performance obtained when using crossover only.

4.3 Training, Validation, Selection and Testing

Evaluating the performance of a new classification algorithm often consists of
two stages:

Training: The classifier is first trained using a set of training data to create a
model to be used for prediction.

Testing: The overall aim is to achieve high performance on unseen data, which
is not necessarily implied by high performance on the training data. There-
fore a set of test data is used to evaluate the model.

Suppose our algorithm is applied to data provided by a hypothetical client.
First the algorithm produces a range of rules from the training data with differing
trade-offs between misclassification cost and rule complexity. In order to give the
client some idea as to how well the rules produced generalize, the rules are re-
evaluated on new validation data. At this point, the client selects a rule. To
compare with other algorithms that produce just one model, we assume that
the client selects the rule with minimum misclassification costs on the validation
data, though in practice the client may elect to choose a simpler rule. To ensure
a fair comparison, this rule must be re-evaluated again on further test data.

Rule Induction for Classification 525

Table 2. Misclassification costs on test data and run times

Select best Select 5AT
Dataset Cost Mean StdDev ATs Mean StdDev Time (s)

Adult
Simple 14.42% 0.10% 19.6 15.64% 0.12% 1032
Balanced 17.82% 0.14% 18.0 19.42% 0.07% 957
1-10 12.45% 0.13% 15.8 12.90% 0% 898

Cover type
Simple 21.00% 0.19% 19.5 23.35% 0.08% 8217
Balanced 21.71% 0.31% 19.5 23.57% 0.16% 9168
1-10 10.58% 0.17% 19.2 11.20% 0.09% 7988

Contraceptive
Simple 29.45% 3.48% 8.8 29.46% 3.53% 55
Balanced 31.97% 3.78% 7.9 32.22% 4.18% 55

Breast cancer
Simple 4.14% 2.25% 4.2 4.10% 2.28% 37
Balanced 4.97% 2.53% 4.8 5.09% 2.61% 30

Pima Indians
Simple 24.38% 4.47% 4.9 24.48% 4.65% 47
Balanced 26.35% 6.25% 8.0 26.84% 6.33% 41

Both the Adult dataset and the Cover Type dataset were partitioned once
only, since the Adult dataset is already split into training and test data (30162
and 15060 records) and the size of the Cover Type dataset limits the amount
of experimentation that can be performed. The Adult training set provided was
split again at random, with approximately 80% forming the new training set
and 20% providing a validation set. The Cover Type data was split 50–25–25
at random, with 50% forming the training set. Each experiment consisted of 30
runs of the algorithm, using a crossover rate of 30% and a population size of 100
for the Adult dataset and 50 for the Cover Type data.

The smaller datasets were split into ten approximately equal parts to be used
as the test sets. For each test set, the remaining 90% of the records were split
at random into two roughly equal parts to be used as training and validation
sets for two experiments, resulting in 20 experiments for each dataset. This use
of ten fold cross validation allows for fair comparison with both the results of
Ishibuchi et al. [7,8] and with the results of 33 classifiers provided by Lim et al.
[26]. The algorithm was run 30 times for each experiment, resulting in 600 runs.
The parameter settings found to perform well for the Adult data (a crossover
rate of 30% and a population of 100) were used in these experiments.

4.4 Results

Table 2 shows the mean quality and size of the rule selected by the client if
he selects the best rule according to error rate on the validation data, breaking
ties on the training error rate. Mean error rates for the best 5 AT rule and the
approximate run time for one run on a 2GHz processor are also given.

The results obtained when the client chooses not to sacrifice rule accuracy can
be roughly compared with those provided in the UCI machine learning reposi-
tory [22] for the Adult dataset and those provided by Lim et al. [26] for the Breast

526 A.P. Reynolds and B. de la Iglesia

Cancer and Pima Indians datasets. In the first case, the UCI repository provides
results for 16 algorithms, with error rates of between 14.05% and 21.42% and
our algorithm ranks 3rd out of 17 algorithms. The 33 algorithms evaluated by
Lim et al. have error rates varying between 2.78% and 8.48% for the Breast
cancer dataset and between 22.1% and 31.0% for the Pima Indians dataset. Our
algorithm ranks 17th and 22nd out of 34 algorithms respectively.

The trade-off between misclassification costs, on both the training and vali-
dation data, and rule simplicity for the Adult dataset is shown in figure 7. Here,
the error bars give the standard deviation at each level of rule complexity.

