
 
 

 

  

Abstract—Genetic programming (GP), is a very general and 
efficient technique, often capable of outperforming more 
specialized techniques on a variety of tasks. In this paper, we 
suggest a straightforward novel algorithm for post-processing 
of GP classification trees. The algorithm iteratively, one node at 
a time, searches for possible modifications that would result in 
higher accuracy. More specifically, the algorithm for each split 
evaluates every possible constant value and chooses the best. 
With this design, the post-processing algorithm can only 
increase training accuracy, never decrease it. In this study, we 
apply the suggested algorithm to GP trees, extracted from 
neural network ensembles. Experimentation, using 22 UCI 
datasets, shows that the post-processing results in higher test 
set accuracies on a large majority of datasets. As a matter of 
fact, for two setups of three evaluated, the increase in accuracy 
is statistically significant.  

I. INTRODUCTION 

Most high-accuracy techniques for predictive classification 
produce opaque models like artificial neural networks 
(ANNs), ensembles or support vector machines. Opaque 
predictive models make it impossible for decision-makers to 
follow and understand the logic behind a prediction, which, 
in some domains, must be deemed unacceptable. When 
models need to be interpretable (or even comprehensible) 
accuracy is often sacrificed by using simpler but transparent 
models; most typically decision trees. This tradeoff between 
predictive performance and interpretability is normally 
called the accuracy vs. comprehensibility tradeoff. With this 
tradeoff in mind, several researchers have suggested rule 
extraction algorithms, where opaque models are transformed 
into comprehensible models, keeping an acceptable 
accuracy. Most significant, are the many rule extraction 
algorithms used to extract symbolic rules from trained neural 
networks; e.g. RX [1] and TREPAN [2]. Several papers have 
discussed key demands on reliable rule extraction methods; 
see e.g. [3] or [4]. The most common criteria are: accuracy 
(the ability of extracted representations to make accurate 
predictions on previously unseen data), comprehensibility 
(the extent to which extracted representations are humanly 
comprehensible) and fidelity (the extent to which extracted 
representations accurately model the opaque model from 
which they were extracted). 

We have previously suggested a rule extraction algorithm 
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called G-REX (Genetic Rule EXtraction) [5]. G-REX is a 
black-box rule extraction algorithm; i.e. the overall idea is to 
treat the opaque model as an oracle and view rule extraction 
as a learning task, where the target concept is the function 
learnt by the opaque model. Hence rule sets extracted 
directly map inputs to outputs. Black-box techniques 
typically use some symbolic learning algorithm, where the 
opaque model is used to generate target values for the 
training examples. The easiest way to understand the process 
is to regard black-box rule extraction as an instance of 
predictive modeling, where each input-output pattern 
consists of the original input vector and the corresponding 
prediction from the opaque model. From this perspective, 
black-box rule extraction becomes the task of modeling the 
function from (original) input attributes to the opaque model 
predictions; see Figure 1 below. 
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Figure 1: Black-box rule extraction 

 
One inherent advantage of black-box approaches, is the 
ability to extract rules from arbitrary opaque models, 
including ensembles. 

The extraction strategy used by G-REX is based on GP. 
More specifically, a population of candidate rules is 
continuously evaluated according to how well the rules 
mimic the opaque model. The best rules are kept and 
combined using genetic operators to raise the fitness 
(performance) over time. After many generations (iterations) 
the most fit program (rule) is chosen as the extracted rule. 

One key property of G-REX is the ability to use a variety 
of different representation languages, just by choosing 
suitable function and terminal sets. G-REX has previously 
been used to extract, for instance, decision trees, regression 
trees, Boolean rules and fuzzy rules. Another, equally 
important, feature is the possibility to directly balance 
accuracy against comprehensibility by using an appropriate 
fitness function. Although comprehensibility is a rather 
complex criterion, the simple choice to evaluate 
comprehensibility using the size of the model is the most 
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accepted. Consequently, a typical G-REX fitness function 
includes a positively weighted fidelity term and a penalty for 
longer rules. For a summary of the G-REX technique and 
previous studies, see [6]. 

GP has in many studies proved to be a very efficient 
search strategy. Often, GP results are comparable to, or even 
better than, results obtained by more specialized techniques. 
One particular example is when GP is used for classification, 
and the performance is compared to, for instance, decision 
tree algorithms or rule inducers. Specifically, several studies 
show that decision trees evolved using GP often are more 
accurate than trees induced by standard techniques like 
C4.5/C5.0 [7] and CART [8]; see e.g. [9] and [10]. The main 
reason for this is that GP is a global optimization technique, 
while decision tree algorithms typically choose splits 
greedily, working from the root node down. Informally, this 
means that GP often will make some locally sub-optimal 
splits, but the overall model will still be more accurate and 
more general. 

