

Abstract—Genetic programming (GP), is a very general and
efficient technique, often capable of outperforming more
specialized techniques on a variety of tasks. In this paper, we
suggest a straightforward novel algorithm for post-processing
of GP classification trees. The algorithm iteratively, one node at
a time, searches for possible modifications that would result in
higher accuracy. More specifically, the algorithm for each split
evaluates every possible constant value and chooses the best.
With this design, the post-processing algorithm can only
increase training accuracy, never decrease it. In this study, we
apply the suggested algorithm to GP trees, extracted from
neural network ensembles. Experimentation, using 22 UCI
datasets, shows that the post-processing results in higher test
set accuracies on a large majority of datasets. As a matter of
fact, for two setups of three evaluated, the increase in accuracy
is statistically significant.

I. INTRODUCTION

Most high-accuracy techniques for predictive classification
produce opaque models like artificial neural networks
(ANNs), ensembles or support vector machines. Opaque
predictive models make it impossible for decision-makers to
follow and understand the logic behind a prediction, which,
in some domains, must be deemed unacceptable. When
models need to be interpretable (or even comprehensible)
accuracy is often sacrificed by using simpler but transparent
models; most typically decision trees. This tradeoff between
predictive performance and interpretability is normally
called the accuracy vs. comprehensibility tradeoff. With this
tradeoff in mind, several researchers have suggested rule
extraction algorithms, where opaque models are transformed
into comprehensible models, keeping an acceptable
accuracy. Most significant, are the many rule extraction
algorithms used to extract symbolic rules from trained neural
networks; e.g. RX [1] and TREPAN [2]. Several papers have
discussed key demands on reliable rule extraction methods;
see e.g. [3] or [4]. The most common criteria are: accuracy
(the ability of extracted representations to make accurate
predictions on previously unseen data), comprehensibility
(the extent to which extracted representations are humanly
comprehensible) and fidelity (the extent to which extracted
representations accurately model the opaque model from
which they were extracted).

We have previously suggested a rule extraction algorithm

U. Johansson is with the School of Business and Informatics, University

of Borås, SE-501 90 Borås, Sweden. (phone: +46(0)33 – 4354489. Email:
ulf.johansson@hb.se

R. König and T. Löfström are with the School of Business and
Informatics, University of Borås, Sweden. Email: rikard.konig@hb.se,
tuve.lofstorm@hb.se

L. Niklasson is with the School of Humanities and Informatics,
University of Skövde, Sweden. Email: lars.niklasson@his.se

called G-REX (Genetic Rule EXtraction) [5]. G-REX is a
black-box rule extraction algorithm; i.e. the overall idea is to
treat the opaque model as an oracle and view rule extraction
as a learning task, where the target concept is the function
learnt by the opaque model. Hence rule sets extracted
directly map inputs to outputs. Black-box techniques
typically use some symbolic learning algorithm, where the
opaque model is used to generate target values for the
training examples. The easiest way to understand the process
is to regard black-box rule extraction as an instance of
predictive modeling, where each input-output pattern
consists of the original input vector and the corresponding
prediction from the opaque model. From this perspective,
black-box rule extraction becomes the task of modeling the
function from (original) input attributes to the opaque model
predictions; see Figure 1 below.

Data

Data Mining
Algorithm

Opaque
Predictive

Model

Novel
Data

Prediction

Rule
Extraction
Algorithm

Extracted
Predictive

Model

Score
Function

(PM)

Score
Function

(RE)

Figure 1: Black-box rule extraction

One inherent advantage of black-box approaches, is the
ability to extract rules from arbitrary opaque models,
including ensembles.

The extraction strategy used by G-REX is based on GP.
More specifically, a population of candidate rules is
continuously evaluated according to how well the rules
mimic the opaque model. The best rules are kept and
combined using genetic operators to raise the fitness
(performance) over time. After many generations (iterations)
the most fit program (rule) is chosen as the extracted rule.

