
Computational Intelligence Algorithms For Risk-Adjusted

Trading Strategies

N.G. Pavlidis, E.G. Pavlidis, M.G. Epitropakis, V.P. Plagianakos, and M.N. Vrahatis

Abstract— This paper investigates the performance of trad-

ing strategies identified through Computational Intelligence

techniques. We focus on trading rules derived by Genetic

Programming, as well as, Generalized Moving Average rules

optimized through Differential Evolution. The performance of

these rules is investigated using recently proposed risk–adjusted

evaluation measures and statistical testing is carried out through

simulation. Overall, the moving average rules proved to be more

robust, but Genetic Programming seems more promising in

terms of generating higher profits and detecting novel patterns

in the data.

I. INTRODUCTION

Technical Analysis (TA) focuses on the identification of

price patterns and trends, as well as, the use of mechanical

rules to generate valuable economic signals (see [1] for a

thorough description of a number of simple trading rules).

Recent surveys [2] suggest that TA has been a major con-

stituent of financial practice in foreign exchange markets.

Moreover, a number of empirical as well as theoretical

studies [3], [4] during the past three decades suggest that

the application of TA in the foreign exchange market can

yield substantial excess returns. These findings raise doubts

on the validity of the efficient market hypothesis. Olson [5],

however, argues that abnormal profit opportunities arise due

to temporary inefficiencies which are in accordance with

an evolving market. He further argues that the returns of

simple trading rules over recent periods have declined, if not

completely disappeared.

In this work, we employ Genetic Programming (GP) to

identify novel trading strategies based only on the informa-

tion contained in the history of past price movements. GP

can be considered as a Computational Intelligence algorithm

that mimics the behavior of an optimizing agent in the

foreign exchange market. In this process it is critical to

select a performance measure that accounts not only for the

return obtained from a rule, but also penalizes rules for the

risk they undertake. To this end, a recently proposed risk

sensitive measure, Xeff, is used [6]. The performance of

the GP identified rules is compared to that of Generalized

Moving Average (GMA) rules [7]. The parameters of the

GMA rules are optimized using the Differential Evolution

(DE) algorithm [8] and the same objective function as that

used in GP.
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Finally, a simulation methodology is implemented to test

the statistical significance of the best performing strategies

identified through each approach. Our findings suggest that

the widely–used moving average rules exhibit a more robust

behavior than that of the more complicated GP generated

strategies. However, the hypothesis that the performance

of these rules can be attributed to well–known statistical

properties of the data cannot be rejected. On the other hand,

GP is capable of identifying patterns that cannot be explained

by traditional stochastic processes, so as to yield excess

returns.

The rest of this paper is organized as follows. Sections II

and III briefly describe the Genetic Programming and the

Differential Evolution algorithms. Section IV is devoted to

the presentation of the generalized moving average rules,

while Section V presents the risk sensitive performance

measures. The methodology of the simulations and the exper-

imental results (and their statistical analysis) are exhibited in

Sections VI and VII. Finally, the paper ends with a discussion

and concluding remarks.

II. GENETIC PROGRAMMING

In this Section we briefly outline the Genetic Programming

(GP) algorithm which was applied to identify new trading

rules. Conceptually, GP constitutes an extension of Genetic

Algorithms (GAs) in which individuals are no longer fixed-

length strings but rather computer programs expressed as

syntax trees [9]. GP individuals consist of function and

terminal nodes. Terminal nodes return as output the value

of either a constant, or an input variable, or a zero-argument

function. Thus, the arity of terminal nodes is zero. The set

of possible terminal nodes is called the terminal set, T .

Function nodes on the other hand, process their inputs to

compute an output. The function set, F , is composed of the

statements and functions available to GP.

The primary GP search operators are crossover and muta-

tion. In crossover, one subtree from each of the two selected

parents is exchanged between them to form two new indi-

viduals (offsprings). The motivation is that useful building

blocks for the solution of a problem are accumulated in the

population and crossover permits the aggregation of good

building blocks into even better solutions of the problem [9].

Crossover is the predominant GP search operator [9], [10].