On the other hand, GP search is locally much less 
informed; i.e. each split is only optimized as a part of the 
entire decision tree. In addition, GP is not able to find all 
possible splits, simply because the number of constants 
available to the GP is limited. This problem is actually 
accentuated in the later stages of evolution, when 
populations tend to become more homogenous. With this in 
mind, the main purpose of this study is to investigate 
whether some straightforward post-processing techniques, 
where explicit searching is used to find optimal splits, can 
improve the performance of GP-induced decision trees.    

II. BACKGROUND AND RELATED WORK 

Eggermont, Kok and Kosters in two papers evaluate a 
refined GP-representation for classification, where the 
search space is reduced by letting the GP only consider a 
fixed number of possible splits for each attribute; see [11] 
and [12]. More specifically, a global set of threshold values 
for each numerical attribute is determined, and then only 
these threshold values are used in evolution. It should be 
noted that the threshold values are chosen globally instead of 
at each specific node. In the two papers, a maximum of five 
thresholds are selected for every attribute, and both 
information gain and information gain ration are evaluated 
as criteria for the selection. Although the results are 
somewhat inconclusive, the proposed technique are 
generally more accurate than both C4.5 and standard GP.  

As mentioned above, the normal result of rule extraction 
is another predictive model (the extracted model) which in 
turn, is used for actual prediction. At the same time, it is 
important to realize that the opaque model normally is a very 
accurate model of the relationship between input and target 
variables. Furthermore; the opaque model could be used to 
generate predictions for novel instances with unknown target 
values, as they become available. Naturally, these instances 
could also be used by the rule extraction algorithm, which is 
a major difference compared to techniques directly building 

transparent models from the dataset, where each training 
instance must have a known target value. Despite this, all 
rule extraction algorithms that the authors are aware of, use 
only training data (possibly with the addition of artificially 
generated instances) when extracting the transparent model. 
We have previously argued that a data miner often might 
benefit from also using test data together with predictions 
from the opaque model when performing rule extraction. 
Below, test data inputs together with test data predictions 
from the opaque model is termed oracle data, with the 
motivation that the predictions from the opaque model (the 
oracle) are regarded as ground truth during rule extraction. 
Naturally, target values for test data are by definition not 
available when performing rule extraction, but often input 
values and predictions from the opaque model could be. 
With access to a sufficiently sized oracle dataset, the rule 
extraction algorithm could either use only oracle data or 
augment the training data with oracle instances. 

The use of oracle data was first suggested in [13], and 
further evaluated in [14]. The main result was that rules 
extracted using oracle data were significantly more accurate 
than both rules extracted by the same rule extraction 
algorithm (using training data only) and standard decision 
tree algorithms; i.e. rules extracted using oracle data 
explained the predictions made on the novel data better than 
rules extracted using training data only. 

Since the use of oracle data means that the same novel 
data instances used for actual prediction also are used by the 
rule extraction algorithm, the problem must be one where 
predictions are made for sets of instances rather than one 
instance at a time. This is a description matching most data 
mining problems, but not all. One example, where a 
sufficiently sized oracle dataset would not be available, is a 
medical system where diagnosis is based on a predictive 
model built from historical data. In that situation, test 
instances (patients), would probably be handled one at a 
time. On the other hand, if, as an example, a predictive 
model is used to determine the recipients of a marketing 
campaign, the oracle dataset could easily contain thousands 
of instances. Since the use of oracle data has proven to be 
beneficial for rule extraction using G-REX, we in this study 
evaluate the suggested post-processing techniques on trees 
extracted both with and without the use of oracle data.  

