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Abstract. This paper presents a research in the context of pedestrian
dynamics according to Situated Cellular Agent (SCA), a Multi-Agent
Systems approach whose roots are on Cellular Automata (CA). The aim
of this work is to apply Genetic Programming (GP) approach, a well
known Machine Learning method belonging to the family of Evolution-
ary Algorithms, to generate suitable behavioral rules for pedestrians in
an evacuation scenario. The main contribution of this work is in the
design of a testset of GP generated behaviors to represent basic behav-
ioral models of evacuees populating a only locally known environment, a
typical scenario for CA-based models.

1 Introduction

Within pedestrian dynamics Cellular Automata approaches have found an in-
teresting and fruitful application context (for instance in evacuation studies
and public spaces’ design [1,2]). Since relatively recent first proposals [11,12],
CA approach has rapidly grown and shown interesting results concerning the
study of potentially complex behaviors that can result from local interactions
among pedestrians within a shared, limited, and only partially known spatial
environment[3,4]. According to CA peculiarities the spatial environment can be
represented as a regular grid of cells, whose state can include the representation
of the presence of individuals (or other environmental obstacles). Pedestrian
movement is represented by CA state transition rules and the dynamics of the
system result from local state change of CA cells.

When adopting CA for modelling purposes with the aim of study pedestrian
behavior and their interaction, CA models suffer, like traditional analytical ap-
proaches, the limitation of considering individuals as homogeneous entities whose
behavior is implicitly represented in CA cell state and state transition function.
SCA4CROWDS [5] is an ongoing research aiming at developing formal and com-
putational tools to support the design, execution and analysis of models to study
potentially complex dynamics that can emerge in crowds (e.g. pedestrian dynam-
ics as effect of physical, social and emotional interactions) [6,23]. SCA4CROWDS
formal model has been developed as an extension of Cellular Automata (CA)
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[7] exploiting MAS [8] advantages in modeling heterogeneous systems [9,10]. De-
spite models based on CA, SCA4CROWDS models systems of reactive situated
agents (i.e. pedestrians) that move on structured spatial environments, and that
can interact at-a-distance through the emission-diffusion-perception of signals
and locally according to local transition rules. Theoretical experimentations are
being developed with SCA4CROWDS formal and computational tools in or-
der to provide methodological guidelines for sounding computational models of
psychological and anthropological theories on crowds (e.g.[13]).

The work presented in this paper concerns the integration into SCA4CROWDS
framework of formal and related computational tools to effectively combine Ge-
netic Programming (GP) [14] with SCA approach to study the behavior of pedes-
trians (a similar approach has already been proposed for the calibration of a
CA–based model of costumers in shopping areas [18]). In particular, we will
present here a model based on SCA principles where pedestrian behaviors are
based on GP, a well known evolutionary approach which extends the genetic
model of learning to the space of programs. The best set of behavioral rules in
an evacuation context drives a system of pedestrians evacuating a structured and
unknown environment. Evacuation scenarios are traditionally considered realis-
tic when they assume that pedestrians have a limited and very local information
about the environment and a basic intelligent behavior that can be originated
by instinctive or learning processes. To support the development and experimen-
tation of this type of scenario, we developed a behavioral model based on a set
of rules generated by Artificial Ant on the Santa Fe trail, a benchmark problem
in GP [14]. The latter aims at finding navigation strategy for an ant moving
on a regular grid (where some of the cells contain food pellets) that maximizes
its food intake. This problem specification has been used as a methodological
example useful for the SCA–based model calibration.

After an overview of SCA approach for pedestrian and crowds modeling, Ge-
netic Programming approach will be introduced in Section 3, while Section 4
describes experiments with SCA4CROWDS framework where pedestrian behav-
ioral rules of a set of evacuees are generated by GP. Currently we are developing
an analytical analysis with references and benchmarks in pedestrian dynamics.

2 SCA Approach to Pedestrian Dynamics

According to SCA modelling approach, human crowds are described as system of
autonomous, situated agents that act and interact in a spatially structured envi-
ronment. Situated agents are defined as reactive agents that, as effect of the per-
ception of environmental signals and local interaction with neighboring agents,
can change either their internal state or their position on the structured envi-
ronment. Agent autonomy is preserved by an action–selection mechanism that
characterizes each agent, and heterogeneous MAS can be represented through
the specification of agents with several behavioral types through L*MASS formal
language [20] (an execution environment for SCA-based models is also available,
i.e. SCA platform [19]). Interaction between agents can occur either locally,
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causing the synchronous change of state of a set of adjacent agents, and at–a–
distance, when a signal emitted by an agent propagates throughout the spatial
structure of the environment and is perceived by other situated agents (het-
erogeneous perception abilities can be specified for SCA agents). Interaction
primitives are defined by L*MASS language.