On the other hand, mutation operates on a single individual

by altering a random subtree. Next, we briefly describe the

GP initialization and the GP operators (selection, crossover,

and mutation) used in this paper.
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A. The GP Initialization

The individuals in the GP population are initialized by

recursively generating syntax trees composed of randomly

chosen function and terminal nodes. The two established

GP initialization methods are the grow and the full method.

Both methods require from the user to specify the maximum

initial tree depth. According to the grow method, nodes

are selected randomly from the function and the terminal

sets. The grow method, therefore, produces trees of irregular

shape, since once a terminal node is inserted the path ending

with this node cannot be extended, even if the maximum

initial depth has not been reached. On the other hand, in the

full initialization method only function nodes are selected

until the maximum initial depth is reached. Beyond that depth

only terminal nodes are chosen to end the branches. This

method results in a balanced tree, every branch of which

reaches the maximum initial depth.

The ramped half and half initialization method [9] em-

ploys both grow and full to construct a GP population.

Specifically, ramped half and half aims at initializing an equal

number of GP individuals with maximum depth starting from

the minimum depth of two up to the maximum initialization

depth. For each depth level half the individuals are con-

structed using the grow, while the remaining individuals are

constructed using the full initialization method. To obtain

promising candidate solutions for the evolutionary process

it has been proposed to initialize a much larger population

(by a factor of ten) and to select the best performing

individuals [9].

B. The GP Selection Algorithm

To derive the individuals that will comprise the population

of the next generation, GP initially selects individuals from

the current generation. The selection operators that have been

proposed for genetic algorithms are also applicable to GP.

In this study, we employed the most commonly encountered

operator, namely proportionate selection. We define Ei to be

the fitness of the i-th individual, where E is the function we

wish to maximize. Then the probability of selecting the i-th
individual as a parent of an individual of the next generation

(offspring) is equal to pi = Ei/
∑N

j=1 Ej .

C. The GP Crossover Operator

The primary GP search operator is crossover. Crossover

operates on two parent individuals and yields two offsprings.

Standard crossover randomly selects a node in each parent

tree and then swaps the subtrees rooted at these nodes [9].

Koza suggests to use a 90% probability of selecting as

crossover point a function node and to select a terminal node

with probability 10%. If an offspring exceeds the maximum

depth it is discarded and the corresponding parent individual

takes its place in the population of the next generation.

Standard crossover, however, tends to produce offsprings

that frequently inherit most of their code from one par-

ent, and also favors local adjustments near the leaves of

syntax trees [11]. To overcome these limitations, Poli and

Langdon [11] proposed the uniform crossover operator for

GP (GPUX) inspired from the homonymous operator in GAs.

GPUX starts by identifying a tree that represents the common

region between two syntax trees. Each node that lies in the

common region is considered for crossover with a constant

probability. For nodes that lie in the interior of the common

region GPUX swaps the nodes without affecting the subtrees

rooted at these nodes. On the contrary, for nodes on the

boundary of the common region the subtrees rooted at these

nodes are swapped.

Since the diversity of the GP individuals is high during the

early stages of the algorithm, the common region between

randomly selected individuals tends to be relatively small

and hence GPUX favors the global exploration of the search

space by swapping large subtrees near the root of the syntax

trees. As the population converges the operator becomes

more and more local, in the sense that the offsprings it

produces are progressively more similar to their parents. An

example of GPUX is provided in Fig. 1.
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Fig. 1. Uniform crossover operator for GP (GPUX).

D. The GP Mutation Operator

The mutation operator in GP randomly selects a node of

the syntax tree and replaces the subtree rooted at the selected

node with a newly created tree. This type of mutation is

known as subtree mutation. For the creation of the trees

employed by the mutation operator, the grow initialization

method is employed [9]. Fig. 2 illustrates the workings of

mutation on a GP individual.
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Fig. 2. Subtree mutation.

III. DIFFERENTIAL EVOLUTION

Differential Evolution [8] is a stochastic parallel di-

rect search method, capable of handling non-differentiable,
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nonlinear and multimodal objective functions. DE is a

population–based stochastic algorithm that exploits a popula-

tion of potential solutions (individuals), to explore the search

space. The population of individuals is randomly initialized

in the optimization domain with NP, n–dimensional, vectors

following a uniform probability distribution. The population

size, NP, is fixed throughout the execution of the algorithm.