III. METHOD 

The overall idea introduced in this paper is to post-process  
GP trees; i.e. only the winning tree is potentially modified. 
In this study, the GP trees are extracted from opaque models 
using G-REX. When searching for possible modifications, 
the structure of the tree is always intact; as a matter of fact, 
in this study, only the constants in the interior node splits 
can be modified. More specifically, the post-processing 
explicitly searches for constant values that would increase 
the accuracy, one node at a time. The algorithm is presented 
in pseudo code in Figure 2 below: 
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do 
currentAcc = evaluateTree(tree); 
foreach interior node 
constant=findBestSplit(node, instances); 

   modifyNode(&node, constant); 
   newAcc = evaluateTree(tree); 
while (newAcc > currentAcc) 

Figure 2: Post-processing algorithm 
 

At the heart of the algorithm is the function findBestSplit, 
which takes the current node and the instances reaching that 
node as arguments. The function should return the best 
constant value to use in the current split. If, as an example, 
the node is If x1 > 7.5 the function will try alternative values 
for 7.5, and return the value resulting in the highest 
accuracy. Which values to consider are determined from the 
instances reaching the node. In the preceding example, all 
unique values for x1, found in the instances reaching the 
node, would be tested. It must be noted that the evaluation 
always starts with the value found by the GP, so post-
processing can never decrease accuracy, only increase it. 
Clearly, different criteria (like information gain) could be 
used when evaluating the potential splits, but here we use 
accuracy; i.e. the split is modified if and only if the modified 
tree classifies more instances correctly.   

Changing splits will, of course, affect which instances that 
reach each node, so when all nodes have been processed, 
another sweep could very well further increase accuracy. 
Consequently, the entire procedure is repeated until there is 
no change in accuracy between two runs.  

When modifying the interior nodes, we could start at the 
root node or at the leaves. In either case, the question in each 
node is whether it is possible to increase the overall accuracy 
by finding a split that changes the distribution of instances to 
the children; i.e. we assume that all nodes further down the 
tree will remain as they are. The difference is whether the 
children are optimized before or after their parent. If we start 
at the root node, we would first optimize that split, and then 
proceed down the tree. Or, more generally, when we get to a 
specific node, the parent node is always already modified, 
but the children are not. When processing the tree in this 
manner, we are in fact performing a preorder traversal; see 
Figure 3 below. The numbers in the squares show the order 
in which the nodes are processed.  

 
    

 
Figure 3: Preorder traversal 

 

If we instead start at the leaves, no node will be optimized 
before its descendants. Using this strategy, we perform a 
postorder traversal; see Figure 4 below. 
    

 
Figure 4: Postorder traversal 

 

A. G-REX settings 

The opaque models used to rule extract from are ANN 
ensembles each consisting of 15 independently trained 
ANNs. All ANNs are fully connected feed-forward networks 
where a localist (1-of-C) representation is used. Of the 15 
ANNs, seven have one hidden layer and the remaining eight 
have two hidden layers. The exact number of units in each 
hidden layer is slightly randomized, but is based on the 
number of inputs and classes in the current dataset. For an 
ANN with one hidden layer, the number of hidden units is 
determined from (1) below. 

 2 ( )h rand v c             (1) 

Here, v is the number of input variables and c is the number 
of classes. rand is a random number in the interval [0, 1]. 
For ANNs with two hidden layers, the number of units in the 
first and second hidden layers are h1 and h2, respectively.  

 1 ( ) / 2 4 ( ( ) / )v c rand v c ch �        (2) 

 2 ( ( ) / )rand v c c ch �           (3) 

Some diversity is introduced by using ANNs with different 
architectures, and by training each network on slightly 
different data. More specifically, each ANN uses a 
“bootstrap” training set; i.e. instances are picked randomly, 
with replacement, from the available data, until the number 
of training instances is equal to the size of the available 
training set. The result is that approximately 63% of the 
available training instances are actually used. Averaging is 
used to determine ensemble classifications.  

When using GP for rule extraction, the available 
functions, F, and terminals T, constitute the literals of the 
representation language. Functions will typically be logical 
or relational operators, while the terminals could be, for 
instance, input variables or constants. Here, the 
representation language is very similar to basic decision 
trees; see the grammar presented using Backus-Naur form in 
Figure 5 below.  
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F = {if, ==, <, >} 
T = {i1, i2, …, in, c1, c2, …, cm, ℜ} 
 

DTree  :- (if RExp Dtree Dtree) | Class 
RExp  :- (ROp ConI ConC) | (== CatI CatC) 
ROp  :- < | > 
CatI  :- Categorical input variable 
ConI :- Continuous input variable 

Class  :- Class label 
CatC :- Categorical attribute value 
ConC :- ℜ 

Figure 5: G-REX representation language used 
 

The GP settings used for G-REX in this study are given in 
Table I below. 

