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Abstract. This paper employs genetic programming to discover statisti-
cal arbitrage strategies on the banking sector in the Euro Stoxx universe.
Binary decision rules are evolved using two different representations. The
first is the classical single tree approach, while the second is a dual tree
structure where evaluation is contingent on the current market position.
Hence, buy and sell rules are co-evolved. Both methods are capable of
discovering significant statistical arbitrage strategies.

1 Introduction

During the last decades, the Efficient Market Hypothesis (EMH) has been put
to trial, especially with the emergence of behavioral finance and agent-based
computational economics. The rise of the above mentioned fields provides a
theoretical justification for attacking the EMH, which in turn stimulates the
empirical forecasting literature.

A basic premise for efficiency is the existence of homo economicus, that the
markets consists of homogeneous rational agents, driven by utility maximization.
However, cognitive psychology has revealed that people are far from rational, in-
stead they rely on heuristics in decision making to simplify a given problem [15].
This is both useful and necessary in everyday life, but in certain situations it
can lead to biases such as overconfidence, base-rate neglect, sample-size neglect,
gamblers fallacy, conservatism and aversion to ambiguity [3]. However, what is
more important is that these biases manifest themselves on an aggregate level
in the markets as momentum and mean-reversion effects [12, 7]. Accepting the
existence of heterogeneous agents, have pronounced effects on a theoretical level.
In such a scenario the market clearing price cannot be determined formally, since
agents need to form expectations about other agents’ expectations etc. This leads
to an “infinite regress in subjectivity”, where no agent irrespective of reasoning
powers, can form expectations by deductive means, thus perfect rationality is not
well-defined. Instead, investors are forced to hypothesize expectational models,
where the only means of verification is to observe the models’ performance in
practice [2]. In such a world it is indeed sensible to develop expectational mod-
els beyond traditional equilibrium analysis which we seek to accomplish using
genetic programming (GP).

The majority of existing applications of GP in financial forecasting have for
some reason focused on foreign exchange. Here, the general consensus is that GP
can discover profitable trading rules at high frequencies in presence of transaction
costs [14, 8, 6]. For the stock market results are mixed. [1] do not outperform
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the buy-and-hold strategy on daily S&P500 data, while [5] do on a monthly
frequency. Besides changing the frequency, they reduce the grammar and con-
sider a cooperative co-evolution scheme, where buy and sell rules are evaluated
separately.

In this paper, we consider genetic programming for statistical arbitrage. Ar-
bitrage in the traditional sense is concerned with identifying situations where a
self-funding is generated that will provide only non-negative cash flows at any
point in time. Obviously, such portfolios are possible only in out-of-equilibrium
situations. Statistical arbitrage is a wider concept where, again, self-funding
portfolios are sought where one can expect non-negative pay outs at any point
in time. Here, however, one accepts negative pay-outs with a small probability
as long as the expected positive payouts are high enough and the probability
of losses is small enough; ideally this shortfall probability converges to zero. In
practice, such a situation can occur when price processes are closely linked. In
the classical story of Royal Dutch and Shell [3], the pair of stocks are cointe-
grated since they are fundamentally linked via their merger in 1907. In most
cases, however, such links are not as obvious, but that does not eliminate the
possibility that such relationships might exist and can be detected by statistical
analysis. Since it can be argued that these stocks are exposed to many of the
same risk factors and should therefore have similar behavior, this paper considers
stocks within the same industry sector.

We shall construct so-called arbitrage portfolios, where the proceedings from
short selling some stocks are used to initiate long positions in other stocks.
This scheme has several advantages, firstly, it is self-financing and second the
profits made from this strategy are in excess of the risk-free rate and virtually
uncorrelated with the market index. Furthermore, by modeling the relationships
between stocks, we are not trying to predict the future, rather we focus the
attention in a direction where more stable patterns should exist.

The rest of the paper is organized as follows. Section 2 provides evidence of
significant clustering between sectors within the Euro Stoxx universe. Section 3
introduces the data, model and framework. Section 4 presents results under the
assumptions of frictionless trading. Finally, conclusions are drawn and pointers
are given to future research in Section 5.