One key property of G-REX is the ability to use a variety
of different representation languages, just by choosing
suitable function and terminal sets. G-REX has previously
been used to extract, for instance, decision trees, regression
trees, Boolean rules and fuzzy rules. Another, equally
important, feature is the possibility to directly balance
accuracy against comprehensibility by using an appropriate
fitness function. Although comprehensibility is a rather
complex criterion, the simple choice to evaluate
comprehensibility using the size of the model is the most

Increasing Rule Extraction Accuracy by Post-processing GP Trees

Ulf Johansson, Rikard König, Tuve Löfström and Lars Niklasson

3005

978-1-4244-1823-7/08/$25.00 c©2008 IEEE

accepted. Consequently, a typical G-REX fitness function
includes a positively weighted fidelity term and a penalty for
longer rules. For a summary of the G-REX technique and
previous studies, see [6].

GP has in many studies proved to be a very efficient
search strategy. Often, GP results are comparable to, or even
better than, results obtained by more specialized techniques.
One particular example is when GP is used for classification,
and the performance is compared to, for instance, decision
tree algorithms or rule inducers. Specifically, several studies
show that decision trees evolved using GP often are more
accurate than trees induced by standard techniques like
C4.5/C5.0 [7] and CART [8]; see e.g. [9] and [10]. The main
reason for this is that GP is a global optimization technique,
while decision tree algorithms typically choose splits
greedily, working from the root node down. Informally, this
means that GP often will make some locally sub-optimal
splits, but the overall model will still be more accurate and
more general.

On the other hand, GP search is locally much less
informed; i.e. each split is only optimized as a part of the
entire decision tree. In addition, GP is not able to find all
possible splits, simply because the number of constants
available to the GP is limited. This problem is actually
accentuated in the later stages of evolution, when
populations tend to become more homogenous. With this in
mind, the main purpose of this study is to investigate
whether some straightforward post-processing techniques,
where explicit searching is used to find optimal splits, can
improve the performance of GP-induced decision trees.

II. BACKGROUND AND RELATED WORK

Eggermont, Kok and Kosters in two papers evaluate a
refined GP-representation for classification, where the
search space is reduced by letting the GP only consider a
fixed number of possible splits for each attribute; see [11]
and [12]. More specifically, a global set of threshold values
for each numerical attribute is determined, and then only
these threshold values are used in evolution. It should be
noted that the threshold values are chosen globally instead of
at each specific node. In the two papers, a maximum of five
thresholds are selected for every attribute, and both
information gain and information gain ration are evaluated
as criteria for the selection. Although the results are
somewhat inconclusive, the proposed technique are
generally more accurate than both C4.5 and standard GP.

As mentioned above, the normal result of rule extraction
is another predictive model (the extracted model) which in
turn, is used for actual prediction. At the same time, it is
important to realize that the opaque model normally is a very
accurate model of the relationship between input and target
variables. Furthermore; the opaque model could be used to
generate predictions for novel instances with unknown target
values, as they become available. Naturally, these instances
could also be used by the rule extraction algorithm, which is
a major difference compared to techniques directly building

transparent models from the dataset, where each training
instance must have a known target value. Despite this, all
rule extraction algorithms that the authors are aware of, use
only training data (possibly with the addition of artificially
generated instances) when extracting the transparent model.
We have previously argued that a data miner often might
benefit from also using test data together with predictions
from the opaque model when performing rule extraction.
Below, test data inputs together with test data predictions
from the opaque model is termed oracle data, with the
motivation that the predictions from the opaque model (the
oracle) are regarded as ground truth during rule extraction.
Naturally, target values for test data are by definition not
available when performing rule extraction, but often input
values and predictions from the opaque model could be.
With access to a sufficiently sized oracle dataset, the rule
extraction algorithm could either use only oracle data or
augment the training data with oracle instances.

The use of oracle data was first suggested in [13], and
further evaluated in [14]. The main result was that rules
extracted using oracle data were significantly more accurate
than both rules extracted by the same rule extraction
algorithm (using training data only) and standard decision
tree algorithms; i.e. rules extracted using oracle data
explained the predictions made on the novel data better than
rules extracted using training data only.

Since the use of oracle data means that the same novel
data instances used for actual prediction also are used by the
rule extraction algorithm, the problem must be one where
predictions are made for sets of instances rather than one
instance at a time. This is a description matching most data
mining problems, but not all. One example, where a
sufficiently sized oracle dataset would not be available, is a
medical system where diagnosis is based on a predictive
model built from historical data. In that situation, test
instances (patients), would probably be handled one at a
time. On the other hand, if, as an example, a predictive
model is used to determine the recipients of a marketing
campaign, the oracle dataset could easily contain thousands
of instances. Since the use of oracle data has proven to be
beneficial for rule extraction using G-REX, we in this study
evaluate the suggested post-processing techniques on trees
extracted both with and without the use of oracle data.