TABLE I 
GP PARAMETERS 

Parameter Value Parameter Value 
Crossover rate 0.8 Creation depth 7 
Mutation rate 0.01 Creation method Ramped half-and-half 
Population size 1500 Fitness function Fidelity - length penalty 
Generations 100 Selection Roulette wheel 
Persistence 25 Elitism Yes 

 

B. Datasets 

The 22 datasets used are all publicly available from the UCI 
Repository [15]. For a summary of dataset characteristics see 
Table II below. Instances is the total number of instances in 
the dataset. Classes is the number of output classes in the 
dataset. Cont. is the number of continuous input variables 
and Cat. is the number of categorical input variables. 

TABLE II 
DATASET CHARACTERISTICS 

Dataset Instances Classes Cont. Cat. 
Breast cancer (Bcancer) 286 2 0 9 
Bupa liver disorders (Bupa) 345 2 6 0 
Cleveland heart disease (Cleve) 303 2 6 7 
Cmc 1473 3 2 7 
Crx 690 2 6 9 
German 1000 2 7 13 
Heart disease Statlog (Heart) 270 2 6 7 
Hepatitis (Hepati) 155 2 6 13 
Horse colic (Horse) 368 2 7 15 
Hypothyroid (Hypo) 3163 2 7 18 
Iono 351 2 34 0 
Iris 150 3 4 0 
Labor 57 2 8 8 
Pima Indian diabetes (PID) 768 2 8 0 
Sick 2800 2 7 22 
Sonar 208 2 60 0 
Tae 151 3 1 4 
Tictactoe 958 2 0 9 
Vehicle 846 4 18 0 
Wisconsin breast cancer (WBC) 699 2 9 0 
Wine 178 3 13 0 
Zoo 100 7 0 16 

 
It is obvious that the post-processing algorithms suggested 
can affect mainly splits with continuous attributes. When 
searching for a categorical split, the alternative values 
actually represent totally different splits; e.g. X1 == 3 
instead of X1 == 5. It is, therefore, quite unlikely that there 
are better categorical splits than the ones found by the GP. 

With this in mind, we first considered using only datasets 
with mainly continuous attributes. Ultimately, though, we 
decided to include also datasets with mostly categorical 
attributes, to confirm our reasoning. Having said that, we did 
not expect the post-processing algorithms to actually modify 
any trees from the Bcancer, Tictactoe and Zoo datasets.  

 

C. Experiments 

As mentioned above, the post-processing techniques are 
evaluated on G-REX trees extracted both with and without 
the use of oracle data. Consequently, three experiments are 
conducted, each comparing three different options for post-
processing; No, Pre and Post. No post-processing is exactly 
that; i.e. the G-REX tree obtained is evaluated on test data 
without modifications. Pre and Post apply the algorithm 
described in Figure 2 to the tree obtained from G-REX, 
before the potentially modified tree is evaluated on test data. 
Naturally, the processing of the nodes is performed in 
preorder and postorder, respectively. So, to iterate, on each 
fold, both post-processing algorithms start from the same G-
REX tree. This tree is also evaluated to obtain the result for 
No. The difference between the three experiments is whether 
oracle data is used or not. When G-REX original is used, 
rules are extracted using training data only. G-REX all 
means that both training data and oracle data are used. G-
REX oracle, finally, uses only oracle data. For a summary, 
see Table III below. For the evaluation, stratified 10-fold 
cross-validation is used.  

TABLE III 
EXPERIMENTS 

Experiment Data used for rule extraction 
G-REX original Training 
G-REX all Training and Oracle 
G-REX oracle Oracle 

IV. RESULTS 

Table IV below shows fidelity results. It should be noted that 
fidelity values were calculated on the exact data used by G-
REX; i.e. for original training data only, for all both training 
and oracle data, and for oracle, oracle data only.  
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TABLE IV 
FIDELITY  

