

978-1-4244-1694-3/08/$25.00 ©2008 IEEE

1

A Genetic Programming Approach to Solve
Scheduling Problems with Parallel Simulation

Andreas Beham1, Stephan Winkler1,2, Stefan Wagner2, Michael Affenzeller2

1 Research Center Hagenberg, 2 Department of Software Engineering
Upper Austrian University of Applied Sciences, Campus Hagenberg

Softwarepark 11, A-4232 Hagenberg, Austria
{andreas.beham,stephan.winkler,stefan.wagner,michael.affenzeller}@heuristiclab.com

Abstract—Scheduling and dispatching are two ways of
solving production planning problems. In this work, based
on preceding works, it is explained how these two ap-
proaches can be combined by the means of an automated
rule generation procedure and simulation. Genetic pro-
gramming is applied as the creator and optimizer of the
rules. A simulator is used for the fitness evaluation and dis-
tributed over a number of machines. Some example results
suggest that the approach could be successfully applied in
the real world as the results are more than human compet-
itive.

I. Introduction

Schedule Optimization Problems are of great importance
in the field of production planning and a good optimization
strategy can lead to significantly lower production times,
lower set-up costs, increased delivery reliability or higher
plant utilization depending on the definition of the goals.
Often enough scheduling problems are also very complex
and cannot always be evaluated deterministically. Among
the many approaches to the problem one can separate two
different directions that we call scheduling and dispatching
respectively. They are both very similar, but differ in their
respective view on the situation in a production planning
environment.

The scheduling approach maintains and operates on a
global view of the problem. It knows about pending jobs
for the next x days, their deadlines, job-machine-tool com-
binations and possibly even about material availability.
Given this information and the predefined goals it will at-
tempt to create an optimal solution, i.e. an assignment
of jobs, workers and tools to machines or generally work
stations. The advantage of this approach is the direct opti-
mization possibility: Moving or exchanging jobs lengthens
or shortens the make-span and plant utilization is rela-
tively easy to see when the schedule is displayed graphi-
cally using a Gantt chart. However, the disadvantage is
the overall complexity and the constraints that can create
a largely different schedule out of a small change. Another
disadvantage is the rigidness of the solution: A schedule as
such is a fixed production plan and any change or unforseen
disturbance during the execution of that plan results in the
creation and optimization of a new plan, a time intensive
task.

Dispatching on the other hand is a local approach, its
knowledge is limited to the direct needs of any of the ma-
chines in a given situation. Whenever a machine becomes
idle it will query the job pool to receive a list of pending
jobs. The job pool is similar in knowledge to the schedul-

ing approach, but does not need to look ahead and it just
needs to assemble a list of jobs that are possible to be pro-
duced right now on a given machine. The machine will
then rank these jobs according to a number of criteria and
the job with best rank will be chosen as the next to be
processed. Clearly, the disadvantage of this approach is
the lack of planning, but the advantage is a much greater
degree of flexibility as it will react to changes more quickly.
An urgent new job for example could be issued with a high
priority and could find its way faster through the process
while still maintaining some sort of local optimality which
is achieved by the quality of the ranking function.

This paper is a summary and extension of the work
done in [1][2] and emphasizes the point where the two ap-
proaches could be combined into one. The further layout
of the paper is as follows: Section II will give an overview
of the problem while section III will explain the details of
the algorithm; in Section IV the optimization environment
and the set-up of the test is presented. A few results are
given in Section V and finally conclusions and an outlook
is given in Section VI.

II. Production Planning Problem

The production planning problem treated here can be
generalized to the flexible job shop problem (FJSP) and is
described in [2]; a short rephrase is given here.

The problem is basically an assignment problem of r
jobs J = J1, ..., Jr on a set of q machines M = M1, ...,Mq,
more specifically it’s an assignment of s operations O =
O1, ..., Os on the m machines, since each job Jk consists
of a sequence of operations Bk = (Og(1), ..., Og(m)) where
g(l) denotes the index from the first up to the last opera-
tion necessary to complete job Jk. Each operation ol ∈ Bk

can only occur once in the same sequence. Each machine
Mi can process as many operations as its capacity ci al-
lows. However, since each machines is in one of t different
configurations K = K1, ...,Kt at a time, only those op-
erations can be executed in parallel on a given machine
that require the same configuration. An operation that
is to be processed on a machine with a different configu-
ration requires a change of that configuration and results
in a waiting time that depends in length on the source
and target configuration as well as on the machine itself.
Additionally not all machines are able to carry out all op-
erations and not all machines are available all the time.
Finally, there are a set of p orders A = A1, ..., Ap where
each order ai ∈ A is bounded by an earliest start date and

2

a due date and requires the processing of different jobs in
various quantities.

