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Abstract— Although data mining is performed to support 
decision making, many of the most powerful techniques, like 
neural networks and ensembles, produce opaque models. This 
lack of interpretability is an obvious disadvantage, since 
decision makers normally require some sort of explanation 
before taking action. To achieve comprehensibility, accuracy is 
often sacrificed by the use of simpler, transparent models, such 
as decision trees. Another alternative is rule extraction; i.e. to 
transform the opaque model into a comprehensible model, 
keeping acceptable accuracy. We have previously suggested a 
rule extraction algorithm named G-REX, which is based on 
genetic programming. One key property of G-REX, due to the 
use of genetic programming, is the possibility to use different 
representation languages. In this study we apply G-REX to 
estimation tasks. More specifically, three representation 
languages are evaluated using eight publicly available data sets. 
The quality of the extracted rules is compared to two standard 
techniques producing comprehensible models; multiple linear 
regression and the decision tree algorithm C&RT. The results 
show that G-REX outperforms the standard techniques, but 
that the choice of representation language is important. 

I. INTRODUCTION 

N the data-mining domain, one main goal is to produce 
predictive models able to accurately estimate future values 

of the target variable. The most accurate techniques often 
produce very complex models that must be considered 
opaque. An opaque model, for example a trained neural 
network or an ensemble, is incomprehensible for human 
decision makers. Experience from the field of Expert 
Systems has, however, shown that an explanation capability 
is a vital function provided by symbolic AI systems. In 
particular the ability to generate even limited explanations is 
absolutely crucial for the user acceptance of such systems; 
see e.g. [1]. Since the purpose of most data mining systems 
is to support decision making, the need for explanation 
facilities in these systems is apparent. Nevertheless many 
systems (especially those using neural network techniques 
but also ensemble methods like boosting) are normally 
regarded as black boxes; i.e. they are opaque to the user.  
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II. BACKGROUND 

A. Predictive modeling 

The purpose of a predictive model is to allow the data 
miner to predict an unknown (often future) value of a 
specific variable; the target variable. The predictive model is 
created using available historical, data. Most often a 
predictive model is created using directed data mining; i.e. a 
top-down approach where a mapping from a vector input to 
a scalar output is learnt from samples. The training data thus 
consists of pairs of measurements, each containing an input 
vector x(i) with a corresponding target value y(i). The 
predictive model is an estimation of the function y=f(x, ) 
used to predict a value y given an input vector of measured 
values x and a set of estimated parameters  for the model. 

A special case is time series prediction, where the samples 
are ordered by time and where the input vector often 
includes previous values of the target variable. 

For predictive modeling, the primary goal is to achieve 
high accuracy, i.e. a low error between the predicted value 
and the real value, when the model is applied to novel data. 
In order to improve accuracy, ensembles are often used. 
First, several models are created, possibly using different 
techniques, and then these models are combined into an 
ensemble. The motivation for using ensembles in general is 
obvious; they are more robust, i.e. their applicability span 
over a larger set of problems. Bishop [2] shows why an 
ensemble of ANNs, in general, has higher accuracy than the 
mean accuracy of its members.  

To achieve comprehensibility, accuracy is often sacrificed 
by the use of simpler models like decision trees; a trade-off 
termed the accuracy vs. comprehensibility trade-off. Several 
researchers have tried to bridge the gap by introducing 
techniques for converting opaque models to transparent 
models, without sacrificing the performance. Most 
significant are the many attempts to extract rules from 
trained neural networks; for a survey see [3]. It should be 
noted that rule extraction could be used in two slightly 
different ways. If the extracted representation is used for 
predicting this would normally result in at least a small loss 
of accuracy. An alternative is to employ the opaque model 
for the actual predictions and use the extracted 
representation only as an explanation facility. 