III. METHOD

The overall idea introduced in this paper is to post-process
GP trees; i.e. only the winning tree is potentially modified.
In this study, the GP trees are extracted from opaque models
using G-REX. When searching for possible modifications,
the structure of the tree is always intact; as a matter of fact,
in this study, only the constants in the interior node splits
can be modified. More specifically, the post-processing
explicitly searches for constant values that would increase
the accuracy, one node at a time. The algorithm is presented
in pseudo code in Figure 2 below:

3006 2008 IEEE Congress on Evolutionary Computation (CEC 2008)

do
currentAcc = evaluateTree(tree);
foreach interior node
constant=findBestSplit(node, instances);

 modifyNode(&node, constant);
 newAcc = evaluateTree(tree);
while (newAcc > currentAcc)

Figure 2: Post-processing algorithm

At the heart of the algorithm is the function findBestSplit,
which takes the current node and the instances reaching that
node as arguments. The function should return the best
constant value to use in the current split. If, as an example,
the node is If x1 > 7.5 the function will try alternative values
for 7.5, and return the value resulting in the highest
accuracy. Which values to consider are determined from the
instances reaching the node. In the preceding example, all
unique values for x1, found in the instances reaching the
node, would be tested. It must be noted that the evaluation
always starts with the value found by the GP, so post-
processing can never decrease accuracy, only increase it.
Clearly, different criteria (like information gain) could be
used when evaluating the potential splits, but here we use
accuracy; i.e. the split is modified if and only if the modified
tree classifies more instances correctly.

Changing splits will, of course, affect which instances that
reach each node, so when all nodes have been processed,
another sweep could very well further increase accuracy.
Consequently, the entire procedure is repeated until there is
no change in accuracy between two runs.

When modifying the interior nodes, we could start at the
root node or at the leaves. In either case, the question in each
node is whether it is possible to increase the overall accuracy
by finding a split that changes the distribution of instances to
the children; i.e. we assume that all nodes further down the
tree will remain as they are. The difference is whether the
children are optimized before or after their parent. If we start
at the root node, we would first optimize that split, and then
proceed down the tree. Or, more generally, when we get to a
specific node, the parent node is always already modified,
but the children are not. When processing the tree in this
manner, we are in fact performing a preorder traversal; see
Figure 3 below. The numbers in the squares show the order
in which the nodes are processed.

Figure 3: Preorder traversal

If we instead start at the leaves, no node will be optimized
before its descendants. Using this strategy, we perform a
postorder traversal; see Figure 4 below.

Figure 4: Postorder traversal

A. G-REX settings

The opaque models used to rule extract from are ANN
ensembles each consisting of 15 independently trained
ANNs. All ANNs are fully connected feed-forward networks
where a localist (1-of-C) representation is used. Of the 15
ANNs, seven have one hidden layer and the remaining eight
have two hidden layers. The exact number of units in each
hidden layer is slightly randomized, but is based on the
number of inputs and classes in the current dataset. For an
ANN with one hidden layer, the number of hidden units is
determined from (1) below.

 2 ()h rand v c (1)

Here, v is the number of input variables and c is the number
of classes. rand is a random number in the interval [0, 1].
For ANNs with two hidden layers, the number of units in the
first and second hidden layers are h1 and h2, respectively.

 1 () / 2 4 (() /)v c rand v c ch � (2)

 2 (() /)rand v c c ch � (3)

Some diversity is introduced by using ANNs with different
architectures, and by training each network on slightly
different data. More specifically, each ANN uses a
“bootstrap” training set; i.e. instances are picked randomly,
with replacement, from the available data, until the number
of training instances is equal to the size of the available
training set. The result is that approximately 63% of the
available training instances are actually used. Averaging is
used to determine ensemble classifications.

When using GP for rule extraction, the available
functions, F, and terminals T, constitute the literals of the
representation language. Functions will typically be logical
or relational operators, while the terminals could be, for
instance, input variables or constants. Here, the
representation language is very similar to basic decision
trees; see the grammar presented using Backus-Naur form in
Figure 5 below.