Datasets 
Original All Oracle 

No Pre Post No Pre Post No Pre Post
Bcancer .847 .847 .847 .855 .855 .855 .986 .986 .986
Bld .774 .799 .797 .769 .781 .782 .918 .924 .924
Cleve .861 .863 .863 .859 .862 .862 .977 .977 .977
Cmc .783 .789 .790 .792 .803 .803 .817 .826 .826
Crx .919 .921 .922 .923 .924 .924 .958 .958 .958
German .784 .787 .787 .789 .792 .792 .882 .886 .886
Heart .868 .871 .871 .869 .870 .870 .989 .989 .989
Hepati .883 .886 .886 .890 .898 .897 1.00 1.00 1.00
Horse .871 .873 .873 .879 .879 .879 .972 .972 .972
Hypo .986 .988 .988 .988 .990 .990 .993 .993 .993
Iono .932 .940 .940 .937 .946 .946 .986 .986 .986
Iris .979 .983 .983 .977 .981 .981 1.00 1.00 1.00
Labor .988 .988 .988 .982 .984 .984 1.00 1.00 1.00
PID .887 .896 .896 .885 .894 .894 .941 .946 .946
Sick .983 .985 .985 .983 .984 .984 .987 .988 .988
Sonar .827 .843 .843 .812 .828 .826 1.00 1.00 1.00
Tae .704 .719 .720 .693 .702 .701 .953 .953 .953
Tictactoe .810 .810 .810 .804 .804 .804 .877 .877 .877
Vehicle .637 .654 .654 .628 .651 .652 .743 .760 .760
Wbc .973 .974 .974 .976 .977 .977 .996 .996 .996
Wine .961 .967 .968 .960 .974 .974 1.00 1.00 1.00
Zoo .923 .923 .923 .916 .916 .916 .990 .990 .990

 

From Table IV, it is obvious that the post-processing 
algorithm was able to find better splits and thereby 
increasing fidelity. As a matter of fact, when using only 
training data, the post-processing algorithm increased the 
fidelity on all datasets but the three “categorical only” 
mentioned above. This does not mean that the post-
processing algorithm always was able to modify the trees, on 
several datasets there were, in fact, no modifications on a 
large majority of the folds.  

When using oracle data only, the number of instances in 
the fitness set is quite small, so the fidelity of the starting 
tree is normally quite high. For five datasets (Hepati, Iris, 
Labor, Sonar and Wine) the fidelity is even a perfect 1.0 to 
start with. Because of this, it is not surprising that there are 
relatively few improvements found.  

When using all data, the starting tree has most often, but 
not always, a higher fidelity, compared to the tree extracted 
using training data only. Still, the post-processing managed 
to increase fidelity on all datasets but the three “categorical-
only” and Horse. Often, however, the increase is quite small, 
sometimes even the result of a single modification, on just 
one fold.  Overall, however, the picture is clearly that the 
suggested algorithm was capable of increasing fidelity.  

Naturally, fidelity is not vital per se, the important 
question is whether the modifications would also increase 
test set accuracies. Table V below shows test set accuracies. 
The results obtained by the neural network ensemble used to 
rule extract from are included for comparison.   

TABLE V 
TEST ACCURACIES 

Datasets Ensemble
Original All Oracle 

No Pre Post No Pre Post No Pre Post
Bcancer .729 .725 .725 .725 .714 .714 .714 .736 .736 .736 
Bld .721 .635 .665 .659 .641 .624 .626 .691 .697 .697 
Cleve .807 .770 .777 .777 .807 .810 .810 .810 .810 .810 
Cmc .551 .547 .565 .565 .551 .549 .551 .539 .540 .540 
Crx .859 .849 .854 .854 .848 .851 .851 .849 .849 .849 
German .749 .716 .720 .722 .726 .728 .728 .737 .735 .735 
Heart .793 .785 .789 .789 .785 .785 .785 .804 .804 .804 
Hepati .860 .807 .807 .807 .833 .840 .840 .860 .860 .860 
Horse .817 .842 .844 .844 .847 .847 .847 .806 .806 .806 
Hypo .983 .979 .981 .981 .980 .982 .982 .980 .980 .980 
Iono .934 .877 .889 .889 .914 .929 .926 .926 .926 .926 
Iris .967 .953 .953 .953 .947 .960 .960 .967 .967 .967 
Labor .940 .840 .840 .840 .920 .920 .920 .940 .940 .940 
PID .767 .746 .753 .754 .753 .755 .757 .750 .747 .747 
Sick .970 .971 .973 .973 .971 .970 .970 .967 .968 .968 
Sonar .865 .700 .740 .740 .730 .750 .745 .865 .865 .865 
Tae .567 .460 .480 .480 .480 .473 .473 .547 .547 .547 
Tictactoe .898 .736 .736 .736 .752 .752 .752 .781 .781 .781 
Vehicle .848 .582 .586 .587 .605 .618 .623 .664 .676 .676 
Wbc .964 .957 .958 .958 .959 .959 .959 .965 .965 .965 
Wine .965 .918 .918 .929 .929 .953 .953 .965 .965 .965 
Zoo .950 .880 .880 .880 .920 .920 .920 .940 .940 .940 
 

