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Abstract. The knowledge of the software quality can allow an organization to 
allocate the needed resources for the code maintenance. Maintaining the soft-
ware is considered as a high cost factor for most organizations. Consequently, 
there is need to assess software modules in respect of defects that will arise. 
Addressing the prediction of software defects by means of computational intel-
ligence has only recently become evident. In this paper, we investigate the ca-
pability of the genetic programming approach for producing solution composed 
of decision rules. We applied the model into four software engineering  
databases of NASA. The overall performance of this system denotes its com-
petitiveness as compared with past methodologies, and is shown capable of 
producing simple, highly accurate, tangible rules.  

Keywords: Software engineering, defect prediction, genetic programming. 

1   Introduction 

Addressing software quality can ensure cost reduction and efficient resource alloca-
tion.  A major factor for the assessment of software code is whether the code module 
is prone to defects in the future. To estimate the software quality several metrics have 
been developed in the past. Static code metrics [9],[6] are inexpensive, easy to calcu-
late, and they are widely used. However, these measurements have been  
criticized [4][5][16] on their effectiveness and efficiency, as standalone instruments. 
Later work [11], has shown that applying data mining techniques can dramatically 
increase the power of the aforementioned metrics. The main target of such a data-
mining task is to effectively predict whether modules will present code defects in the 
future, so as the management could efficiently allocate resources for monitoring them. 
Genetic programming (GP) [7] is a computational intelligence methodology which 
carries expedient attributes such as variable length solution representation, and func-
tional solution nodes. It has been applied in numerous problems, and its domains of 
applications are constantly increasing. This work inherits recent advances on genetic 
operators’ adaptive rates [18]. The data mining task in this work is two-fold. Firstly, 
we aim to produce simple and comprehensible rules that can be used without the 
assistance of software. Secondly, we seek for high classification rates, if possible 
better to those found in literature. The paper is organized as follows. Next section 
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describes the background, presenting the software defects prediction domain and the 
grammar guided genetic programming. Following this section, we deal with the de-
sign and the implementation of the system. Next, the results and a following discus-
sion are presented. The paper ends with our conclusion and a description of future 
work. 

2   Background 

2.1   Software Defects Prediction 

Among the principal tasks during software project management is the assessment of 
the software cost. Additionally, extensive assessment is required for high assurance 
software. This software cost is affected directly by the software quality. To address 
this need, there have been developed various techniques of software code assessment, 
such as the static code metrics. The available metrics for the code derive from the 
work of [9] and [6].  

2.2   Grammar-Guided Genetic Programming 

Genetic programming [7] is an extension to the genetic algorithms concept. The main 
advance is the ability to maintain a population consisted of variable-length, tree-
structured individuals, in which each node can have functional ability. By applying 
grammars, a genotype - a point in the search space- corresponds always to a  
phenotype - a point in the solution space, an approach known as legal search space 
handling method [9]. We apply legal search in this work using a context-free  
grammar [2][3][8][13][17][18][19].  

3   Design and Implementation 

3.1   Data Pre-processing  

We have tested the methodology in four software engineering data sets: CM1, KC1, 
KC2 and PC1. These datasets have been addressed in [11] and [12]. All software 
modules come from NASA and their metrics have become recently available by the 
PROMISE  repository of public domain software engineering data sets.  Table 1 
summarizes the features of this data. Further details for each feature can be found  
in [9] and [6]. 

3.2   Genetic Programming Setup 

To improve the search process and control the solution size, an adaptive scheme for 
the operation rates was followed. These parameters were adapted from past work of 
the authors [18], and they do not necessarily represent the best values for these  
datasets.  
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Table 1. NASA software metrics data examined 

Name Data set 
Total 

instances 
Defects 

No 
defects 

Language 

CM1 Spacecraft instrument 498 49 449 C 
KC1 Storage management 

for ground data 
2109 326 1783 C++ 

KC2 Science data   
processing 

552 105 415 C++ 

PC1 Flight software for 
earth orbiting satellite 

1109 1032 77 C 

During the run, the actual training data set is used to evaluate candidate solutions. 
However, in order to promote a candidate as the solution of the run, in our approach it 
is required that at least one of the following conditions applies: 

• this candidate achieves higher fitness score in the validation set too, 
• the absolute difference between validation fitness and training fitness score is 

smaller. 

The first rule is the common approach used in all validation models; the second rule is 
introduced in this work, and it was experimentally observed to produce solutions that 
carried significantly higher generalization ability in the problems encountered. In 
other words, this approach promotes solutions that demonstrate no overfitting to one 
of the sets (either the actual training set or the validation set), but it rather requires the 
fitness improvement in one set to be in step with the other [14].  