2 Clustering of Financial Data

Previously we hypothesized that stocks within the same industry sector are
exposed to many of the same risk factors and should therefore have similar
behavior. In order to clarify this, we investigate the majority of stocks in the Euro
Stoxx 600 index. The data is gathered from Bloomberg and includes information
such as company name, ticker symbol, industry sector and industry group. In
addition hereto, we obtain the adjusted closing prices in the period from 21-Jan-
2002 to 26-Jun-2007. Since the index composition is changing over time, we only
consider stocks where data exists for the last two years for both price and volume
series. Taking this into account, the universe comprises of a total of 477 stocks.
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The notion that stocks have similar behavior needs to be specified in order
to conduct a proper analysis. An obvious measure for price data is the corre-
lation of returns, where a higher correlation implies stronger similarity. To test
the hypothesis that stocks within the same sector tend to be clustered together
we employ the k-means algorithm to construct statistical clusters. Thus, if the
statistical clustering is independent of the fundamental clustering, dictated by
the industry sectors, then we must reject our hypothesis. Let, S and F be two
stochastic variables, which describe the statistical and fundamental clusters.1

The maximum number of clusters is denoted by the integers ks and kf , respec-
tively. Define si (fi) as the statistical (fundamental) cluster asset i belongs to,
and I{si=j} (I{fi=m}) be a binary indicator which is 1 if this statistical (fun-
damental) cluster is equal to j (m) and 0 otherwise. Then, for a universe of N
stocks,

Vj,m =
N∑

i=1

I{si=j} · I{fi=m} ∀ j = 1, 2, . . . , ks m = 1, 2, . . . , kf (1)

is the number of stocks that, at the same time, belong both to statistical cluster
j and the fundamental factor m. The hypothesis of independence can be tested
via a χ2-statistic for contingency tables. Setting ks = kf = 10, we obtain a test
statistic χ2 = 1314.1 where the critical value is χ2

0.05(81) = 103.0, thus strongly
rejecting the null hypothesis of independence.

The analysis above proves that there are significant clustering within the
sectors, and in the following we shall focus on the actual statistical arbitrage
application.

3 The Framework

As mentioned previously, the objective is to develop a trading strategy for sta-
tistical arbitrage based on price and volume information, and in the following
we elaborate on data, preprocessing and model construction.

3.1 Data

The data comprises Volume-Weighted Average Prices (VWAP) and volume, sam-
pled on an hourly frequency for the banks in the Euro Stoxx 600 index. It covers
the time period from 01-Apr-2003 to 29-Jun-2007, corresponding to a total of
8648 observations. Again, we only consider stocks for which we have enough
data, which limits the portfolio to 30 assets.

When analyzing high frequency data it is important to take intraday effects
into account, e.g., the intraday volume is higher after open and before close than
during the middle of the day [11]. In the context of trading rule induction it is
important to remove this bias, which is basically a proxy for the time of day,
and prohibits sensible conditioning on intraday volume.
1 The statistical clusters are obtained by using k-means on the correlation matrix, i.e.,

the data comprises of N observations in N dimensional space.
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3.2 Preprocessing

The return series for each stock is standardized with respect to its volatility,
estimated using simple exponential smoothing. Likewise, a volume indicator is
constructed that removes the intraday bias, and measures the extent to which
the level is lower or higher than expected. Specifically, we take the logarithm of
the ratio between the realized and expected volume, where this ratio has been
hard limited in the range between 0.2 and 5.

Since we are interested in cross-sectional relationships between stocks, rather
than their direction, we subtract the cross-sectional average from the normalized
returns and volume series for each stock. Based on these series, we calculate the
moving averages over the last 8, 40 and 80 periods, corresponding to one day,
a week and two weeks on the hourly frequency. All indicators are scaled in the
range between 0 and 1.

3.3 Model

There are two approaches for modeling trading rules, either as decision trees
where market positions or actions are represented in the terminal nodes [16], or
as a single rule where the conditioning is exogenous to the program [6].

We consider the latter approach in the context of a binary decision problem,
which corresponds to long and short positions. As mentioned previously, we are
interested in arbitrage portfolios, where the purchase of stocks is financed by
short selling others. Naturally, a precondition for this to be achieved is that not
all the forecasts across the 30 stocks are the same, e.g., if the trading rule take
a bullish view across the board, then short-selling opportunities have not been
identified and proper arbitrage portfolios cannot be constructed. In this case we
do not hold any stocks. However, when forecasts facilitate portfolio construction,
this is done on a volatility adjusted basis. Let oi

t ∈ {−1, 1} denote the forecast
on stock i at time t, then the holding is given,

hi
t = oi

t

1
σi

t∑n
j=1

1
σj

t

I{oj
t=oi

t}
(2)

where σt is the volatility, n is the number of stocks in the universe, and I{oj
t=oi

t}
is an indicator variable that ensures that forecasts are normalized correctly, i.e.,
it discriminates between long and short positions.