At each iteration, called generation, new vectors are

derived by the combination of randomly chosen vectors

from the current population. This operation is referred to as

mutation and produces the mutant individuals. Each mutant

individual is then mixed with another, predetermined, vector

– the target vector – through an operation called recombina-

tion. This operation yields the trial vector. Finally, the trial

vector undergoes the selection operator, according to which

it is accepted as a member of the population of the next

generation only if it yields a reduction in the value of the

objective function f relative to that of the target vector. Next

we briefly review the basic DE variation operators.

A. DE Variation Operators

The DE search operators efficiently shuffle information

among the individuals, enabling the search for an optimum

to focus on the most promising regions of the solution space.

The first operator considered here is mutation. Specifically,

for each individual xi
g , i = 1, . . . ,NP, where g denotes the

current generation, a new individual vi
g (mutant individual)

is generated according to the following equation:

vi
g = xbest

g + F (xr1
g − xr2

g ), (1)

where xbest
g is the best member of the previous generation;

F > 0 is a real parameter, called mutation constant, which

controls the amplification of the difference between two

individuals, and is used to prevent the stagnation of the search

process; and r1, r2 ∈ {1, 2, . . . , i − 1, i + 1, . . . ,NP}, are

random integers mutually different and not equal to the

running index i. Although there exist many different mutation

operators [12], [13], we chose to use the one described above

since it is simple and has the property of fast convergence.

Having performed mutation, the recombination operator is

applied to further increase the diversity of the population. The

mutant individuals are combined with other predetermined

individuals, called the target individuals. Specifically, for

each component l (l = 1, 2, . . . , n) of the mutant individual

vi
g , we randomly choose a real number r in the interval

[0, 1]. Then, we compare this number with the recombination

constant, CR. If r � CR, then we select, as the l-th
component of the trial individual ui

g, the l-th component of

the mutant individual vi
g . Otherwise, the l-th component of

the target vector xi
g becomes the l-th component of the trial

vector. This operation yields the trial individual.

Finally, the trial individual is accepted for the next gen-

eration only if it reduces the value of the objective function

(selection operator).

IV. GENERALIZED MOVING AVERAGE RULES

The simplest and most common trading rules employ

moving averages (MAs). An MA of length θ is defined as:

MA(θ)t =
1

θ

θ−1∑
i=0

Pt−i, t = θ, θ + 1, . . . , N.

The Generalized MA (GMA) rule can be represented by the

following binary indicator function [7]:

S(Θ)t = MA(θ1)t − (1 + (1 − 2St−1)θ3) MA(θ2), (2)

where Θ = [θ1, θ2, θ3] are the parameters of the GMA. The

GMA rule returns a buy signal (which is encoded as one),

when Eq. (2) returns a positive number. A sell signal, on the

other hand, corresponds to a non-positive return value and is

encoded as zero. Typically, θ1 < θ2 and MA(θ1)t is called

the short MA, while MA(θ2)t is the long MA. With this

parameter setting the GMA rule identifies an upward trend

when the short MA crosses from below the long MA, and

vice versa. Finally, θ3 is a parameter introduced to reduce

the number of false buy and sell signals.

Fernández-Rodrı́guez et al. [7] employed Genetic Algo-

rithms to determine the optimal parameter values (Θ) for

GMA rules. They applied their approach to the Madrid stock

market. Their findings indicate that with the exception of zero

transactions costs, the best rules are of the form of double

MA rules. In other words, θ1 > 0, θ2 > 0, and θ3 = 0.

Moreover, the annualized returns, as well as, the Sharpe ratio

corresponding to the best GMA rules are higher than those

from the corresponding risk–adjusted buy and hold strategy.

In this paper, we employ the Differential Evolution algorithm

described above to compute and tune the parameters of GMA

rules.

