
J. Darzentas et al. (Eds.): SETN 2008, LNAI 5138, pp. 413–418, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Predicting Defects in Software Using Grammar-Guided
Genetic Programming

Athanasios Tsakonas and Georgios Dounias

University of the Aegean, Department of Finance and Management Engineering,
Fostini 31 str., Chios, Greece

tsakonas@stt.aegean.gr, g.dounias@aegean.gr

Abstract. The knowledge of the software quality can allow an organization to
allocate the needed resources for the code maintenance. Maintaining the soft-
ware is considered as a high cost factor for most organizations. Consequently,
there is need to assess software modules in respect of defects that will arise.
Addressing the prediction of software defects by means of computational intel-
ligence has only recently become evident. In this paper, we investigate the ca-
pability of the genetic programming approach for producing solution composed
of decision rules. We applied the model into four software engineering
databases of NASA. The overall performance of this system denotes its com-
petitiveness as compared with past methodologies, and is shown capable of
producing simple, highly accurate, tangible rules.

Keywords: Software engineering, defect prediction, genetic programming.

1 Introduction

Addressing software quality can ensure cost reduction and efficient resource alloca-
tion. A major factor for the assessment of software code is whether the code module
is prone to defects in the future. To estimate the software quality several metrics have
been developed in the past. Static code metrics [9],[6] are inexpensive, easy to calcu-
late, and they are widely used. However, these measurements have been
criticized [4][5][16] on their effectiveness and efficiency, as standalone instruments.
Later work [11], has shown that applying data mining techniques can dramatically
increase the power of the aforementioned metrics. The main target of such a data-
mining task is to effectively predict whether modules will present code defects in the
future, so as the management could efficiently allocate resources for monitoring them.
Genetic programming (GP) [7] is a computational intelligence methodology which
carries expedient attributes such as variable length solution representation, and func-
tional solution nodes. It has been applied in numerous problems, and its domains of
applications are constantly increasing. This work inherits recent advances on genetic
operators’ adaptive rates [18]. The data mining task in this work is two-fold. Firstly,
we aim to produce simple and comprehensible rules that can be used without the
assistance of software. Secondly, we seek for high classification rates, if possible
better to those found in literature. The paper is organized as follows. Next section

414 A. Tsakonas and G. Dounias

describes the background, presenting the software defects prediction domain and the
grammar guided genetic programming. Following this section, we deal with the de-
sign and the implementation of the system. Next, the results and a following discus-
sion are presented. The paper ends with our conclusion and a description of future
work.

2 Background

2.1 Software Defects Prediction

Among the principal tasks during software project management is the assessment of
the software cost. Additionally, extensive assessment is required for high assurance
software. This software cost is affected directly by the software quality. To address
this need, there have been developed various techniques of software code assessment,
such as the static code metrics. The available metrics for the code derive from the
work of [9] and [6].

2.2 Grammar-Guided Genetic Programming

Genetic programming [7] is an extension to the genetic algorithms concept. The main
advance is the ability to maintain a population consisted of variable-length, tree-
structured individuals, in which each node can have functional ability. By applying
grammars, a genotype - a point in the search space- corresponds always to a
phenotype - a point in the solution space, an approach known as legal search space
handling method [9]. We apply legal search in this work using a context-free
grammar [2][3][8][13][17][18][19].

3 Design and Implementation

3.1 Data Pre-processing

We have tested the methodology in four software engineering data sets: CM1, KC1,
KC2 and PC1. These datasets have been addressed in [11] and [12]. All software
modules come from NASA and their metrics have become recently available by the
PROMISE repository of public domain software engineering data sets. Table 1
summarizes the features of this data. Further details for each feature can be found
in [9] and [6].

3.2 Genetic Programming Setup

To improve the search process and control the solution size, an adaptive scheme for
the operation rates was followed. These parameters were adapted from past work of
the authors [18], and they do not necessarily represent the best values for these
datasets.

 Predicting Defects in Software Using Grammar-Guided Genetic Programming 415

Table 1. NASA software metrics data examined

Name Data set
Total

instances
Defects

No
defects

Language

CM1 Spacecraft instrument 498 49 449 C
KC1 Storage management

for ground data
2109 326 1783 C++

KC2 Science data
processing

552 105 415 C++

PC1 Flight software for
earth orbiting satellite

1109 1032 77 C

During the run, the actual training data set is used to evaluate candidate solutions.
However, in order to promote a candidate as the solution of the run, in our approach it
is required that at least one of the following conditions applies:

• this candidate achieves higher fitness score in the validation set too,
• the absolute difference between validation fitness and training fitness score is

smaller.