B. G-REX 

We have previously [4] [5] suggested a method for rule 
extraction based on genetic programming (GP). The method 
named G-REX (Genetic Rule EXtraction), is very general 
since the representation language is determined by the 
function and terminal sets, while the fitness function controls 
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the accuracy vs. comprehensibility trade-off. G-REX is a 
black-box method; i.e. it directly creates a function 
describing the output in terms of the input by using training 
examples generated by the opaque model. The easiest way to 
understand the process is to view black-box rule extraction 
as an instance of predictive modeling where the original 
input patterns are used with the corresponding prediction 
from the opaque model as the target variable. 

G-REX uses GP when searching for the best solution. 
More specifically, a pool of candidate rules is continuously 
evaluated using a fitness function. The evolution of the rules 
uses the standard genetic operations as described in [6]. The 
initial population is created randomly following the ramped 
half and half strategy. Rules are chosen for reproduction 
using roulette wheel selection with reselection. The genetic 
operators (crossover and mutation) are applied to the 
selected rules in a standard fashion, and it is at all times 
made sure that the resulting programs are still syntactically 
correct. The exact parameters like crossover and mutation 
rates, number of individuals in the population and number of 
generations are normally found from initial experimentation. 
After several generations, the fittest program is chosen as the 
extracted rule. 

As mentioned above, when G-REX is applied to a specific 
problem, fitness function, function set and terminal set must 
be chosen. The function and terminal sets determine the 
representation language, while the fitness function captures 
what should be optimized in the extracted representation. 
Different representations are more or less suitable for a 
specific problem, which makes it important to be able to 
adjust the representation language for the problem at hand. 
As G-REX is based on genetic programming, it can handle 
almost arbitrary functions and terminals, but they must of 
course be appropriate for the current problem. G-REX has a 
large set of predefined functions including arithmetic 
operators, conditional operators, relational operators, and 
Boolean operators. The terminals usually represent the input 
variables and random constants. Functions and terminals are 
combined randomly, but the possible combinations are 
restricted by a predefined syntax. G-REX uses a syntactical 
language similar to the Backus-Naur form, (BNF) making it 
straightforward to tailor the representation for each problem. 

The fitness function normally includes components 
measuring fidelity and comprehensibility. The fidelity 
component could, for classification tasks, for instance, 
increase the fitness value by one for each training sample 
classified in the same way as the opaque model. The 
comprehensibility component is normally a penalty term; 
typically proportional to the length of the program.  

We have previously used G-REX in different domains and 
evaluated it extensively. G-REX has extracted rules in 
several representation languages; e.g. Boolean rules, 
decision trees, fuzzy rules and regression trees. For details 
see e.g. [4], [5] and [7].  

Previous studies have focused on classification tasks, and 
only a few experiments have been performed on estimation 

tasks. In the estimation study mentioned, G-REX used a 
representation language described using BNF in Table 1. 
Furthermore, the use of G-REX for estimation was only 
tested in the market response modeling domain. With this in 
mind, the overall purpose of this study is to evaluate G-REX 
using two new representation languages for estimation.  

III. METHOD 

This study evaluates if GP, and more specifically G-REX, 
can be used to extract accurate comprehensible rules from an 
ensemble of Artificial Neural Networks (ANN). The 
extracted rules are evaluated against the tree algorithm 
C&RT, and multiple linear regression. The following sub-
sections will describe the experimentation. 

A. Ensemble creation 

The ensembles used in the experiments consist of 20 
fully-connected ANNs, each having one hidden layer. Each 
ANN is trained on an individual subset of the training set. 
The subset is created by randomly picking 80% of the 
training instances without replacement. The number of input 
variables is also reduced by selecting only 80% of the 
features randomly. The purpose of this is, of course, to 
increase the ensemble diversity. Each ANN is initiated with 
random weights, and with a random number of hidden units 
which is calculated using (1), where rand is a random 
number between 0 and 1.  

 
  (1)  

 
The training algorithm used to train the ANNs is 

MatLab’s traingdx, which is a gradient descent 
backpropagation algorithm, using a momentum term and 
adaptive learning rate. A validation set is used to decide 
when to stop the training. The validation sets are created by 
removing 20% of the training instances and assigning them 
to the validation set. 