We employ two different methods for solving the binary decision problem.
The first uses a standard single tree structure, while the second follows [4] and
considers a dual structure in conjunction with cooperative co-evolution. In both
methods, the trees return boolean values. For the dual structure, program evalu-
ation is contingent on the current market position for that particular stock, i.e.,
the first tree dictates the long entry, while the second enters a short position.
More formally, let bj,i

t ∈ {0, 1} be the the truth value for tree j on stock i at
time t, then the forecast is given as, if oi

t−1 < 0 then oi
t = 2 · b1,i

t − 1 else
oi

t = −2 · b2,i
t + 1 end.
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In both settings, the programs are constructed from the same grammar which
is fairly restricted. It consists of numeric comparators (<, >), boolean operators
(AND, OR, XOR, NOT) and if-then-else statements (ITE). Furthermore, we have in-
troduced a special function BTWN, that takes three arguments and evaluates if the
first is between the second and third. The terminals comprises the six indicators
and numerical constants ranging from 0 to 1. The parsimonious grammar reduces
the risk of overfitting, and enhances interpretability of the evolved solutions.

3.4 Objective Function

The choice of objective function is essential in evolutionary computation. It
has previously been found that a risk-adjusted measure improves out-of-sample
performance, relative to an absolute return measure [6]. In this context the
Sharpe Ratio is an obvious candidate. However, using this measure it is possible
to evolve strategies that do extremely well only on a subset of the in-sample
data and mediocre on the remainder.

Instead we employ the t-statistic of the linear fit between cumulated returns
and time, since it maximizes the slope while minimizing the deviation from the
ideal straight line performance graph.

3.5 Parameter Settings

In the following experiments we consider a population size of 250 individuals,
initialized using the ramped half-and-half method. It evolves for a maximum of 51
generations, but is stopped after 15 generations if no new best-so-far individual
has been found. We use normal tournament selection with a size of 5, and the
crossover and mutation probabilities are 0.9 and 0.1, respectively. Moreover,
the probability of selecting a function node during reproduction is 0.9, and the
programs are constrained to a maximum complexity of 50 nodes.

The data is split into a training and test set. The former contains 6000 samples
and covers the period from 01-Apr-2003 to 10-Mar-2006, and the latter has 2647
samples in the period from 13-Mar-2006 to 29-Jun-2007.

4 Empirical Results

In this section we assume the absence of market impact, i.e., that it is possible
to execute on the realized VWAP. Trading on VWAP differs from a traditional
market order, where a trade is executed at the current observed price. Contrary,
the VWAP is a backward looking measure, and it is therefore not possible to
trade on the observed VWAP at time t. Instead the execution occurs gradually
between t and t + 1, resulting in the VWAP at t + 1. In summary, a trading
decision is formed based on the VWAP at time t, the entry price is observed at
time t + 1 and the one period return is evaluated at t + 2.

We perform 10 experiments using both the single and dual tree method, ac-
cording to the settings outlined in Section 3. For each experiment, the best-
so-far individual is evaluated on the training and test set. Figure 1 shows the
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Fig. 1. In-sample (top) and out-of-sample cumulated returns (center) assuming fric-
tionless trading. The thick lines are the average performances and the 95% and 99%
confidence intervals are constructed using the stationary bootstrap procedure. Annu-
alized in-sample versus out-of-sample returns with the 45◦-line (bottom). The left and
right column are the single and dual tree results, respectively.

performance for the single and dual tree method. Judging from the in-sample re-
sults, the t-statistic measure works as intended, and all experiments have steady
increasing cumulative returns. The average annualized in-sample returns are
27.0% and 24.9%, for the single and dual tree method, respectively. As a proxy
for generalization, it is instructive to consider the shrinkage which is defined,
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ψ =
Xtrain − Xtest

Xtrain
(3)

where X is an arbitrary performance measure [6]. Both methods generalize ex-
tremely well out-of-sample, and the shrinkage is only 0.12 and 0.16, correspond-
ing to annualized returns of 23.3% and 19.9%.

In order to asses the significance of these results, confidence intervals are con-
structed using the stationary bootstrap method, which is a superior alternative
to well known block bootstrap procedure [17]. Instead of using a fixed block size,
it varies probabilistically according to a geometric distribution.2 Thus, sampling
with replacement is performed from the holdings, and statistics are gathered
from 500 bootstrap runs. The 99% upper confidence limits are 16.1% and 17.7%
for the single and dual tree method, respectively. For the single tree method
all ten experiments exceed the limit, while for the dual tree method it is only
7. From a risk adjusted perspective, there is also significant performance. The
average annualized out-of-sample Sharpe Ratio is 2.83 and 2.60, where the 99%
confidence limits are 2.17 and 2.41, for the single and dual tree method, respec-
tively.