V. RISK SENSITIVE PERFORMANCE MEASURES

A critical aspect for the identification of promising trading

strategies through Computational Intelligence techniques is

the performance evaluation measure. To evaluate the perfor-

mance of an investment strategy it is necessary to measure

not only the increase in capital but also the risk incurred. The

first performance measure to incorporate risk is the widely–

known Sharpe ratio [14]. The Sharpe ratio is defined as:

SI = AΔt

r̄√
σ2

r

,

where r̄ is the average return, σ2
r is the variance of the return

series, and AΔt is an annualization factor that depends on the

frequency at which returns are measured. Three drawbacks

have been associated with the Sharpe ratio [6]. Firstly, the

variance term is placed in the denominator, which makes

the ratio numerically unstable when σ2
r is close to zero.

Secondly, the returns are measured at one frequency, and

hence the measure neglects the risk due to unrealized losses

at other frequencies. Finally, the Sharpe ratio neglects the

clustering of losses and profits.

To this end, Gençay et al. [6] have proposed two risk

adjusted performance measures, Xeff and Reff, that rely on the
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expected utility framework. The first measure, Xeff, is derived

from a constant risk aversion utility function of the form,

u(x) = − exp(−γx), with γ representing the coefficient of

risk aversion, and x denoting the wealth reached by unit

investment. Thus:

x(t) = R̃(t) − R̃(t − Δt),

where R̃(t) = R(t) + ro(t), R(t) is the total return of past

trades up to time t, and ro(t) is the unrealized return of the

current trading model position. Assuming that x follows the

normal distribution with N (x̄, σ2), the expected utility is:

E[u(x)] = − exp(−γ(x̄ − γσ2

2
)).

The measure, Xeff is obtained by inverting the expected

utility:

Xeff = x̄ − γσ2

2
.

To permit the comparison between Xeff values for differ-

ent Δt the measure is annualized:

Xeff, ann =
1year

Δt

(
x̄ − γσ2

2

)
. (3)

The measure in Eq. (3) still depends on the choice of Δt
and does not reflect changes occurring at shorter and longer

horizons. The final form of Xeff, therefore, constitutes a

weighted average of Xeff,ann for n different time horizons:

Xeff =

∑n

i=1 wiXeff, ann(Δti)∑n

i=1 wi

. (4)

The weights, wi, in Eq. (4) are obtained through the follow-

ing formula:

w(Δt) =
1

2 +
(
log

(
Δt

90days

))2 . (5)

The Xeff measure of Eq. (4) is obtained assuming a constant

risk aversion. A more realistic assumption is that investors

are more risk averse to the clustering of losses than they are

to the clustering of profits. The Reff algorithm introduces two

levels of risk aversion:

ρ =

{
ρ+, if ΔR̃ � 0,

ρ
−
, if ΔR̃ < 0,

where ρ
−

> ρ+. The corresponding utility function is:

u(ΔR̃) =

⎧⎨
⎩

− exp(−ρ+ΔR̃)
ρ+

, for ΔR̃ � 0,

1
ρ
−

− 1
ρ+

− exp(−ρ
−
ΔR̃)

ρ
−

, for ΔR̃ < 0.

The return can be obtained by inverting the utility function:

ΔR̃ =

⎧⎪⎨
⎪⎩

− log(−ρ+u)
ρ+

, for u � − 1
ρ+

,

− log
“
1−

ρ
−

ρ+
−ρ

−
u

”

ρ
−

, for u < − 1
ρ+

.

(6)

The computation of the utility for one time horizon Δtj

is calculated using returns, ΔR̃ji, observed at different and

potentially overlapping time intervals, Δtji. The mean utility

for Δtj is:

uj =

∑Nj

i=1 Δtjiu
(
ΔR̃ji

)
∑Nj

i=1 Δtji

=

∑Nj

i=1 Δtjiuji∑Nj

i=1 Δtji

. (7)

The mean utility of Eq. (7) can be transformed back to an

effective return for the horizon Δtj , ΔR̃eff,j , using Eq. (6).