B. Representation language 

As described above, one of G-REX main strengths is that 
it can use many different representation languages. To 
evaluate the importance of representation language, the 
experiments are performed evaluating three different 
representation languages. The representation languages used 
by G-REX are presented using BNF in the tables below.  
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TABLE 1 
BNF NORMAL REPRESENTATION (NORM) 

Rule ::= <if –statement> 
<if –statement>::= If <condition> then < expression > 

else < expression > 
<condition>::= <continuous variable> <function> 

<constant> | 
<continuous variable> <function> 
<continuous variable>  | 
<categorical variable> = <class> 

<function>::= < | > 
< expression >::= <if-statement> | <constant> 
<constant>::= Double in the range of associated  

<continuous variable> 
<class>::= Class of associated <categorical 

variable> 
 
NORM is the simplest representation language for a 

regression tree and uses the same set of functions and 
terminals as C&RT. The only difference is that C&RT’s 
syntax only allows comparisons between a variable and a 
constant value in a condition, while NORM also allows 
comparisons between two variables. NORM is the original 
representation language used for G-REX estimation in [5]. 
The if-statements can be seen as a series of conditions 
dividing the instances of a data set into subgroups depending 
on the value of some input variables. Each subgroup is 
associated with the value of a certain terminal. For the 
NORM BNF the terminal is always a constant which means 
that all instances (known and novel) belonging to a certain 
terminal will be predicted to have the same value. The 
conditions of the if-statements and the terminal constants are 
of course optimized, using GP, on the training data. 

TABLE 2 
BNF LINEAR REGRESSION TERMINALS (LINREG) 

Rule ::= <if –statement> 
<if –statement>::= if <condition> then < expression > 

else < expression >  
<condition>::= <continuous variable> <function> 

<constant> | 
<continuous variable> <function> 
<continuous variable> | 
<categorical variable> = <class>  

<function>::= < | > 
<expression >::= <if-statement> | <linear regression> 
<linear 
regression>::= 

<continuous variable> * <constant> + 
<constant> 
Calculated using the least square 
method on the training instances 
reaching the node: 

<constant>::= Double in the range of associated  
<continuous variable> 

<class>::= Class of associated <categorical 
variable> 

 

The LINREG representation extends the NORM BNF by 
allowing arithmetic operators and variables as terminals. The 
BNF ensures that each terminal is a part of a linear 
regression.  

Using this grammar, the representation language becomes 
more powerful, since it can predict different values for each 
of the instances it is associated with. The predicted value  
for instance i is calculated using equation (2) below; where 

 is the value of one of the input variables. K and M are 
constants found by the linear regression. 

 

 
When a linear regression expression is created, it is not 

done randomly, instead the best linear regression for the 
selected input variable are calculated by the least square 
method [8]. The calculations are done on the training 
instances associated with the linear regression terminal, 
when the rule is first created. During evolution, mutation and 
crossover are only applied to the if-statements and its 
conditions, which will affect how the instances are 
associated with the terminals but not the linear regressions, 
which will remain the same. Mutation can introduce new 
linear regression terminals during the evolution. 

The FREE representation presented below is similar to 
LINREG with two exceptions. First, each subgroup of 
instances can be associated with a combination of several 
linear regressions, making it possible to base the prediction 
on several input variables. Secondly the linear regressions 
are created randomly and are affected by the genetic 
operations in normal fashion. The linear regressions are 
combined by addition, in the same way as in multiple linear 
regressions. This is in essence a way to evolve different 
multiple linear regressions for different parts of the data sets. 

 
TABLE 3  

BNF FREE REPRESENTATION (FREE) 

Rule ::= <if –statement> 
<if -statement>::= if <condition> then < expression > 

else < expression >  
<condition>::= <continuous variable>  <function> 

<constant> | 
<continuous variable>  <function> 
<continuous variable> | 
 <categorical variable>  =  <class>  

<function>::= < | > 
< expression >::= <if-statement> |<+ -statement>| 

<* -statement> 
<+ -statement>::= <term> + <term> 
<* -statement>::= <continuous variable>  * <constant> 
<term>::= <+ -statement>|<* -statement>| 