The objective function of the problem was set to de-
crease pass-through time, which means that for all jobs j
in the manufacturing process the time between entry and
exit should become minimal. In mathematical form the
objective function looks as following:

f(A) =
p∑

i=0

|ai|∑
j=0

Fj − Ej

where Fj and Ej is the exit and enter time of a processed
job respectively.

III. Genetic Programming Approach

Genetic programming (GP) [3] is a special type of encod-
ing and generally circumscribes a GA [4] that operates on
a tree representation, although theoretically any optimiza-
tion algorithm could be used instead of the GA. The binary
one point crossover is replaced by a subtree crossover and
bit flip mutation is now a variation in the leaves or nodes
of the tree. The advantage of this representation is that
mathematical formulas can be represented in an expression
tree. Thus GP is able to automatically build and optimize
formulas and even computer programs [3]. In the tree rep-
resentation a node denotes a function and a leaf represents
a variable or a constant. The terminology that is often
used refers to nodes as non-terminal symbols and to leaves
as terminal symbols. Typical areas where GP has been
successfully applied are classification, regression and time
series problems [5][6].

In this work, GP is applied on the simulation model in-
troduced in [2]. As was described in Section II, the objec-
tive function optimized in this paper evaluates a schedule,
so to say a permutation of jobs with start and end time
assigned on a number of machines. But the point of opti-
mization is not the schedule itself.

If there is no planning during the production process,
the question on what to do next needs to be determined
every time a job is introduced into the system or a ma-
chine becomes idle. Scheduling could cope well with idle
machines, but if a lot of jobs will be introduced the whole
schedule would need to be reevaluated quite often - a task
which is computationally quite expensive. This is the ad-
vantage of dispatching where the jobs get registered to the
buffers of all machines that they need to be processed on.
The machine, when it becomes idle, applies a ranking of
all the jobs in its buffer and chooses the best next job ac-
cording to the ranking and deletes it from all the other
buffers. This ranking function is the point of optimiza-
tion and lies within the domain of GP. The goal is to find
an optimal ranking function for all the machines in the
production environment. However GP still needs a mea-
surement of the quality of its individuals which are ranking
functions. Local objectives that are closer to the machines
like a reduction of setup times or plant utilization can be
measured directly, but the results from other objectives
such as delivery reliability might be first available after a

few days and even plant utilization is more interesting as
an average over a few days. Additionally, such small time
windows may not seem adequate enough to measure the
performance of a certain ranking function.

This leads to the conclusion that the application of the
ranking function needs to be simulated into the future. The
simulation over a longer period can provide a more reliable
fitness measure which is fed back into the GP optimizer.
The simulator thus is similar to a scheduler and at this
point both approaches merge: GP optimizes the ranking
function of the scheduler which applies it for every machine
at the decision points. The simulator finally calculates the
performance characteristic which is fed back into the GP
approach to determine the quality of the ranking function
and thus of the individual.