The first rule is the common approach used in all validation models; the second rule is
introduced in this work, and it was experimentally observed to produce solutions that
carried significantly higher generalization ability in the problems encountered. In
other words, this approach promotes solutions that demonstrate no overfitting to one
of the sets (either the actual training set or the validation set), but it rather requires the
fitness improvement in one set to be in step with the other [14].

3.3 Fitness Function

In order to validate this software engineering data, various measures have been pro-
posed in literature. In [1], the following measures have been used, in a genetic pro-
gramming model for a number of generic problems encountered:

Recall=
tp

pd
tp fn

=
+

 (1)

tn
TNRate

tn fp
=

+
 (2)

support= Recallfitness TNRate= ⋅ (3)

In [10] the fitness measure that involves the accuracy, is proposed based on results
that show that this metric presented the smaller deviation in classification success
between the training and the test set, for a number of experiments. On the other hand,
in [1], when using the Recall and the TNRate, there is an equivalent treatment for both
classes as far as the classification reward is concerned, irrespectively of the relative

416 A. Tsakonas and G. Dounias

size for each class. Hence we adopted the latter measure for our fitness function.
Additionally, another metric is calculated in our experiments, precision, to allow
future comparisons:

tp
prec

fp tp
=

+
 (4)

This precision measure is analogous to the support measure we have used in our sys-
tem, as it can be seen in the equation (5). Hence, using the support measure as a fit-
ness measure is also in concordance to literature that requires a system scoring also
high precision values (i.e. aiming for high support values can assist in qualifying high
precision rates).

1 1
1 1

support

fn fn fp

prec tn tp tn

⎛ ⎞⎟⎜= − ⎟⋅ + + +⎜ ⎟⎜ ⎟⎜⎝ ⎠
 (5)

Having discussed the system design, in the following session we describe the results
of the application of our methodology in the four software engineering databases.

4 Results and Discussion

We performed 10-fold cross validation. Table 2 summarizes our best results found for
each measure during the 10-fold run, in the test set, and includes the mean and the
standard deviation of these results. The solution for the CM1 problem is as follows:

If count_of_lines_of _comments > -0.94 then true else false

The promoted solution for the KC1 data is:
If essential_complexity < 0.76 then

 (if total_operands < -0.95 then false else true)
else false

For the KC2 problem, the system derived the following rule:
If design_complexity = 0.46 then

(if line_count_of_code < 0.95 then false else true)else

 (if unique_operands > -0.90 then true else false)
Finally, the following rule was found for the PC1 data:

If program_length < -0.53 then
 (if difficulty > -0.21 then
 (if total_operators > -0.68 then true else false)
 else
 (if software_size_lines_of_code < -0.93 then true
 else false))

 else false

In all problems, our model succeeded in producing small, easily comprehensible re-
sults that need not any further software to be applied in practice. In Table 3, we com-
pare the best-promoted solutions of our system during the 10-fold validation, to the
best models found in literature.

 Predicting Defects in Software Using Grammar-Guided Genetic Programming 417

5 Conclusion and Further Research

This paper described an effort to address the software quality domain, by using com-
putational intelligence for effective decision-making. Our approach makes use of the
genetic programming paradigm, in its grammar-guided advance, in order to produce
decision rules. Further tuning is enforced to the genetic operators, and special use of
the validation set fitness is applied. The model is applied on four databases that are
consisted of software metrics of NASA’s developed software. In two of the databases,
our model is proved superior to the existing literature in both comparison variables,
and in the rest two databases, the system is shown better in one of the two variables.

Table 2. Grammar-guided GP, 10-Fold Cross Validation Results

 CM1 KC1
 Best Mean Std.Dev Best Mean Std.Dev
Support 0.7085 0.5982 0.0538 0.5731 0.5579 0.0107
PD 1.0000 0.5967 0.2344 0.8750 0.7544 0.0935
PF 0.2000 0.2719 0.0724 0.2569 0.3135 0.0399
PREC 0.3077 0.1905 0.0586 0.3553 0.3062 0.0312
Accuracy 0.8750 0.7295 0.0768 0.7393 0.6967 0.0309
Generation 38 60 55 77
Size 191 224 259 196
 KC2 PC1
 Best Mean Std.Dev Best Mean Std.Dev
Support 0.7127 0.6697 0.0304 0.7508 0.6442 0.0548
PD 0.8182 0.7482 0.0594 0.8750 0.7441 0.0615
PF 0.1428 0.1929 0.0400 0.0000 0.2911 0.2301
PREC 0.5714 0.5039 0.0488 1.0000 0.9728 0.0207
Accuracy 0.8302 0.7830 0.0336 0.8559 0.7414 0.0547
Generation 30 36 82 62
Size 260 203 296 201