Thus, the annualized ΔR̃eff,j is defined as:

Reff,j =
1year

Δteff,j

ΔR̃eff,j ,

where Δteff,j =
∑Nj

i=1(Δtji)
2/

∑Nj

i=1 Δtji. The multihori-

zon version of Reff is as before obtained by taking a weighted

average of Reff,j for different time horizons:

Reff =

∑n

j=1 wjReff,j∑n
j=1 wj

,

with the weights, wj being determined through Eq. (5).

VI. SIMULATION METHODOLOGY

Simulating exchange rate return series from a Data Gen-

erating Process (DGP), transforming them into prices and

feeding them into a trading model permits us to calculate

the probability distributions of different performance mea-

sures [6], [15]. In turn, we can test the null hypothesis

that the performance of a trading rule can be attributed to

standard statistical properties of exchange rate series against

the alternative that the observed performance is due to the

capability of the rule to detect patterns that are not in

accordance with traditional DGPs. Further, comparisons can

be made across rules and DGPs.

We employ three null processes. For the first process we

assume that prices follow a Random Walk (RW) with a

drift. Consequently, log returns are generated according to

the following equation

rt = ϕ0 + et, (8)

where ϕ0 is the sample mean, and et ∼ N (0, σ2). The

simulated series for the RW model are obtained by adding

normally distributed random numbers (with mean zero and

standard deviation equal to the sample standard deviation

of the residuals) to the returns mean. The artificial returns

are independent and identically distributed by construction,

while the simulated price series follow a random walk with

the same drift and standard deviation as the original series.

The artificial return series are transformed into price series

by using the first price of the sample. However, according

to the RW model the volatility of returns is constant which

contrasts with the stylized fact that the foreign exchange

market is characterized by time varying volatility [16]. The

presence of serial correlation in the second moment of the

distribution of the exchange rate series motivates the use of

GARCH models. GARCH models are nonlinear condition-

ally Gaussian models where the conditional variance depends
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on its lagged values, as well as, on past error terms. The

GARCH(1,1) may be written as:

rt = ϕ0 + ut, (9)

ut = et

√
ht, where et ∼ N (0, 1),

ht = ω + αu2
t−1 + βht−1.

The parameter values of the GARCH(1,1) model are esti-

mated by using a Quasi Maximum Likelihood procedure and

the simulated series are generated by drawing values from

the standard normal distribution and calculating recursively

Eq. (9). Finally, we employ an ARMA(2,1)–GARCH(1,1)

model so as to take into account possible serial correlation

in both the mean and the variance:

rt = ϕ0 + ϕ1rt−1 + ϕ2rt−2 + θ1ut−1 + ut,

ut = et

√
ht, where et ∼ N (0, 1),

ht = ω + αu2
t−1 + βht−1.

The same procedure as for the GARCH model is applied in

order to simulate data.

Table I presents descriptive statistics for the real re-

turn series, as well as, the GARCH(1,1) and ARMA(2,1)–

GARCH(1,1) models. The p-values are reported in paren-

theses next to the estimate of each coefficient. For

GARCH(1,1) and ARMA(2,1)–GARCH(1,1) models the p-

values were calculated using the procedure of Bolleslev and

Wooldridge [17]. A clear implication of the results is that

both volatility clustering and the ARMA structure are present

in the data set. The kurtosis reported in the first column of

Table I shows that the return series is highly leptokurtic.

This phenomenon was first documented by Mandelbrot [18]

in commodity markets and it implies that the normality

assumption is violated1. Further, the standardized residuals

from the GARCH and ARMA–GARCH models also appear

to exhibit more density around the mean and fatter tails

than normal. It follows that a better approximation of the

true DGP can be established by relaxing the normality

assumption.