<constant> 
<constant>::= Double in the range of associated  

<continuous variable> 
<class>::= Class of associated <categorical 

variable> 
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C. Fitness function 

For estimation tasks, G-REX uses a fitness function based 
on the total absolute error ae made by the rule. To produce 
short comprehensible rules, G-REX also uses a punishment 
for longer rules. The length punishment is calculated as the 
number of tokens (element in the BNF interior 
representation) in the rule times a factor, here 0.01.  In 
previous studies, where G-REX has been used to extract 
regression rules, equation 3 has been used to calculate the 
fitness of rule r. 
 

 
ae is negated as a higher fitness value usually corresponds to 
a fitter individual. The factor is used to balance accuracy 
versus comprehensibility, but it will have different effect 
depending on the magnitude of the error. Before G-REX is 
applied to a new data set, trial experiments have to be 
performed to decide an appropriate magnitude for the factor. 
To remove the need of trial experiments a constant C is 
introduced into the fitness function, see equation 4. C is used 
to normalize the ae in a way that makes the balancing of the 
length of the rule independent of the magnitude of the error. 
The normalization ensures that a certain factor will have the 
same affect on the rules for all data sets. 
 

 
The constant C is initially set to the sum of the target 
variable and is then updated after each generation according 
to Equation 5. 
 

 

D. Evaluation 

To evaluate the benefit of using rule extraction, G-REX is 
evaluated against algorithms that produce comprehensible 
models. In this study, G-REX is evaluated against multi 
linear regression (MREG) [9] and C&RT [10] a common 
decision tree algorithm. Both techniques produce transparent 
models, normally regarded as comprehensible. 

E. Error measures 

When comparing different estimation models over several 
data sets, it is important to use an appropriate error measure. 
Two often used error measures are the root mean square 
error (RMSE) and the coefficient of determination, R2, 
which is strange since it is well known that both measures 
are unsuitable for estimation tasks.  R2 takes no account for 
the bias which means that even if a model has a perfect R2 
its prediction can still differ greatly from the actual value 
[11]. 

RMSE is a bad choice for several reasons; it is poorly 
protected from outliers, has low reliability and low construct 
validity [12]. Another reason is that when comparing models 

over several data sets the error metric has to be relative. This 
is true for both estimations tasks [13] and for time series 
prediction [11]. A relative measure is a measure which is 
relative to some reference. There are many choices for 
reference but usually some simple straightforward model 
like the mean is used. A relative measure is also important 
since values of the target variable can differ greatly in 
magnitude between data sets, which of course will affect the 
magnitude of the error. The reference also accounts for the 
difficulty of the data set which also is of great concern in a 
comparison. It is not always worse to achieve a higher error 
on a difficult task then a slightly lower error on a simple 
task. 

In [12], several error measures were evaluated according 
to reliability, construct validity, sensitivity to small changes, 
protection against outliers, and their relationship to decision 
making. Geometric Mean of the Relative Absolute Error 
(GMRAE) was presented as one of the strongest measures. 
GMRAE is based on Realtive Absolute Value (RAE) which 
is defined in Equation 6.  is the prediction (forecast) 
made by the model m on instance s,  is the actual (real) 
value.  RAE is relative to the random walk (RW) with zero 
drift, i.e. the most recent known actual value. For series s 
RW predicts .  

 

 
Random walk is often used as a reference point since it is 

straightforward and easily interpreted. In addition, random 
walk most often outperforms the mean prediction for time 
series. To handle extreme values, the RAE is trimmed using 
Winsorizing according to equation (7). 

 

 
GMRAE summarizes the WRAE using the geometric 

mean. The arithmetic mean is not suitable as any arithmetic 
average will be dominated by its large terms. In other words, 
good small errors should be counted but would essentially be 
ignored. It might be reasonable to expect that a large error 
should be balanced by a sufficiently small error which is the 
case for the geometric average but not for the arithmetic 
averages [14]. 