SCA model is rooted on basic principles of CA: it intrinsically includes the
notions of state and explicitly represents the spatial structure of agents’ environ-
ment; it takes into account the heterogeneity of modelled entities and provides
original extensions to CA (e.g. at–a–distance interaction). According to SCA
framework, the spatial abstraction in which the simulated entities are situated
(i.e. Space) is an undirected graph of sites (i.e. p ∈ P ), where graph nodes
represent available space locations for pedestrians and graph edges define the
adjacency relations among them (and agents’ suitable movement directions).
Each p ∈ P is defined by

〈
ap, Fp, Pp

〉
, where ap ∈ A ∪ {⊥} is the agent situated

in p , Fp ⊂ F is the set of fields active in p and Pp ⊂ P is the set of sites adjacent
to p. Pedestrians and relevant elements of their environment that may interact
with them and influence their movement (i.e. active elements of the environ-
ment) are represented by different types of SCA agents that can change their
internal state (s ∈ Στ ), move into an adjacent site or interact with other agents.
An agent type τ =

〈
Στ , P erceptionτ , Actionτ

〉
is defined by:

– Στ : the set of states that agents of type τ can assume;
– Perceptionτ : Στ → WF × WF function for agents of type τ : it associates

each agent state to a pair (i.e. receptiveness coefficient and sensitivity thresh-
old) for each field in F ;

– Actionτ : the behavioral specification for agents of type τ in terms of L*MASS
language [20].
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Fig. 1. A schematic representation of the internal architecture of SCA agents

Agent architecture (see figure 1) is composed by three tasks that define the
agent actual behavior (i.e. Perception, Deliberation, and Action) and two knowl-
edge containers:
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– Agent Knowledge Base (AKB) is the internal representation of agent
state and of its local perceptions (e.g. set of fields active in its site, set of
empty sites in its surrounding). The AKB updating can be the effect of agent
actions or of a change in the agent environment perceived by the agent (e.g.
an adjacent site becomes empty, a new field reaches the agent site or the
agent moves to another site).

– Agent Action Set (AAS) collects the set of actions that are allowed to the
agent in terms of L*MASS language. AAS is defined according to the agent
type and cannot change during agent execution. In the model presented in
Section 4, we will experiment GP to evolve AAS towards an optimal strategy
for evacuation.

SCA approach does not specify a standard way to define agents’ perception,
deliberation and action. SCA platform (the execution environment for SCA-
based models) has been designed in order to be incrementally extended to sev-
eral execution strategies. In our experiments we adopted a synchronous–parallel
execution method for the system (i.e. at each timestep each agent update their
AKB perceiving their local environment and selects the action to be performed).
The phase between perception and execution is deliberation that is, the compo-
nent of an agent responsible of conflict resolution between actions, when multiple
actions are possible.

3 Genetic Programming

Genetic Programming (GP) [14] is a Machine Learning method that belongs to
the family of Evolutionary Algorithms [15,16,17]. Its peculiar characteristic is
that potential solutions (often called individuals) to be evolved are not fixed
length strings of characters, as for Genetic Algorithms (GAs) or other evolu-
tionary methods, but, generally speaking, computer programs. The fitness of a
program is usually calculated by running it one or more times with a variety
of inputs and seeing how close the program outputs are to a desired target.
Programs can be represented as trees, lines of code, expressions in prefix or
postfix notations, strings of variable length, etc. For tree-based GP, which is
the original [14] and more popular version of GP and the one we use in this
paper, the set of all the possible structures that can be generated is the set of
all the possible trees that can be built recursively from a set of function symbols
F = {f1, f2, . . . , fn} (used to label internal tree nodes) and a set of terminal
symbols T = {t1, t2, . . . , tm} (used to label tree leaves). Each function in the
fuction set F takes a fixed number of arguments, specifying its arity. Functions
may include arithmetic operations (+, −, ∗, etc.), mathematical functions (such
as sin, cos, log, exp), boolean operations (such as AND, OR, NOT), conditional
operations (such as If-Then-Else), iterative operations (such as While-Do) and
other domain-specific functions that may be defined. Each terminal is typically
either a variable or a constant, defined on the problem domain. In the work pre-
sented in this paper the generated structure describes the behavior of a pedes-
trian agent. The terminal actions are atomic movements as: move towards, turn
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to the left or turn to the right; while functions define nodes with two and three
childs (see a deep descripion in section 4). Once such a formal language to code
programs has been defined, the GP paradigm breeds those programs to solve
problems by executing the following steps:

1. Generate an initial population of computer programs (or individuals).
2. Iteratively perform the following steps until the termination criterion has

been satisfied:
(a) Execute each program in the population and assign it a fitness value

according to how well it solves the problem.
(b) Create a new population by iteratively applying the following operations:

i. Probabilistically select a set of computer programs to be reproduced,
on the basis of their fitness (selection).

ii. Copy some of the selected individuals, without modifying them, into
the new population (reproduction).

iii. Create new computer programs by genetically recombining randomly
chosen parts of two selected individuals (crossover).

iv. Create new computer programs by substituting randomly chosen
parts of some selected individuals with new randomly generated ones
(mutation).