The ranking function that GP will optimize is structured
as an expression tree where the nodes or non-terminal sym-
bols represent mathematical functions. The leaves can rep-
resent constant numbers as well as special strings. These
strings denote a simple priority rule, which is a quantita-
tive characteristic of a given job. The simulator will replace
the string in the formula with the value of the respective
characteristic for each job and evaluate its rank. Genetic
programming will thus create a complex rule out of a few
simple rules. The 17 non-terminal symbols consist of 11
functions: +, −, ×, ÷, ,̂ ê, Sqrt, Sin, Cos, Log, Sign and
5 relations: <, >, <=, >=, ==. The last non-terminal
symbol is a conditional IF-THEN-ELSE node. The ter-
minal symbols consist of uniformly distributed constants
c ∈ [0, 20] as well as the 8 simple priority rules identified in
[2]: LotID, FIFO, JobTime, JobFlex, MID, AGE, CR and
EDD, which are explained as follows: LotID is a number
identifying a job, FIFO is the job’s number in the machine
waiting queue, JobTime represents the amount of time a
job has spent waiting in that queue, JobFlex denotes the
number of machines a job is currently registered to, MID is
a number representing the ID of the machine, AGE is the
amount of time a job has spent in the whole manufactur-
ing process, CR describes whether a job is on time, before
or behind schedule and EDD represents the due data of a
job. These symbols then create a tree which can be easily
written down in infix, prefix or postfix notation depend-
ing on the way the tree is traversed. There are also size
restrictions that apply on the tree to constrain the size of
the search space.

The algorithms that are applied on the simulation model
are multipopulation variants of the GA. One of these ad-
vanced algorithms is termed SASEGASA [9]. This algo-
rithm uses an additional step in the traditional GA cycle
which takes place after the mutation and evaluation have
been completed and before the replacement starts. It is
called offspring selection and it selects only those children
for replacement which are better than their parents. So
the algorithm would use selection, crossover, mutation and
evaluation and then decide if the child is worth keeping or
not. It compares its quality to that of its parents by using
a comparison factor. This is adjustable between compar-
ing against the worst parent, the best parent or a linearly

A GENETIC PROGRAMMING APPROACH TO SOLVE SCHEDULING PROBLEMS WITH PARALLEL SIMULATION 3

interpolated value between them. Naturally, after the chil-
dren have passed offspring selection just a few may have
survived, likely too few to replace the whole population.
So the cycle is repeated until enough children were found
to be worth keeping. The ratio to adjust how many chil-
dren need to be better than their parents is defined in a
parameter called success ratio. The advantage of this al-
gorithm is that it can produce good results even with low
mutation rates and low parental selection pressure. To en-
sure a good diversity of the individuals, the population in
SASEGASA is separated into sub populations which grow
together over time.

Two other algorithms are tried that simply expand the
traditional GA to the multipopulation domain by using an
island model in which the population is divided into sub
populations called islands. They are thus termed Island
GAs. Each sub population of an Island GA is optimized
by a traditional GA, but they will exchange some indi-
viduals every couple of generations between them. The
parameters to control the migration are called migration
rate and migration size. Migration rate specifies the in-
terval after which migration occurs while migration size
denotes the amount of individuals transferred between the
sub populations.

IV. HeuristicLab Optimization Framework

HeuristicLab1 (HL) is a successful optimization frame-
work written in C# and Microsoft .NET. The development
of the first version (HL 1.0) was started in 2002 and was
first released in November 2004 [7]. It is based on the con-
cept of reusability by separating the algorithmic from the
problem dependent parts and employing a plug-in mech-
anism to allow independent development of a number of
metaheuristic concepts and optimization problems. A mi-
nor revision followed nearly a year after the initial release
in August 2005, while at the same time work started on
the next major version which also provided the base for
this work. In HL 2.0, as [8] notes the plug-ins are split
into even smaller parts that could be interchanged more
or less freely. Instead of predetermining implementations
of various metaheuristic techniques and their many vari-
ations the operations are of a more general nature. This
way the user can create arbitrary optimization algorithms
and test them on any kind of optimization problem. An-
other advantage of the new major version is the ability to
execute the algorithm in steps and so offers the possibil-
ity to pause an optimization run, save it and continue it
at a later date. Together with a powerful GUI, it is even
possible to modify the algorithm while it is executing. See
Figure 1 for a screenshot of the main workbench where the
operations are assembled into an algorithm.

The simulation used in this work was well integrated
into HL 1.1, but to take advantage of the new architecture
it was ported over to HL 2.0. Since the purpose of the
simulator was to evaluate a priority rule given as a formula,
it was only necessary to port the evaluation operation and

1 http://www.heuristiclab.com

Fig. 1. Example workbench of HeuristicLab 2.0. Here: A Max-
Min Ant System and the visualization of its pheromone matrix after
having solved a 52 city TSP problem

the data exchange protocol to the new version. This can
then be combined with any of the other operations to form
an optimization algorithm.