TABLE I

DESCRIPTIVE STATISTICS

Model RW GARCH ARMA–GARCH

ϕ0 7.71e-05 (0.5859) 6.25e-05 (0.6595) 8.79e-05 (0.5149)
ϕ1 – – −0.96561 (0.0000)
ϕ2 – – −0.04164 (0.0820)
θ1 – – 0.93178 (0.0000)
ω – 5.89e-07 (0.0295) 1.50e-06 (0.0054)
α – 0.00996 (0.1020) 0.01584 (0.0765)
β – 0.97263 (0.0000) 0.94184 (0.0000)

Ke 4.5849 4.5561 4.7164
Se −0.3107 −0.3303 −0.3270
JBe 212.1939 209.2158 246.7241
pJB 0 0 0

Bootstrapping is a widely used methodology for testing

the statistical significance of the performance of trading

1The p-values corresponding to the Jarque Bera test statistic are virtually
zero in all cases, rejecting the null hypothesis of normality.

models. The non-parametric procedure adopted is called re-

sampling [19]. Resampling is in effect drawing with replace-

ment from the sample under examination. The suitability

of this approach in the present context is due to the fact

that it utilizes the empirical distribution function of the data

and therefore, it addresses issues such as leptokurtosis and

skewness. Artificial price series are created by bootstrapping

from the residuals of the RW and the standardized residuals

of the GARCH and ARMA–GARCH in order to calculate the

probability distributions of the performance measures under

examination.

VII. PRESENTATION OF EXPERIMENTAL RESULTS

The dataset presently employed is the daily noon New

York buying rates for the US Dollar against the Japanese

Yen exchange rate from the H10 Federal Statistical Release.

The 5292 observations cover the period from 3/1/1985 to

2/1/2007. In addition to the price series, a normalized series

is also provided as input to the algorithm. The normalized

series is constructed by dividing each observation with the

250-day moving average [15]. Each input pattern contains the

current price and the normalized price, while the algorithm

can access past prices using the non-terminal node lag. The

maximum lag that the algorithm is allowed to consider is 250.

The first 3014 patterns were assigned to the training set, the

next 502 patterns are assigned to the validation set, while

the last 1508 patterns comprised the test set. The inclusion

of a validation set was used to alleviate the problem of

overfitting. The fitness of an individual on the validation set

was only used during the assignment of the best individual

identified during the execution. For both GMA and GP, a

rule was assigned as the best identified so far if it was at

least as good as the current best on both the training and

the validation set, and it improved on the performance on at

least one dataset (Pareto domination).

For GP, the terminal set, T , consisted of:

T = {Xn
t , Xt, rand},

where Xn
t stands for the normalized exchange rate at date t,

Xt is the non-normalized rate, and rand denotes a random

real constant in the interval [-1,1]. The function set, F ,

contained the following functions:

• Ternary functions: if then else,

• Binary functions: +,−, ∗, /, >, <, and, or,
min, max, ma, lag,

• Unary functions: log, exp,

where ma and lag denote the moving average and the lag

of the values of the time series.

A positive evaluation of an individual over a pattern is

assumed to signal that the current holdings should be held

in the base currency (in this case US Dollars), and vice versa.

In particular, if the system at date t, holds US Dollars and

the evaluation of the individual over the corresponding input

pattern is positive then all the available funds are converted

to Yen. On the contrary, if the system holds Yen and the

individual evaluation is non-positive, then the amount is
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converted to US Dollars. In all other cases, the holdings do

not change currency at date t.

The last observation of the series is always employed to

convert the final holdings to the base currency. A one-way

transaction cost equal to 0.5% and 0.125% for the training,

and test periods, respectively, was used. A larger transactions

cost was imposed during training to penalize rules that trade

very frequently. The fitness function returns the Xeff measure

with the parameter γ in Eq. (4) set to γ = 0.11 [6].

Regarding the parameters employed by the GP algorithm,

the maximum tree depth, D, at initialization was set to 5,

while in subsequent generations D was equal to 8. Population

size was 100 and the maximum number of generations was

200. The reproduction, mutation, and crossover probabilities

were 0.05, 0.45, and 0.5, respectively. Finally, the probability

of performing uniform crossover at each node of the common

region was 0.5. The stopping criterion for the algorithm was

to reach the maximum number of generations. To optimize

the values of the constant nodes in all the GP individuals the

Hooke–Jeeves [20] procedure was applied. The GP output

was the best individual encountered during its execution.

Regarding the parameters employed by the DE algorithm, the

population size was equal to 200 and the maximum number

of generations to 2000; the mutation and recombination

constants were set to F = 0.1 and CR = 0.3, respectively.