13%

14%

15%

16%

17%

18%

19%

20%

21%

0 5 10 15 20
Number of ATs

E
rr

o
r

R
at

e

Training

Validation

17%

18%

19%

20%

21%

22%

23%

24%

25%

26%

0 5 10 15 20
Number of ATs

B
al

an
ce

d
 E

rr
o

r
R

at
e Training

Validation

11%
12%
13%
14%
15%
16%
17%
18%
19%
20%

0 5 10 15 20
Number of ATs

C
o

st
 (

1-
10

)

Training

Validation

Fig. 7. Rule quality for the adult dataset. Misclassification costs are given by the simple
error rate, the balanced error rate and by setting the false negative cost to be ten times
the false positive cost respectively.

Typical 5 AT rules, with associated confusion matrices, are shown in figures
8 to 10. The first rule is fairly accurate when predicting that a record belongs
to the class of interest, but it identifies little more than half of this class, since
more emphasis is placed on accuracy on the larger set of uninteresting records.
Subsequent rules have increases in the number of false positives and decreases
in the number of false negatives, as would be expected. The rules become less
restrictive as illustrated by the greater use of the boolean ‘or’ operation in figure
10, describing more of the class of interest but with decreased confidence.

Figure 11 shows the results obtained when optimizing the simple error rate
for the Breast cancer and Pima Indians diabetes datasets, allowing comparison
with the results obtained by Ishibuchi et al. [7,8]. The results obtained by the

Rule Induction for Classification 527

Cap. Gain ≥ 5178

Cap. Loss ≥ 1816 Cap. Loss ≤ 2001

Edu. Years ≥ 13

Mar. status = Civilian Spouse

AND

OR

AND

OR - +
- 10732 628

+ 1710 1990

Predicted

A
ct

ua
l

Confusion matrix

Fig. 8. A typical five AT rule antecedent, predicting a high salary, produced when
minimizing the simple error rate, with its confusion matrix on test data

Cap. Gain ≥ 4687

Age ≥ 30 Edu. Years ≥ 13

Edu. Years ≥ 9

Mar. status = Civilian Spouse

AND

OR

AND

OR

- +
- 8631 2729

+ 549 3151

Predicted

A
ct

ua
l

Confusion matrix

Fig. 9. A five AT rule antecedent produced when minimizing the balanced error rate,
with its confusion matrix on test data

two approaches on the Breast cancer data are broadly similar. Results for the
Pima Indians diabetes datasets are similar in testing — once ten or more rules
are permitted in the rule set, Ishibuchi et al. achieve error rates of approximately
24.8% — but on the training data Ishibuchi et al. only reach an error rate of
approximately 16% even when 20 rules of up to 3 tests each are permitted. Note
that both approaches result in rules that generalize poorly, as indicated by the
large disparity between training and testing error rates, though even the best
classifier evaluated by Lim et al. [26] has an error rate of 22.1% on test data.

Cap. Gain ≥ 4687

Age ≥ 28Edu. Years ≥ 13

Cap. Loss ≥ 2231

Mar. status = Civilian Spouse OR

OR

OR

AND

- +
- 6524 4836

+ 140 3560

Predicted

A
ct

ua
l

Confusion matrix

Fig. 10. A five AT rule antecedent produced when the cost of a false negative is ten
times that for a false positive

528 A.P. Reynolds and B. de la Iglesia

1%
2%
3%
4%
5%
6%
7%
8%
9%

0 5 10 15 20
Number of ATs

M
ea

n
 e

rr
o

r
ra

te Training

Validation

16%
17%
18%
19%
20%
21%
22%
23%
24%

0 5 10 15 20
Number of ATs

M
ea

n
 e

rr
o

r
ra

te

Training

Validation

Fig. 11. Error rates for the Breast cancer and Pima Indians datasets

Finally, the algorithm was modified to suit a user with a preference for viewing
rule sets, by changing the rule complexity objective to the number of ATs after
conversion to such a rule set. Applying this modified algorithm to the Adult
dataset and selecting an 8 AT rule set produced the following rules, with an
error rate of 15.01% in training and 15.19% in testing:

– If cap. gain ≥ 5178 then salary ≥ $50,000
– If cap. loss ≥ 2392 then salary ≥ $50,000
– If mar. status = civilian spouse and cap. loss ≥ 1762 and cap.

loss ≤ 1980 then salary ≥ $50,000
– If mar. status = civilian spouse and edu. years ≥ 13 and hours

per week ≥ 31 then salary ≥ $50,000
– Otherwise salary < $50,000

5 Conclusions

The results presented illustrate that the approach can produce reasonable results
on two class problems, though there is room for improvement. However, the
algorithm provides additional benefits. The most obvious is that the client can be
provided with a range of models with different trade-offs between rule complexity
and misclassification costs. This allows the client to select a rule that is accurate
enough while also being comprehensible.