Table V shows that on a majority of datasets, the increase in 
fidelity also led to an increase in test set accuracy.  Again, it 
must be noted that these result do not mean that test set 
accuracies were always increased. As a matter of fact, on 
several folds, an increase in fidelity led to no change in 
accuracy. On some folds, the increase in fidelity even led to 
lower accuracy. When aggregating the results over all ten 
folds, however, the results are very promising for the 
suggested algorithm. To further analyze the result, the two 
post-processing algorithms were pair-wise compared to each 
other and No, one experiment at a time. Table VI - VIII 
below show these comparisons for the three experiments. 
The values tabulated are datasets won, lost and tied, for the 
row technique when compared to the column technique. 
Using 22 data sets, a standard sign-test (α=0.05) requires 16 
wins for statistical significance. When using a sign test, ties 
are split evenly between the two techniques. Statistically 
significant differences are shown using bold and underlined 
values. 

TABLE VI 
WINS, LOSSES AND TIES USING G-REX ORIGINAL 

 
No Pre Post 

W L T W L T W L T 
No - - - 0 15 7 0 16 6 
Pre 15 0 7 - - - 1 4 17 
Post 16 0 6 4 1 17 - - - 
 

First of all, it is interesting to note that neither post-
processing algorithm lose a single dataset against No. The 
sign test consequently shows that both algorithms are 
significantly more accurate than using no post-processing. 
The results also show that, on a large majority of the 
datasets, there is no difference between Pre and Post. 
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TABLE VII 
WINS, LOSSES AND TIES USING G-REX ALL 

 
No Pre Post 

W L T W L T W L T 
No - - - 4 11 7 3 11 8 
Pre 11 4 7 - - - 3 4 15 
Post 11 3 8 4 3 15 - - - 
 

Here, a sign test, reports no statistically significant 
differences. Still, it is clearly beneficial to use the post-
processing algorithm, even for G-REX all. As a matter of 
fact, if the three “categorical only” data sets were removed 
before the analysis, the use of either Pre or Post, would 
again be significantly more accurate than No. 

TABLE VIII 
WINS, LOSSES AND TIES USING G-REX ORACLE 

 
No Pre Post 

W L T W L T W L T 
No - - - 3 5 14 3 5 14 
Pre 5 3 14 - - - 0 0 22 
Post 5 3 14 0 0 22 - - - 
 

For G-REX oracle, the picture is quite different. Here, there 
is generally very little to gain by using the post-processing 
suggested. The reason is, of course, the very high fidelity 
obtained by the rule extraction to start with. Still, it could be 
noted that the post-processing was able to increase accuracy 
on five data sets. For two of these (Bld and Vehicle) the 
increase is not negligible; see Table V.  

V. CONCLUSIONS 

We have in this paper suggested a novel algorithm for post-
processing of GP trees. The technique iteratively, one node 
at a time, searches for possible modifications that would 
result in higher accuracy. More specifically, for each split, 
the algorithm evaluates every possible constant value and 
chooses the best. It should be noted that the algorithm can 
only increase accuracy (on training data), since 
modifications are only carried out when the result is a more 
accurate tree.  

In this study, we evaluated the algorithm using the rule 
extraction technique G-REX. Results show that when the 
rule extraction uses only training data, the post-processing 
increased accuracy significantly. When using both training 
and oracle data, it is still clearly advantageous to apply the 
post-processing. Even when starting from a tree extracted 
using oracle data only, the post-processing is sometimes 
capable of increasing accuracy. Overall, the very promising 
picture is that the post-processing more often than not 
increases accuracy, and only very rarely decreases it. 

VI. DISCUSSION AND FUTURE WORK 

In this study, we applied the novel technique to rule 
extraction, but it could, of course, just as well, be used on 
any GP classification tree. So, one obvious future study is to 
evaluate the suggested technique on GP classification. 
Another study is to investigate whether it would be 
beneficial to search for an entire new split, not just a 

constant value. In that study, it would be natural to also 
evaluate different criteria (like information gain) as 
alternatives to accuracy. This would, however, be very 
similar to standard decision tree algorithms. The challenge is 
to find the right mix between the locally effective greed in 
decision tree algorithms and the global optimization in GP.  

Finally, we have also performed some initial experiments, 
with promising results, where the algorithm suggested was 
instead used as a mutation operator during evolution. 
Potential benefits are higher accuracy or faster convergence.  
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