Table 3. Results comparison

Model PD PF PD PF
 CM1 PC1
Menzies et al. [11] 0.350 0.100 0.240 0.240
Menzies et al. [12] 0.710 0.270 0.480 0.170
This paper (#8) 1.000 0.311 (#3) 0.757 0.125
 KC1 KC2
Menzies et al. [11] 0.500 0.150 0.450 0.150
This paper (#6) 0.818 0.275 (#7) 0.800 0.142

Moreover, the system managed to produce small and comprehensible solutions that
do not require a computing environment to apply. The application of our system to
such data is a straightforward process, and adds little complexity to the classification
task of the modules. Hence we believe that software engineers can easily adapt such a

418 A. Tsakonas and G. Dounias

data mining system, which can then be used in an inexpensive way, combined with
the static metrics calculation. Further investigation involves the application of our
methodology into more software quality problems, involving other databases, in an
attempt to provide a transparent view on its effectiveness for this class of problems.

References

1. Berlanga, F.J., del Jesus, M.J., Herrera, F.: Learning compact fuzzy rule-based
classification systems with genetic programming. In: 4th Conference of the European
Society for Fuzzy Logic and Technology (EUSFLAT 2005), Barcelona, pp. 1027–1032
(2005)

2. Blickle, T., Theile, L.: A mathematical analysis of tournament selection. In: Eshelman, L.J.
(ed.) Proc. of the 6thInternational.Conference on Genetic Algorithms, pp. 9–16. Lawrence
Erlbaum Associates, Hillsdale (1995)

3. Eads, D., Hill, D., Davis, S., Perkins, S., Ma, J., Porter, R., Theiler, J.: Genetic Algorithms
and Support Vector Machines for Time Series Classification. In: Proc. SPIE, vol. 4787, pp.
74–85 (2002)

4. Fenton, N., Ohlsson, N.: Quantitative Analysis of Faults and Failures in a Complex
Software System. IEEE Trans. Software Eng., 797–814 (2000)

5. Fenton, N.E., Pfleeger, S.: Software Metrics: A Rigorous and Practical Approach. Int’l
Thompson Press (1997)

6. Halstead, M.: Elements of Software Science. Elsevier, Amsterdam (1977)
7. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of

Natural Selection. MIT Press, Cambridge (1992)
8. Koza, J., Bennett, F., Andre, D., Keane, M.: Genetic Programming III: Automatic

Programming and Automatic Circuit Synthesis. Morgan Kaufmann, San Francisco (2003)
9. McCabe, T.: A Complexity Measure. IEEE Trans. Software Eng. 4, 308–320 (1976)

10. Menzies, T., Dekhtyar, A., Distefano, J., Greenwald, J.: Problems with Precision: A
Response to Comments on; Data Mining Static Code Attributes to Learn Defect Predictors.
IEEE Trans. on Soft. Eng. 33(9), 637–640 (2007)

11. Menzies, T., DiStefano, J., Orrego, A., Chapman, R.: Assessing Predictors of Software
Defects. In: Proc. Workshop Predictive Software Models (2004)

12. Menzies, T., Greenwald, J., Frank, A.: Data Mining Static Code Attributes to Learn Defect
Predictors. IEEE Trans. on Soft. Eng. 32(11) (January 2007)

13. Montana, D.J.: Strongly Typed Genetic Programming. Evolutionary Computation 3(2)
(1995)

14. Quinlan, J.R.: Bagging, boosting, and C4.5. In: Proc. 13th Nat. Conf. Art. Intell., pp. 725–
730 (1996)

15. Singleton, A.: Genetic Programming with C++. BYTE Magazine (February 1994)
16. Shepperd, M., Ince, D.: A Critique of Three Metrics. J. Systems and Software 26(3), 197–

210 (1994)
17. Tsakonas, A., Dounias, G.: Hierarchical Classification Trees Using Type-Constrained

Genetic Programming. In: Proc. of 1st Intl. IEEE Symposium in Intelligent Systems,
Varna, Bulgaria (2002)

18. Tsakonas, A., Dounias, G.: Evolving Neural-Symbolic Systems Guided by Adaptive
Training Schemes: Applications in Finance. App. Art. Intell. 21(7), 681–706 (2007)

19. Yu, T., Bentley, P.: Methods to Evolve Legal Phenotypes. In: Eiben, A.E., Bäck, T.,
Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 280–291.
Springer, Heidelberg (1998)

	Predicting Defects in Software Using Grammar-Guided Genetic Programming
	Introduction
	Background
	Software Defects Prediction
	Grammar-Guided Genetic Programming

	Design and Implementation
	Data Pre-processing
	Genetic Programming Setup
	Fitness Function

	Results and Discussion
	Conclusion and Further Research
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