 

 
This study focus on estimation problems where the RW 

cannot be applied. But the GMRAE can still be used by 
simply exchanging the reference to the RW in equation 6 
with the mean of the currently known actual values. 
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F. Data sets 

The study is performed on eight data sets which are 
presented below. All data sets are publicly available at the 
UCI repository. Table 4 shows the general properties of the 
data sets. #In is the number of instances in the data set, #co 
is the number of continuous input variables and #ca is the 
number of categorical input variables. The mean value 
(Mean), the standard deviation (Std), the maximum value 
(Max), the minimum value (Min) and the number of outliers 
(#Outl.) are all calculated for the target variable. 

 
• Auto price (AUT). 

The data set consists of car specifications from 
which the price of the cars should be predicted. 

• Diabetes_Numeric (DIA) 
The objective is to investigate the dependence of 
the level of serum C-peptide on the various other 
factors in order to understand the patterns of 
residual insulin secretion. The response 
measurement is the logarithm of C-peptide 
concentration (pmol/ml) at the diagnosis, and the 
predictor measurements age and base deficit, a 
measure of acidity. 

• Boston Housing (HOU). 
The inputs variables is statistics related to the 
livings standard in the different suburbs. The target 
variable is the median value of owner-occupied 
homes.  

• Machine CPU (MAC). 
The problem concerns predicting the relative CPU 
performance based on six CPU properties. 

• Pharynx (PHA).  
The data set consist of patients with squamous 
carcinoma of 3 sites in the mouth and throat (in the 
oropharynx). The objective of the study was to 
compare the two treatment policies with respect to 
patient survival time. 

• Sleep (SLE).  
Includes brain and body weight, life span, gestation 
time, predation and danger indices for 62 mammals. 
The target is the total time the mammal spends 
sleeping.  

• Veteran's Admin. Lung Cancer Trial (VET).  
The data set contains data about veterans with lung 
cancer. The input variables consist of information 
about the patients, the type of cancer and the 
treatment. The target variable is the patient’s 
survival time. 

• Wisconsin (WIS). 
Each record in the data set represents follow-up 
data for a breast cancer study. The target is the 
recurrence time of the cancer and the input 
variables is measures for the cell nucleus. 

 

TABLE 4  
PROPERTIES OF DATA SETS 

  

 
The experiments were performed using standard 10-fold 

cross validation. The data sets were stratified to ensure that 
each fold was representative.  

IV. RESULTS 

The results presented in Table 5 are average GMRAE 
over the ten folds of each data set. ENS is the result for the 
ensemble, which is the target for G-REX. The bold results 
are the best result for each data set excluding the ensemble. 
The results are relative to the mean prediction, so a value 
less than one means that the results are better than the mean 
prediction. 

TABLE 5  
GMRAE ON INDIVIDUAL DATA SETS 

 
G-REX with LINREG representation achieves the overall 

best result and perfoms best on 6 of 8 data sets. The 
difference between the ensemble result and LINREG is only 
0.04, which has to be regarded as a very successful result for 
the rule extraction. LINREG is also the only technique that 
performs better than the mean prediction on all data sets. 
C&RT is the second best technique, mainly due to the very 
good result on the SLE data set. On three of the data sets, 
C&RT performs more or less equal to the mean prediction. 
FREE is the worst performing technique but with the 
exception of the DIA data set, it achieves similar to MREG 
and C&RT. DIA is the smallest of the data sets and seems to 
be the most difficult data set for G-REX. 
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A. Comprehensibility 

Table 6 shows the average length of the rules produced by 
each technique. The length is calculated as the number of 
tokens in the rule.  

TABLE 6  
RULE LENGTH 

 
All rules produced by the different techniques have a 

reasonable size and could probably be regarded as 
comprehensible. C&RT produces extremely short rules for 
the data sets PHA,VET and WIS by guessing one value for 
all instances. Note that these data sets are the ones on which  
C&RT has the worst accuracy, see Tables 4 and 5. 

B. Rules 

In this sub-section typical rules for each technique are 
presented. Rules are only presented for the AUT data set as 
this probably is the data set that is easiest to comprehend. 
Each rule is close to the average length (over all data sets) 
for respective technique.  AUT contains data of different 
properties of cars and the target is to predict the price of a 
certain car. 