3.3   Fitness Function 

In order to validate this software engineering data, various measures have been pro-
posed in literature. In [1], the following measures have been used, in a genetic pro-
gramming model for a number of generic problems encountered: 

Recall= 
tp

pd
tp fn

=
+

 (1) 

tn
TNRate

tn fp
=

+
 (2) 

support= Recallfitness TNRate= ⋅  (3) 

In [10] the fitness measure that involves the accuracy, is proposed based on results 
that show that this metric presented the smaller deviation in classification success 
between the training and the test set, for a number of experiments. On the other hand, 
in [1], when using the Recall and the TNRate, there is an equivalent treatment for both 
classes as far as the classification reward is concerned, irrespectively of the relative 
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size for each class. Hence we adopted the latter measure for our fitness function.  
Additionally, another metric is calculated in our experiments, precision, to allow 
future comparisons: 

tp
prec

fp tp
=

+
 (4) 

This precision measure is analogous to the support measure we have used in our sys-
tem, as it can be seen in the equation (5). Hence, using the support measure as a fit-
ness measure is also in concordance to literature that requires a system scoring also 
high precision values (i.e. aiming for high support values can assist in qualifying high 
precision rates).  

1 1
1 1

support

fn fn fp

prec tn tp tn

⎛ ⎞⎟⎜= − ⎟⋅ + + +⎜ ⎟⎜ ⎟⎜⎝ ⎠
 (5) 

Having discussed the system design, in the following session we describe the results 
of the application of our methodology in the four software engineering databases. 

4   Results and Discussion 

We performed 10-fold cross validation. Table 2 summarizes our best results found for 
each measure during the 10-fold run, in the test set, and includes the mean and the 
standard deviation of these results. The solution for the CM1 problem is as follows: 

If count_of_lines_of _comments > -0.94 then true else false 

The promoted solution for the KC1 data is: 
If  essential_complexity < 0.76 then  

    (if total_operands < -0.95 then false else true) 
else false 

For the KC2 problem, the system derived the following rule: 
If design_complexity = 0.46 then 

(if line_count_of_code < 0.95 then false else true )else
  

    (if unique_operands > -0.90 then true else false)  
Finally, the following rule was found for the PC1 data: 

If program_length < -0.53 then  
     (if difficulty > -0.21 then 
       (if total_operators > -0.68 then true else false) 
      else  
      (if software_size_lines_of_code < -0.93 then true                   
         else false)) 

 else false   

In all problems, our model succeeded in producing small, easily comprehensible re-
sults that need not any further software to be applied in practice. In Table 3, we com-
pare the best-promoted solutions of our system during the 10-fold validation, to the 
best models found in literature. 
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5   Conclusion and Further Research 

This paper described an effort to address the software quality domain, by using com-
putational intelligence for effective decision-making. Our approach makes use of the 
genetic programming paradigm, in its grammar-guided advance, in order to produce 
decision rules. Further tuning is enforced to the genetic operators, and special use of 
the validation set fitness is applied. The model is applied on four databases that are 
consisted of software metrics of NASA’s developed software. In two of the databases, 
our model is proved superior to the existing literature in both comparison variables, 
and in the rest two databases, the system is shown better in one of the two variables. 

Table 2. Grammar-guided GP, 10-Fold Cross Validation Results 

 CM1 KC1 
 Best Mean Std.Dev Best Mean Std.Dev 
Support 0.7085 0.5982 0.0538 0.5731 0.5579 0.0107 
PD 1.0000 0.5967 0.2344 0.8750 0.7544 0.0935 
PF 0.2000 0.2719 0.0724 0.2569 0.3135 0.0399 
PREC 0.3077 0.1905 0.0586 0.3553 0.3062 0.0312 
Accuracy 0.8750 0.7295 0.0768 0.7393 0.6967 0.0309 
Generation  38 60  55 77 
Size  191 224  259 196 
 KC2 PC1 
 Best Mean Std.Dev Best Mean Std.Dev 
Support 0.7127 0.6697 0.0304 0.7508 0.6442 0.0548 
PD 0.8182 0.7482 0.0594 0.8750 0.7441 0.0615 
PF 0.1428 0.1929 0.0400 0.0000 0.2911 0.2301 
PREC 0.5714 0.5039 0.0488 1.0000 0.9728 0.0207 
Accuracy 0.8302 0.7830 0.0336 0.8559 0.7414 0.0547 
Generation  30 36  82 62 
Size  260 203  296 201 

Table 3. Results comparison 

Model PD PF  PD PF 
 CM1  PC1 
Menzies et al. [11] 0.350 0.100  0.240 0.240 
Menzies et al. [12] 0.710 0.270  0.480 0.170 
This paper      (#8) 1.000 0.311 (#3) 0.757 0.125 
 KC1  KC2 
Menzies et al. [11] 0.500 0.150  0.450 0.150 
This paper      (#6) 0.818 0.275 (#7) 0.800 0.142 

Moreover, the system managed to produce small and comprehensible solutions that 
do not require a computing environment to apply. The application of our system to 
such data is a straightforward process, and adds little complexity to the classification 
task of the modules. Hence we believe that software engineers can easily adapt such a 
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data mining system, which can then be used in an inexpensive way, combined with 
the static metrics calculation. Further investigation involves the application of our 
methodology into more software quality problems, involving other databases, in an 
attempt to provide a transparent view on its effectiveness for this class of problems.  
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