2008 IEEE Congress on Evolutionary Computation (CEC 2008) 3007

F = {if, ==, <, >}
T = {i1, i2, …, in, c1, c2, …, cm, ℜ}

DTree :- (if RExp Dtree Dtree) | Class
RExp :- (ROp ConI ConC) | (== CatI CatC)
ROp :- < | >
CatI :- Categorical input variable
ConI :- Continuous input variable

Class :- Class label
CatC :- Categorical attribute value
ConC :- ℜ

Figure 5: G-REX representation language used

The GP settings used for G-REX in this study are given in
Table I below.

TABLE I
GP PARAMETERS

Parameter Value Parameter Value
Crossover rate 0.8 Creation depth 7
Mutation rate 0.01 Creation method Ramped half-and-half
Population size 1500 Fitness function Fidelity - length penalty
Generations 100 Selection Roulette wheel
Persistence 25 Elitism Yes

B. Datasets

The 22 datasets used are all publicly available from the UCI
Repository [15]. For a summary of dataset characteristics see
Table II below. Instances is the total number of instances in
the dataset. Classes is the number of output classes in the
dataset. Cont. is the number of continuous input variables
and Cat. is the number of categorical input variables.

TABLE II
DATASET CHARACTERISTICS

Dataset Instances Classes Cont. Cat.
Breast cancer (Bcancer) 286 2 0 9
Bupa liver disorders (Bupa) 345 2 6 0
Cleveland heart disease (Cleve) 303 2 6 7
Cmc 1473 3 2 7
Crx 690 2 6 9
German 1000 2 7 13
Heart disease Statlog (Heart) 270 2 6 7
Hepatitis (Hepati) 155 2 6 13
Horse colic (Horse) 368 2 7 15
Hypothyroid (Hypo) 3163 2 7 18
Iono 351 2 34 0
Iris 150 3 4 0
Labor 57 2 8 8
Pima Indian diabetes (PID) 768 2 8 0
Sick 2800 2 7 22
Sonar 208 2 60 0
Tae 151 3 1 4
Tictactoe 958 2 0 9
Vehicle 846 4 18 0
Wisconsin breast cancer (WBC) 699 2 9 0
Wine 178 3 13 0
Zoo 100 7 0 16

It is obvious that the post-processing algorithms suggested
can affect mainly splits with continuous attributes. When
searching for a categorical split, the alternative values
actually represent totally different splits; e.g. X1 == 3
instead of X1 == 5. It is, therefore, quite unlikely that there
are better categorical splits than the ones found by the GP.

With this in mind, we first considered using only datasets
with mainly continuous attributes. Ultimately, though, we
decided to include also datasets with mostly categorical
attributes, to confirm our reasoning. Having said that, we did
not expect the post-processing algorithms to actually modify
any trees from the Bcancer, Tictactoe and Zoo datasets.

C. Experiments

As mentioned above, the post-processing techniques are
evaluated on G-REX trees extracted both with and without
the use of oracle data. Consequently, three experiments are
conducted, each comparing three different options for post-
processing; No, Pre and Post. No post-processing is exactly
that; i.e. the G-REX tree obtained is evaluated on test data
without modifications. Pre and Post apply the algorithm
described in Figure 2 to the tree obtained from G-REX,
before the potentially modified tree is evaluated on test data.
Naturally, the processing of the nodes is performed in
preorder and postorder, respectively. So, to iterate, on each
fold, both post-processing algorithms start from the same G-
REX tree. This tree is also evaluated to obtain the result for
No. The difference between the three experiments is whether
oracle data is used or not. When G-REX original is used,
rules are extracted using training data only. G-REX all
means that both training data and oracle data are used. G-
REX oracle, finally, uses only oracle data. For a summary,
see Table III below. For the evaluation, stratified 10-fold
cross-validation is used.

TABLE III
EXPERIMENTS

Experiment Data used for rule extraction
G-REX original Training
G-REX all Training and Oracle
G-REX oracle Oracle

IV. RESULTS

Table IV below shows fidelity results. It should be noted that
fidelity values were calculated on the exact data used by G-
REX; i.e. for original training data only, for all both training
and oracle data, and for oracle, oracle data only.