FIGURE 1 TYPICAL  
NORM RULE FOR AUT 

 
 

The rule has a length of 11 and predicts one of three 
values.  CityMpg stand for miles per gallon in city traffic 
and weight is the curb weight of the car. 

 
FIGURE 2  

TYPICAL FREE RULE FOR AUT 

 
 

Figure 2 shows a rule with length 14 produced by G-REX 
using the FREE representation.  Depending on the highway 
mileage, the rule predicts a value as a product of one or two 
variables. 

 
FIGURE 3 

TYPICAL LINREG RULE FOR AUT 

 
 
The LINREG rule is slightly more complex and uses four 

linear regressions to predict the price. The total length is and 
32. All regression uses the weight of the car as regressor and 
only differ in the values of the constants. 

 
FIGURE 4  

TYPICAL MREG RULE FOR AUT 

 
 

In the implementation used in this study, MREG always 
uses all input variables to make the prediction. This makes 
the rule complex and difficult to understand. On the other 
hand, the rule clearly shows the impact of each variable. For 
the AUT data set MREG produces rules with length 61.  

FIGURE 5  
TYPICAL C&RT RULE FOR AUT 

 
The C&RT rule in Figure 5 has a length of 36. The 

average length of the C&RT rule are 21 excluding 
PHA,VET and WIS. 

if weight < 2664 
|T: if weight < 2291.5 
    |T: 7127.9 
    |F: if losses < 180 
        |T:9852.2 
       |F:16677.5 
|F: if weight < 3395.5 
    |T: if width < 68.6 
        |T: if losses < 162.5 
           |T: if horsepower < 158 
               |T: 14764.2 
              |F: 18535 
           |F: 18874.6 
       |F: 20264.2 
    |F: 30147 

-57183 + 
-131.56 * symboling +       
 10.889 * losses + 
  131.4 * wheelBase +        
-95.736 * length +      
  828.3 * width + 
 16.846 * height + 
 6.1278 * weight + 
 47.855 * engineSize + 
-1687.5 * bore +  
-1815.7 * stroke +  
 103.57 * compressionRatio + 
  15.65 * horsepower + 
0.82669 * peakRpm +  
-47.336 * cityMpg +  
 28.109 * highwayMpg + 

if losses > 184.34 
 |T: weight*5.44+1913.26 
 |F: if engineSize < 106.32 
 |   |T: weight*4.77-2467.55 
 |   |F: if losses < 106.32 
 |   |   |T: weight*13.03-21334.75 
 |   |   |F: weight*11.01-16536.69 

if highwayMpg > 27.25 
 |T:  horsepower * 105.65 
 |F:  horsepower * 2.91 +  

engineSize * 113.29 

if cityMpg < 41.38 
 |T: if weight < 2601.03 
 |   |T: 7621.43 
 |   |F: 16857.99 
 |F: 7022.83 
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V. CONCLUSIONS 

All rules in the experiments can be regarded as 
comprehensible. The results show that G-REX outperformed 
MREG and C&RT on the data sets used in the study. The 
results also show that it is important to choose an 
appropriate representation. This is not a problem for G-REX, 
since it can use any representation language. In addition, it is 
easy to perform initial experiments in order to choose the 
most suitable. 

Both LINREG and FREE have the same terminal and 
function set, which means that they search the same space of 
possible solutions. The fact that LINREG performs 
significantly better then FREE is probably due to the fact 
that LINREGs search is guided by the least square when the 
constants of the linear regressions are selected. In theory 
FREE should be able to achieve a performance similar to 
LINREG, but that would probably require a longer evolution 
and a larger population. 

LINREG’s advantage over MREG could either be 
explained by the fact that the ensemble aids LINREG in a 
favorable way, or that LINREG has a slightly more powerful 
representation, i.e. it can use different MREG for different 
parts of the data set. The same reasoning applies to C&RT, 
but both techniques are limited to their representation to 
calculate a solution, while G-REX can use almost arbitrary 
representations. 
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