3. The best computer program appeared in any generation is designated as the
result of the GP process at that generation. This result may be a solution
(or an approximate solution) to the problem.

Most commonly used termination criteria are: (1) at least one individual in the
current population has a satisfactory fitness value, or (2) a prefixed number of
generations has been executed.

4 Modeling Pedestrian Behavior for Evacuation with GP

In this work, we present a GP configuration inspired by the Artificial Ant on
the Santa Fe trail benchmark to simulate the trajectory of a set of agents in
a square space, with the aim of automaticallty generating suitable pedestrian
paths for evacuation. The Artificial Ant on the Santa Fe trail is a problem where
an artificial ant is placed on a regular toroidal grid, where some of the cells
contain food pellets. The problem goal is to find a navigation strategy for the
ant that maximizes its food intake. The ant starts in the upper left cell of the
grid, identified by the coordinates (0, 0), facing east. It has a very limited view
of its world. In particular, it has a sensor that can see only a single immediately
adjacent cell in the direction the ant is currently facing.

Inspirating to this problem we defined a pool of N pedestrian agents, with
N > 1 placed in a regular SCA space with Von Neumann neighborhood. The
space is defined as a regular not toroidal square grid representing a room to be
evacuated. In this scenario agents have a random starting postition and they
have a direction that points to one of the adjacent sites; they have no knowledge
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of the space (they can perceive only the adjacent place in the direction the agent
is currently facing) and also the initial direction is randomly setup for each agent.
No food is contained in the grid, and the only special place on the space is the
given location identified as the exit.

Agent’s behavior is built by GP and the set of possible structure that can
be generated is the set of all possible trees that can be generated from T =
{Right, Left, Move} and F = {Progn2, P rogn3}. The set of terminals T cor-
responds to the actions the agent can perform: turn right by 90◦, turn left by
90◦ and move forward in the currently facing direction. In the set F function
Progn2 takes two arguments and causes the agent to unconditionally execute
the first argument followed by the second one, while Progn3 is analogous, but it
takes three arguments, that are executed in an ordered sequence. An individual
built with these sets F and T can be considered as a “navigation program” that
allows the agent to navigate the grid. When the number of agents N is N > 1
the set of F and T builted by GP is applied to all the agents.

Fig. 2. The fitness of all Navigation Programs (the tree in the upper side of the figure)
generated by the GP are obtained through a SCA simulation (a screenshot is shown in
the lower side of the figure)

As fitness function, the number of agents which reach the exit and the total
number of steps that they perform in order to reach the exit are considered
(any action is considered as taking one time step). This turns the problem into
a minimization one, with the globally optimal solution having a fitness value
equal to 0. This problem specification represents a methodological example that
can be very useful for SCA–based model calibration when data on real crowded
situations have been collected. In these cases a suitable fitness function have to
be specificated properly.
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SCA simulation are used to obtain the fitness value of each individual be-
having according to the navigation program (see figure 2). The experiments are
performed in the synchronous mode that SCA organizes into two tasks: delib-
eration where each agent selects the next position according to its perception
of the local environment, and action where agents try to perform what they
have deliberated. All agents complete the phase deliberation before the action
phase starts, and the order in which agents perform these phases are random
at each simulation cycle. Conflics between the agents are managed by the SCA
platform, and during the execution phase on the SCA–based simulation, if an
agent cannot perform the action expressed by its behavior (i.e. the navigation
program), it changes randomly its direction turning to the right or to the left
(in figure 2 a screenshot of a SCA simulation). The possible causes that do not
allow an agent to move according to its navigation program are the presence of
obstacles: static obstacles are the borders of the space, or other structure that
can be added to the space map, and dynamic obstacles are the other agents.

Agent behavior is limited to 600 time steps. This time-out limit is sufficiently
small to prevent a random walk of the agent to cover all the 1024 squares (in
case of a 32 × 32 space) before timing out.

5 Conclusions and Future Works

This paper presents an application of GP and CA-based approach to pedestrian
dynamics. An analysis of the presented model is still ongoing. Future experi-
ments on more structured spaces as buildings with a given number of rooms
are in progress too. SCA approach allows specifying and simulating heteroge-
neous systems of agents with different behavioral rules. Therefore more complex
studies on pedestrian dynamics considering different types of behaviors will be
experimented and compared.

Other examples of current ongoing works concerns the study of aggregation
phenomenon in Open Crowds [22] and, a SCA-based specification of Affectons
formal framework proposed to study complex crowds’ dynamics emerging from
emotional interaction [23] and its adoption to study emotional crowds (e.g. at
concerts or sports events). A further application for CA and GP in pedestrian
dynamics context will concern the position optimization of obstacle and mobile
structures in public spaces’ design (see [1,24]).
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