3008 2008 IEEE Congress on Evolutionary Computation (CEC 2008)

TABLE IV
FIDELITY

Datasets
Original All Oracle

No Pre Post No Pre Post No Pre Post
Bcancer .847 .847 .847 .855 .855 .855 .986 .986 .986
Bld .774 .799 .797 .769 .781 .782 .918 .924 .924
Cleve .861 .863 .863 .859 .862 .862 .977 .977 .977
Cmc .783 .789 .790 .792 .803 .803 .817 .826 .826
Crx .919 .921 .922 .923 .924 .924 .958 .958 .958
German .784 .787 .787 .789 .792 .792 .882 .886 .886
Heart .868 .871 .871 .869 .870 .870 .989 .989 .989
Hepati .883 .886 .886 .890 .898 .897 1.00 1.00 1.00
Horse .871 .873 .873 .879 .879 .879 .972 .972 .972
Hypo .986 .988 .988 .988 .990 .990 .993 .993 .993
Iono .932 .940 .940 .937 .946 .946 .986 .986 .986
Iris .979 .983 .983 .977 .981 .981 1.00 1.00 1.00
Labor .988 .988 .988 .982 .984 .984 1.00 1.00 1.00
PID .887 .896 .896 .885 .894 .894 .941 .946 .946
Sick .983 .985 .985 .983 .984 .984 .987 .988 .988
Sonar .827 .843 .843 .812 .828 .826 1.00 1.00 1.00
Tae .704 .719 .720 .693 .702 .701 .953 .953 .953
Tictactoe .810 .810 .810 .804 .804 .804 .877 .877 .877
Vehicle .637 .654 .654 .628 .651 .652 .743 .760 .760
Wbc .973 .974 .974 .976 .977 .977 .996 .996 .996
Wine .961 .967 .968 .960 .974 .974 1.00 1.00 1.00
Zoo .923 .923 .923 .916 .916 .916 .990 .990 .990

From Table IV, it is obvious that the post-processing
algorithm was able to find better splits and thereby
increasing fidelity. As a matter of fact, when using only
training data, the post-processing algorithm increased the
fidelity on all datasets but the three “categorical only”
mentioned above. This does not mean that the post-
processing algorithm always was able to modify the trees, on
several datasets there were, in fact, no modifications on a
large majority of the folds.

When using oracle data only, the number of instances in
the fitness set is quite small, so the fidelity of the starting
tree is normally quite high. For five datasets (Hepati, Iris,
Labor, Sonar and Wine) the fidelity is even a perfect 1.0 to
start with. Because of this, it is not surprising that there are
relatively few improvements found.

When using all data, the starting tree has most often, but
not always, a higher fidelity, compared to the tree extracted
using training data only. Still, the post-processing managed
to increase fidelity on all datasets but the three “categorical-
only” and Horse. Often, however, the increase is quite small,
sometimes even the result of a single modification, on just
one fold. Overall, however, the picture is clearly that the
suggested algorithm was capable of increasing fidelity.

Naturally, fidelity is not vital per se, the important
question is whether the modifications would also increase
test set accuracies. Table V below shows test set accuracies.
The results obtained by the neural network ensemble used to
rule extract from are included for comparison.