The general setup of the optimization was kept the same
as in [2] and is shown in Figure 2. The algorithm runs as
a sequence of operations in the HeuristicLab environment
and at specific points in the sequence when the generated
rules need to be evaluated the newly created evaluation
operator would write them to a database and assign the
simulator clients that have registered themselves in the
database to evaluate the formulas. The simulators run
on separate clients, query the database from time to time
and eventually fetch the rules, evaluate them and write
the results back into the database. The evaluation opera-
tor also queries the database from time to time notes that
the simulation clients have finished, fetches the results, as-
signs the fitness values to the respective ranking functions
and continues with the optimization algorithm.

Fig. 2. Distributed Simulation setup

V. Results

The results were computed on a cluster of 15 worksta-
tions of which about 9 were continuously available. The
workstations are equipped with Intel Pentium 4 processors
running at 2.8 Ghz and with 1 GB of RAM. One of these

4

workstations hosted the database, one of them hosted the
HeuristicLab application with the respective workbench to-
gether with a simulation client while a single simulation
client was running on the 7 other machines. The simula-
tion clients needed on average about 4 seconds per function
evaluation as well as some initial setup time. Unfortu-
nately the clients would not always return meaningful re-
sults, sometimes certain formulas raised an exception in the
simulator and thus their fitness could not be computed. In
this case it was set to the highest possible double value in-
stead. It will be shown that the SASEGASA and offspring
selection can deal with such a situation more effectively
and that these formulas are kept out of the population.

In the preceding work [2] the best solution was obtained
by a GA. The population size was set to 100 and it was
run for 1000 generations using 20% mutation and Roulette
wheel selection. The author stated that a higher mutation
rate was beneficial to the quality of the results. The best
average throughput time that this GA came up with was
16.3139 hours. The resulting formula was:

JobT ime + (0.531/0.255JobF lex)/Sin(0.255)

as [2] further notes they asked a human expert to pro-
vide a solution drawing from his experience and use this
solution to evaluate the strength of the algorithm. The ex-
pert suggested a sorting by JobFlex followed by JobTime
which resulted in an average throughput time of 16.5597
hours. The GA showed comparable performance to that of
the human expert and can be therefore considered human
competitive!

In this work we tried to apply more advanced versions
of the genetic algorithm. The SASEGASA was run with
10 villages and a population size of 100. It was set to use
Roulette-Random Gender Specific selection. This creates
a pair of parents where one parent consists of solutions se-
lected using a proportional selection mechanism and the
other is randomly selected, both from the same popula-
tion. The mutation rate was set to the same 20% as in the
preceding case. It also uses a Single Point CrossOver for
the combination of the parents. The parameters for the
Offspring Selection were set to a success ratio of 1 compar-
ing against the better of the two parents and a maximum
selection pressure of 100. After 11 generations it was able
to improve the solution to an average throughput time of
16.0921 hours and could not obtain a better solution for the
following 20 generations after which the run was aborted.
At that time it had already evaluated 1,208,570 solutions
and took 14 days to compute. See Figure 3 for a chart of
the quality curve for the first 11 generations.

Additionally an Island GA with 10 islands, a population
size of 100, a mutation rate of 20%, roulette wheel selec-
tion and single point crossover was applied on the prob-
lem. The migration rate was set to just 3 generations and
exchanging 15% of the best individuals along an unidirec-
tional ring. In the target population these solutions replace
the double solutions or when there are not enough doubles
the remaining individuals replace the worst solutions. To
test whether two solutions were double their fitness values

Fig. 3. Best/Average/Worst quality curve for the SASEGASA

are compared. The Island GA found its best solution at
generation 1199 with a fitness value of 16.1061 and after
evaluating about 1,200,000 solutions.

Fig. 4. Best/Average/Worst quality curve for the Island GA with
high migration

The Island GA seems to benefit from a high migration
rate as it could perform better than the GA and by elim-
inating the doubles in the replacement phase to reduce
the danger of premature convergence which is present with
such a setting. A comparison with a an Island GA and a
lower migration rate: 15% every 15 generations resulted in
a solution of slightly worse quality: 16.1557 after evaluat-
ing about 1,200,000 solutions. Both Island GAs took more
than 2 weeks to compute on the cluster.