The overall approach is also flexible. Rules may be presented to the client in
a number of ways and the measure of rule complexity can easily be adapted to
match the method of rule presentation and the client’s concept of rule compre-
hensibility. Different measures of misclassification cost can easily be used. There
is no restriction on the data types of the fields of the dataset and no need to
discretize numeric fields as required by other algorithms.

While the efficiency of the algorithm could be improved, the approach appears
to be able to handle larger datasets than that of Ishibuchi et al. While no timings
are given that would allow an effective comparison, Ishibuchi et al. report that
their approach has a large computational load [7] and the largest dataset to which
their code has been applied — the Pima Indians diabetes data — contains only
768 records. This is understandable, as even when applied to small datasets,
17070 simple rules are generated from which the genetic algorithm must select
a set. Many of these simple rules are unlikely to be useful in a full classifier.

Rule Induction for Classification 529

6 Further Research

Three or more classes: While the algorithm has been shown to be effective
for two class problems an obvious improvement would be to extend the
approach to handle three or more classes.

Three objectives: In practice, the client may only be able to approximate the
costs of false negatives and false positives. In this case, the problem may be
modeled as having three objectives to be minimized: the rule complexity, the
number of false positives and the number of false negatives.

Diversity management: Preliminary investigations revealed a major loss of
diversity in the population of rules early in the search process, even when no
simplification routines were applied. If techniques can be found that provide
better management of population diversity, the algorithm may be able to
produce better results in a fraction of the time.

Efficiency improvements: There is scope for a number of efficiency improve-
ments. For example, early in the search it makes little sense to evaluate the
rules on the entire dataset, when evaluation on just a sample will provide
enough information to guide the search at this stage.

Rule types: Other AT types (see previous work [2,4]) and operators may be
used to further enhance the expressiveness of the rules produced.

References

1. B. de la Iglesia, M. S. Philpott, A. J. Bagnall, and V. J. Rayward-Smith. Data
Mining Rules Using Multi-Objective Evolutionary Algorithms. In Proceedings of
2003 IEEE Congress on Evolutionary Computation, pages 1552–1559, 2003.

2. Beatriz de la Iglesia, Alan Reynolds, and Vic J Rayward-Smith. Developments
on a Multi-Objective Metaheuristic (MOMH) Algorithm for Finding Interesting
Sets of Classification Rules. In Evolutionary Multi-Criterion Optimization: Third
International Conference, EMO 2005, volume 3410 of Lecture Notes in Computer
Science, pages 826–840, March 2005.

3. B. de la Iglesia, G. Richards, M. S. Philpott, and V. J. Rayward-Smith. The ap-
plication and effectiveness of a multi-objective metaheuristic algorithm for partial
classification. European Journal of Operational Research, 169(3):898–917, 2006.

4. Alan Reynolds and Beatriz de la Iglesia. Rule induction using multi-objective
metaheuristics: Encouraging rule diversity. In Proceedings of the 2006 IEEE World
Congress on Computational Intelligence, pages 6375–6382. IEEE, 2006.

5. K. Ali, S. Manganaris, and R. Srikant. Partial Classification using Association
Rules. In Proceedings of the Third International Conference on Knowledge Discov-
ery and Data Mining, pages 115–118. The AAAI Press, 1997.

6. Ashish Ghosh and Bhabesh Nath. Multi-objective rule mining using genetic algo-
rithms. Information Sciences, 163:123–133, 2004.

7. Hisao Ishibuchi and Yusuke Nojima. Accuracy-Complexity Tradeoff Analysis by
Multiobjective Rule Selection. In Proceedings of the ICDM 2005 Workshop on
Computational Intelligence in Data Mining, pages 39–48, 2005.

8. Hisao Ishibuchi, Isao Kuwajima, and Yusuke Nojima. Multiobjective Association
Rule Mining. In Proceedings of the PPSN Workshop on Multiobjective Problem
Solving from Nature, 2006.