TABLE V
TEST ACCURACIES

Datasets Ensemble
Original All Oracle

No Pre Post No Pre Post No Pre Post
Bcancer .729 .725 .725 .725 .714 .714 .714 .736 .736 .736
Bld .721 .635 .665 .659 .641 .624 .626 .691 .697 .697
Cleve .807 .770 .777 .777 .807 .810 .810 .810 .810 .810
Cmc .551 .547 .565 .565 .551 .549 .551 .539 .540 .540
Crx .859 .849 .854 .854 .848 .851 .851 .849 .849 .849
German .749 .716 .720 .722 .726 .728 .728 .737 .735 .735
Heart .793 .785 .789 .789 .785 .785 .785 .804 .804 .804
Hepati .860 .807 .807 .807 .833 .840 .840 .860 .860 .860
Horse .817 .842 .844 .844 .847 .847 .847 .806 .806 .806
Hypo .983 .979 .981 .981 .980 .982 .982 .980 .980 .980
Iono .934 .877 .889 .889 .914 .929 .926 .926 .926 .926
Iris .967 .953 .953 .953 .947 .960 .960 .967 .967 .967
Labor .940 .840 .840 .840 .920 .920 .920 .940 .940 .940
PID .767 .746 .753 .754 .753 .755 .757 .750 .747 .747
Sick .970 .971 .973 .973 .971 .970 .970 .967 .968 .968
Sonar .865 .700 .740 .740 .730 .750 .745 .865 .865 .865
Tae .567 .460 .480 .480 .480 .473 .473 .547 .547 .547
Tictactoe .898 .736 .736 .736 .752 .752 .752 .781 .781 .781
Vehicle .848 .582 .586 .587 .605 .618 .623 .664 .676 .676
Wbc .964 .957 .958 .958 .959 .959 .959 .965 .965 .965
Wine .965 .918 .918 .929 .929 .953 .953 .965 .965 .965
Zoo .950 .880 .880 .880 .920 .920 .920 .940 .940 .940

Table V shows that on a majority of datasets, the increase in
fidelity also led to an increase in test set accuracy. Again, it
must be noted that these result do not mean that test set
accuracies were always increased. As a matter of fact, on
several folds, an increase in fidelity led to no change in
accuracy. On some folds, the increase in fidelity even led to
lower accuracy. When aggregating the results over all ten
folds, however, the results are very promising for the
suggested algorithm. To further analyze the result, the two
post-processing algorithms were pair-wise compared to each
other and No, one experiment at a time. Table VI - VIII
below show these comparisons for the three experiments.
The values tabulated are datasets won, lost and tied, for the
row technique when compared to the column technique.
Using 22 data sets, a standard sign-test (α=0.05) requires 16
wins for statistical significance. When using a sign test, ties
are split evenly between the two techniques. Statistically
significant differences are shown using bold and underlined
values.

TABLE VI
WINS, LOSSES AND TIES USING G-REX ORIGINAL

No Pre Post

W L T W L T W L T
No - - - 0 15 7 0 16 6
Pre 15 0 7 - - - 1 4 17
Post 16 0 6 4 1 17 - - -

First of all, it is interesting to note that neither post-
processing algorithm lose a single dataset against No. The
sign test consequently shows that both algorithms are
significantly more accurate than using no post-processing.
The results also show that, on a large majority of the
datasets, there is no difference between Pre and Post.

2008 IEEE Congress on Evolutionary Computation (CEC 2008) 3009

TABLE VII
WINS, LOSSES AND TIES USING G-REX ALL

No Pre Post

W L T W L T W L T
No - - - 4 11 7 3 11 8
Pre 11 4 7 - - - 3 4 15
Post 11 3 8 4 3 15 - - -

Here, a sign test, reports no statistically significant
differences. Still, it is clearly beneficial to use the post-
processing algorithm, even for G-REX all. As a matter of
fact, if the three “categorical only” data sets were removed
before the analysis, the use of either Pre or Post, would
again be significantly more accurate than No.

TABLE VIII
WINS, LOSSES AND TIES USING G-REX ORACLE

No Pre Post

W L T W L T W L T
No - - - 3 5 14 3 5 14
Pre 5 3 14 - - - 0 0 22
Post 5 3 14 0 0 22 - - -

For G-REX oracle, the picture is quite different. Here, there
is generally very little to gain by using the post-processing
suggested. The reason is, of course, the very high fidelity
obtained by the rule extraction to start with. Still, it could be
noted that the post-processing was able to increase accuracy
on five data sets. For two of these (Bld and Vehicle) the
increase is not negligible; see Table V.

V. CONCLUSIONS

We have in this paper suggested a novel algorithm for post-
processing of GP trees. The technique iteratively, one node
at a time, searches for possible modifications that would
result in higher accuracy. More specifically, for each split,
the algorithm evaluates every possible constant value and
chooses the best. It should be noted that the algorithm can
only increase accuracy (on training data), since
modifications are only carried out when the result is a more
accurate tree.

In this study, we evaluated the algorithm using the rule
extraction technique G-REX. Results show that when the
rule extraction uses only training data, the post-processing
increased accuracy significantly. When using both training
and oracle data, it is still clearly advantageous to apply the
post-processing. Even when starting from a tree extracted
using oracle data only, the post-processing is sometimes
capable of increasing accuracy. Overall, the very promising
picture is that the post-processing more often than not
increases accuracy, and only very rarely decreases it.