Tables II and III report the minimum (min), mean, maxi-

mum (max), and the standard deviation (std) for the number

of trades, the mean annualized return, Xeff, and Reff, of

the GMA rules identified through DE over 50 experiments.

Figs. 3 and 4 illustrate the cumulated return of the best

performing (on the test set) GMA rule on the training and

test set, respectively. In each figure the evolution of the time

series on the corresponding data set is also plotted. In 32

cases out of the fifty experiments the DE optimized GMA

rule was unable to identify a trading strategy that improved

over the simple strategy of holding the base currency over

the entire period. For these rules the variance of the return

series is zero and hence the computation of the mean and

the standard deviation for the Sharpe ratio is performed

without taking into consideration these cases. Excluding

these no trade strategies, the remaining MA rules performed

substantially more trades than the corresponding GP rules.

The best performing GMA rule was of the double MA

form (i.e. θ1 > 0, θ2 > θ1, and θ3 = 0).

Tables IV–V provide the same information for the GP

identified trading rules over 50 experiments, while the cu-

mulated return of the best performing rule on the test set is

provided in Figs. 5 and 6.

TABLE II

DE–GMA TRAINING SET PERFORMANCE

min mean max std

num trades: 0.000000 7.560000 38.000000 10.799017
annualized ret: 0.000000 0.360000 3.284896 1.228251

Xeff: −0.032121 −0.006980 0.000000 0.010022
Reff: −0.042298 −0.010640 0.000000 0.014626

Sharpe Ratio: 0.071835 0.288762 0.388624 0.080077

TABLE III

DE–GMA TEST SET PERFORMANCE

min mean max std

num trades: 0.000000 5.120000 24.000000 7.241152
annualized ret: −0.597215 0.360000 1.812633 0.562487

Xeff: −0.035841 −0.007994 0.000116 0.013372
Reff: −0.038477 −0.008895 0.000000 0.014521

Sharpe Ratio: −0.088653 0.076804 0.297369 0.139295

 80

 100

 120

 140

 160

 180

 200

 220

 0  200  400  600  800  1000  1200  1400  1600  1800  2000  2200  2400  2600  2800  3000  3200  3400

Yen/Dollar Time Series

-20

 0

 20

 40

 60

 80

 100

 120

 0  200  400  600  800  1000  1200  1400  1600  1800  2000  2200  2400  2600  2800  3000  3200

P
er

ce
nt

ag
e

Cumulated Return

Fig. 3. Top: Cumulated return of best performing rule on the training set.
Bottom: Evolution of time series on the training set.
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Fig. 4. Top: Cumulated return of best performing rule on the test set.
Bottom: Evolution of time series on the test set.

TABLE IV

GP TRADING RULE PERFORMANCE ON THE TRAINING SET

min mean max std

num trades: 6.000000 14.100000 36.000000 7.163230
annualized ret: 2.021642 1.000000 5.848466 1.009530

Xeff: 0.013441 0.020439 0.030558 0.004680
Reff: 0.015576 0.023328 0.036446 0.005235

Sharpe Ratio: 0.590329 0.785202 0.963684 0.089573

Tables VI and VII present the results for the simulation

exercise for the best GP and GMA rules, respectively. For

each of the four evaluation measures each table firstly reports

the realized values for the corresponding rule (Realized).
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TABLE V

GP TRADING RULE PERFORMANCE ON THE TEST SET

Test Set: min mean max std

trades: 0.00000 8.933333 32.000000 6.144769
annualized ret: −1.633383 0.950000 2.669512 1.075628

Xeff: −0.037450 −0.018569 0.013903 0.011517
Reff: −0.048849 −0.021780 0.015108 0.013432

Sharpe Ratio: −0.451822 −0.118973 0.513813 0.242092
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Fig. 5. Top: Cumulated return of best GP rule on the training set. Bottom:
Evolution of time series on the training set.