530 A.P. Reynolds and B. de la Iglesia

9. Ian H. Witten and Eibe Frank. Data Mining: Practical Machine Learning Tools
and Techniques. Elsevier, second edition, 2005.

10. T. Tanigawa and Q. Zhao. A Study on Efficient Generation of Decision Trees Using
Genetic Programming. In Proceedings of the Genetic and Evolutionary Computa-
tion Conference (GECCO 2000), pages 1047–1052. Morgan Kaufmann, 2000.

11. R. K. DeLisle and S. L. Dixon. Induction of Decision Trees via Evolutionary
Programming. Journal of Chemical Information and Modelling, 44(3):862–870,
2004.

12. J. Eggermont, J. N. Kok, and W. A. Kosters. Detecting and Pruning Introns for
Faster Decision Tree Evolution. In Parallel Problem Solving from Nature VIII,
volume 3242, pages 1071–1080. Springer-Verlag, 2004.

13. M. C. J. Bot. Improving Induction of Linear Classification Trees with Genetic
Programming. In Proceedings of the Genetic and Evolutionary Computation Con-
ference (GECCO 2000), pages 403–410. Morgan Kaufmann, 2000.

14. E. M. Mugambi and A. Hunter. Multi-Objective Genetic Programming Optimiza-
tion of Decision Trees for Classifying Medical Data. In Proceedings of the 7th
International Conference on Knowledge-Based Intelligent Information and Engi-
neering Systems (KES 2003), volume 2773 of Lecture Notes in Computer Science,
pages 293–299, 2003.

15. C. Setzkorn and R. C. Paton. MERBIS - A Multi-Objective Evolutionary Rule
Base Induction System. Technical Report ULCS-03-016, Department of Computer
Science, University of Liverpool, 2003.

16. C. Setzkorn and R. C. Paton. MERBIS - A Self-Adaptive Multi-Objective Evolu-
tionary Rule Base Induction System. Technical Report ULCS-03-021, Department
of Computer Science, University of Liverpool, 2003.

17. John Koza. Genetic programming: on the programming of computers by means of
natural selection. MIT Press, 1992.

18. William B. Langdon and Riccardo Poli. Foundations of Genetic Programming.
Springer, 1998.

19. P. J. Angeline. Genetic Programming and Emergent Intelligence. In K. E. Kinnear,
editor, Advances in Genetic Programming, pages 75–97. MIT Press, 1994.

20. A. Ekárt and S. Z. Németh. Selection Based on the Pareto Nondomination Crite-
rion for Controlling Code Growth in Genetic Programming. Genetic Programming
and Evolvable Machines, 2:61–73, 2001.

21. J. R. Quinlan. Simplifying decision trees. International Journal of Man-Machine
Studies, 27(3):221–234, 1987.

22. C. J Merz and P. M. Murphy. UCI repository of machine learning databases. Univ.
California, Irvine, 1998.

23. Kalyanmoy Deb. Multi-Objective Optimization using Evolutionary Algorithms.
John Wiley & Sons Ltd, 2001.

24. Kalyanmoy Deb, Samir Agrawal, Amrit Pratab, and T. Meyarivan. A Fast Eli-
tist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization:
NSGA-II. In Proceedings of PPSN VI, volume 1917 of Lecture Notes in Computer
Science, pages 849–858. Springer, 2000.

25. Eckart Zitzler and Lothar Thiele. Multiobjective Optimization Using Evolutionary
Algorithms: A Comparative Case Study and the Strength Pareto Approach. IEEE
Transactions on Evolutionary Computation, 3(4):257–271, 1999.

26. T.-S. Lim, W.-Y. Loh, and Y.-S. Shih. A Comparison of Prediction Accuracy, Com-
plexity, and Training Time of Thirty-three Old and New Classification Algorithms.
Machine Learning, 40:203–229, 2000.

	Introduction
	Rule Representation and Manipulation
	Attribute Tests
	Attribute Test Representation
	Rule Trees
	Genetic Operators
	Bloat and Rule Simplification

	Rule Evaluation
	Misclassification Costs
	Measuring Rule Complexity

	Experimentation and Results
	Data
	Algorithm and Parameter Tuning
	Training, Validation, Selection and Testing
	Results

	Conclusions
	Further Research