Comparing the quality charts of the SASEGASA (Fig-
ure 3) with that of the Island GA (Figure 4) shows that
the SASEGASA could cope better with the states of excep-
tion in the simulator. During the run of the SASEGASA
no “faulty” individual entered the population, while they
would constantly appear during the run of the Island GA.

The best found formula for the given problem was found
by the SASEGASA and is shown here:

A GENETIC PROGRAMMING APPROACH TO SOLVE SCHEDULING PROBLEMS WITH PARALLEL SIMULATION 5

1.02 ∗ JobF lex + ln(
√

(ecos(1.11∗JobF lex))1.08∗CR+9.83

∗1.01 ∗ JobT ime) ∗ (ln(cos(sin((sin(
√

0.74 ∗AGE)∗
0.91 ∗AGE) + (1.11 ∗ JobF lex)14.68∗ln(1.03∗MID))))+
ln(

√
(ecos(0.94∗JobF lex))1.11∗JobF lex+1.08∗CR∗

1.01 ∗ JobT ime))

No pruning has been applied yet. It is possible that
these formulas can be shrunken in size a little, but a high
complexity is likely to remain.

VI. Conclusions

We have shown that advanced genetic algorithms that
make use of multiple populations could outperform a hu-
man expert by an even larger extent than in the preceding
work with just a single population. The application of off-
spring selection in SASEGASA allowed to create a good
solution without drifting into the infeasible region where
the simulator would raise an exception. It could adapt
better to erroneous situations in the evaluation function.

It is foreseeable by the formula found that humans will
be barely able to handle this kind of complexity and that
genetic algorithms are well suited to do the optimization
task. However, simulation requires a substantially larger
amount of CPU resources and so the success of this ap-
proach will also be decided by the amount of calculation
that can be done and by deploying it on a fast parallel
architecture.

Regarding future work, it would certainly be interest-
ing to compare this approach to a scheduling approach in
general and measure its competitiveness with established
methods.

References

[1] W. Stöcher, B. Kabelka, and R. Preissl, “Automatically Gener-
ating Priority Rules for the Flexible Job Shop Problem with Ge-
netic Programming,” in Proceedings of Computer Aided Systems
Theory: EuroCAST 2007, 2007.

[2] R. Preissl, “A Parallel Approach For Solving The Flexible Job
Shop Problem With Priority Rules Developed By Genetic Pro-
gramming,” Master’s thesis, Johannes Kepler University, Linz,
July 2006.

[3] J. R. Koza, Genetic Programming. The MIT Press, 1992.
[4] J. H. Holland, Adaption in Natural and Artifical Systems. Uni-

versity of Michigan Press, 1975.
[5] S. Winkler, M. Affenzeller, and S. Wagner, “New Methods for the

Identification of Nonlinear Model Structures Based Upon Genetic
Programming Techniques,” Journal of Systems Science, vol. 31,
no. 1, pp. 5–13, 2005.

[6] S. Winkler, M. Affenzeller, and S. Wagner, “Advanced Genetic
Programming Based Machine Learning,” Journal of Mathemati-
cal Modelling and Algorithms, vol. 6, no. 3, pp. 455–480, 2007.

[7] S. Wagner and M. Affenzeller, “HeuristicLab: A Generic and
Extensible Optimization Environment,” in Adaptive and Nat-
ural Computing Algorithms, ser. Springer Computer Science,
B. Ribeiro, R. F. Albrecht, A. Dobnikar, D. W. Pearson, and
N. C. Steele, Eds. Springer, 2005, pp. 538–541.

[8] S. Wagner, S. Winkler, R. Braune, G. Kronberger, A. Beham, and
M. Affenzeller, “Benefits of Plugin-Based Heuristic Optimization
Software Systems,” 2007.

[9] M. Affenzeller and S. Wagner, “SASEGASA: A New Generic Par-
allel Evolutionary Algorithm for Achieving Highest Quality Re-
sults,” Journal of Heuristics - Special Issue on New Advances
on Parallel Meta-Heuristics for Complex Problems, vol. 10, pp.
239–263, 2004.