The various p-values corresponding to the different null

models for both the bootstrap and the simulation based on

the normality assumption are reported in the subsequent

rows of the tables. These values are calculated using 1000

simulations from each DGP and are defined as the percent-

age of times that a rule yielded a higher value for each

performance measure on the artificial series than on the

real series. Overall, the performance of the GP rule on the

actual test set exceeds that of the optimized GMA rule with

respect to all measures. For the GP rule, all measures are

positive indicating that annualized returns after transactions

costs cover the cost of risk taken by the model. It is also

interesting to note that Xeff is smaller than Reff showing that

penalizing the clustering of profits equally with the clustering

of losses has caused an overestimation of risk for this rule.

The GMA rule also generates positive annualized returns

after transactions costs. However, Xeff is very close to zero

and Reff is negative, suggesting that there is a significant

clustering of losses (see Fig 4).

The results indicate that the performance of the GP rule

is also superior in terms of statistical significance. The

null hypothesis that the examined DGPs can explain the

performance of the GP rule is rejected at the five percent

significance level for all measures. On the contrary the same

null hypothesis for the GMA rule is not rejected for any

measure. The examination of the p-values of the various

performance measures reveals that they are higher for the

Sharpe Ratio, SI , and the annualized return for all DGPs

for both models. As indicated in [6] an explanation for this

finding is that these two measures use limited information

 100

 105

 110

 115

 120

 125

 130

 135

 0  200  400  600  800  1000  1200  1400  1600  1800

Yen/Dollar Time Series

-5

 0

 5

 10

 15

 20

 25

 30

 0  200  400  600  800  1000  1200  1400  1600

Cumulated Return

Fig. 6. Top: Cumulated return of best GP rule on the test set. Bottom:
Evolution of time series on the test set.

from the entire return path.

The p-values for the GP rule, with the exception of SI ,

suggest that among the three DGPs the ARMA–GARCH

process can explain a larger part of the models predictability.

However, these values do not exceed the conventional sig-

nificance level of 5% so as to infer that the performance of

the model can be attributed solely to the ARMA–GARCH

structure of the underlying series. Finally, it is noted that the

normality assumption results in rejecting the null hypothesis

more frequently than the bootstrap, which indicates that there

may be an issue of overrejection.

TABLE VI

BEST GP RULE PERFORMANCE

Annual Return Xeff Reff SI

Realized 2.6695 1.3903 1.5108 0.5138

Bootstrap

p RW 0.040 0.026 0.026 0.046
p GARCH 0.031 0.028 0.022 0.039
p ARMA–GARCH 0.045 0.035 0.036 0.037

Normal

p RW 0.032 0.025 0.023 0.036
p GARCH 0.026 0.020 0.017 0.030
p ARMA–GARCH 0.035 0.027 0.024 0.034

TABLE VII

BEST GMA RULE PERFORMANCE

Annual Return Xeff Reff SI

Realized 1.8126 0.0116 −0.1188 0.2974

Bootstrap

p RW 0.124 0.074 0.070 0.112
p GARCH 0.117 0.079 0.061 0.106
p ARMA–GARCH 0.13 0.075 0.069 0.107

Normal

p RW 0.099 0.058 0.052 0.087
p GARCH 0.100 0.061 0.056 0.087
p ARMA–GARCH 0.124 0.081 0.067 0.098

VIII. CONCLUSIONS

Technical analysis has a long history in financial mar-

kets and its application in the foreign exchange market
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is gaining ground according to the evidence accumulated

over the past years. Along with conventional trading rules

there is a growing interest in the development of automated

methods to detect novel patterns in the data. In this paper,

we considered Genetic Programming to address this task

and compared its performance to traditional moving average

rules. The parameters of the latter were optimized through

the Differential Evolution algorithm.

Both algorithms were capable of generating highly prof-

itable rules in the portion of the data used for training. On

the test set, the moving average rules proved to be more ro-

bust compared to the Genetic Programming rules. However,

Genetic Programming managed to create the most profitable

rule encountered. Moreover, a statistical evaluation of the

best moving average rule showed that the null hypothesis

that its performance is attributable to well–known properties

of the data cannot be rejected. The opposite held for the GP

identified rule. Another interesting feature of these rules was

their ability to take accurate positions long into the future.
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