Positive out-of-sample returns need not imply market inefficiency. Tradition-
ally, this is investigated by comparing the trading strategy to the buy-and-hold
strategy. This, however, is not a suitable benchmark for statistical arbitrage
strategies. Firstly, because a statistical arbitrage is self-financing and the buy-
and-hold is not. This could be addressed by considering the returns of the buy-
and-hold in excess of the risk-free rate, but this is a naive approach contingent
on a specific equilibrium model.3 Instead, we employ a special statistical test
for statistical arbitrage strategies where this is not the case [10]. Hence, it cir-
cumvents the joint hypothesis problem, that abnormal returns need not imply
market inefficiency, but can be due to misspecification of a given equilibrium
model [9]. The constant mean version of the test assumes that the discounted4

incremental profits satisfy,

Δvi = μ + σiλzi i = 1, 2, . . . , n (4)

where zi ∼ N(0, 1). The joint hypothesis, H1 : μ > 0 and H2 : λ < 0 determines
the presence of statistical arbitrage.

In order to make some general inferences, we consider an aggregation or bag-
ging of the evolved trading strategies in the following.5 Table 1 contains the test
2 With the probability parameter p = 0.01, blocks with an expected length of 100

samples are generated.
3 For the interested reader, the benchmark of an equally weighted portfolio of the

banking stocks in excess of the risk free rate obtains an annualized return of 4.47%
and has a Sharpe Ratio of 0.35 in the out-of-sample period.

4 As a discount rate we employ the 1-month LIBOR rate for the Eurozone.
5 All 10 evolved strategies are aggregated, but one could employ various schemes to

improve out-of-sample performance. Generally, this requires the use of additional
validation sets, but since data is limited this is problematic. Moreover, aggregating
all strategies is clearly the conservative approach and is therefore preferred.
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Table 1. Statistical arbitrage test results

μ (·10−4) σ λ H1 H2 H1+H2 (·10−6)
Single Tree 1.1321 0.0018 -0.0471 0.0000 0.0000 3.75
Dual Tree 0.9256 0.0020 -0.0922 0.0000 0.0000 4.78
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Fig. 2. Probability of loss for the bagged statistical arbitrage strategies as a function
of trading time

results for the bagged models, where p-values for the joint hypothesis is obtained
via the Bonferroni inequality. Both methods discover highly significant statisti-
cal arbitrage dynamics at all usual levels of significance.6 Figure 2 depicts the
probability of a loss as a function of trading time, and after 422 and 502 hours
it is less than 0.05 for the single and dual tree, respectively. This demonstrates
the essence of statistical arbitrage, that a riskless profit is earned in the limit.

5 Conclusion

In this paper genetic programming is employed to evolve trading strategies for
statistical arbitrage. This is motivated by the fact that stocks within the same
industry sector should be exposed to the same risk factors and should therefore
have similar behavior. This certainly applies to the Euro Stoxx universe, where
we find evidence of significant clustering.

Traditionally there has been a gap between financial academia and the in-
dustry. This also applies to statistical arbitrage, an increasingly popular invest-
ment style in practice, but to the authors’ knowledge little formal research has
been undertaken within this field. This paper addresses this imbalance and aims
to narrow this gap. We consider two different representations for the trading
rules. The first is a traditional single tree structure, while the second is a dual
tree structure in which evaluation is contingent on the current market position.
Hence, buy and sell rules are co-evolved. Both methods have substantial market
timing and discovers significant statistical arbitrage strategies. However, in a

6 For the individual strategies, 9/10 and 7/10 have significant performance on a 0.01
level of significance, for the single and dual tree method, respectively.
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frictionless environment we cannot conclude that this violates the efficient mar-
ket hypothesis, since “prices reflect information to the point where the marginal
benefits of acting on information (the profits to be made) do not exceed the
marginal costs” [13].

Having assumed a frictionless environment it is important to asses the implica-
tions of such an assumption. Naturally, were these strategies to be implemented
in practice a cost would be associated with trading, but it is not a serious as one
might think. When closing prices or point estimates of the price are considered,
trading is associated with crossing the bid-ask spread, and thereby incurring a
cost ranging from 2bp to as much as 40bp depending on the liquidity and the
price level of the stock. In addition to the bid-ask spread, slippage occurs if
the order size is large relative to the depth of the market. This paper, however,
does not use closing prices, but instead proprietary VWAP’s. The advantage
of using these series is that algorithmic trading actually permits these prices
to be obtained within 1bp for moderate order sizes.7 Naturally, the assumption
of a complete frictionless environment is an idealization. However, preliminary
research suggest that positive returns can be generated under realistic market
impact, but more work is needed.
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