VI. DISCUSSION AND FUTURE WORK

In this study, we applied the novel technique to rule
extraction, but it could, of course, just as well, be used on
any GP classification tree. So, one obvious future study is to
evaluate the suggested technique on GP classification.
Another study is to investigate whether it would be
beneficial to search for an entire new split, not just a

constant value. In that study, it would be natural to also
evaluate different criteria (like information gain) as
alternatives to accuracy. This would, however, be very
similar to standard decision tree algorithms. The challenge is
to find the right mix between the locally effective greed in
decision tree algorithms and the global optimization in GP.

Finally, we have also performed some initial experiments,
with promising results, where the algorithm suggested was
instead used as a mutation operator during evolution.
Potential benefits are higher accuracy or faster convergence.

ACKNOWLEDGMENT

This work was supported by the Information Fusion
Research Program (University of Skövde, Sweden) in
partnership with the Swedish Knowledge Foundation under
grant 2003/0104 (URL: http://www.infofusion.se).

REFERENCES
[1] H. Lu, R. Setino and H. Liu, Neurorule: A connectionist approach to

data mining, International Very Large Databases Conference, pp.
478-489, 1995.

[2] M. Craven and J. Shavlik, Extracting Tree-Structured Representations
of Trained Networks, Advances in Neural Information Processing
Systems, 8:24-30, 1996.

[3] R. Andrews, J. Diederich and A. B. Tickle, A survey and critique of
techniques for extracting rules from trained artificial neural networks,
Knowledge-Based Systems, 8(6), 1995.

[4] M. Craven and J. Shavlik, Rule Extraction: Where Do We Go from
Here?, University of Wisconsin Machine Learning Research Group
working Paper, 99-1, 1999.

[5] U. Johansson, R. König and L. Niklasson, Rule Extraction from
Trained Neural Networks using Genetic Programming, 13th
International Conference on Artificial Neural Networks, Istanbul,
Turkey, supplementary proceedings pp. 13-16, 2003.

[6] U. Johansson, Obtaining accurate and comprehensible data mining
models: An evolutionary approach, PhD thesis, Institute of
Technology, Linköping University, 2007.

[7] J. R. Quinlan, C4.5: Programs for Machine Learning, Morgan
Kaufmann, 1993.

[8] L. Breiman, J. H. Friedman, R. A. Olshen and C. J. Stone,
Classification and Regression Trees, Wadsworth International, 1984.

[9] A. Tsakonas, A comparison of classification accuracy of four genetic
programming-evolved intelligent structures, Information Sciences,
176(6):691-724, 2006.

[10] C. C. Bojarczuk, H. S. Lopes and A. A. Freitas, Data Mining with
Constrained-syntax Genetic Programming: Applications in Medical
Data Sets, Intelligent Data Analysis in Medicine and Pharmacology -
a workshop at MedInfo-2001, 2001.

[11] J. Eggermont, J. Kok and W. A. Kosters, Genetic Programming for
Data Classification: Refining the Search Space, 15th Belgium/Neth-
erlands Conference on Artificial Intelligence, pp. 123-130, 2003.

[12] J. Eggermont, J. Kok and W. A. Kosters, Genetic Programming for
Data Classification: Partitioning the Search Space, 19th Annual ACM
Symposium on Applied Computing (SAC'04), pp. 1001-1005, 2004.

[13] U. Johansson, T. Löfström, R. König and L. Niklasson, Why Not Use
an Oracle When You Got One?, Neural Information Processing -
Letters and Reviews, Vol. 10, No. 8-9: 227-236, 2006.

[14] U. Johansson, T. Löfström, R. König, C. Sönströd and L. Niklasson,
Rule Extraction from Opaque Models – A Slightly Different
Perspective, 6th International Conference on Machine Learning and
Applications, Orlando, FL, IEEE press, pp. 22-27, 2006.

[15] C. L. Blake and C. J. Merz, UCI Repository of machine learning
databases, University of California, Department of Information and
Computer Science, 1998.

3010 2008 IEEE Congress on Evolutionary Computation (CEC 2008)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

