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Abstract. In knowledge representation by fuzzy rule based systems two reason-
ing mechanisms can be distinguished: conjunction-based and implication-based 
inference. Both approaches have complementary advantages and drawbacks de-
pending on the structure of the knowledge that should be represented. Implica-
tive rule bases are less sensitive to incompleteness of knowledge. However,  
implication-based inference has not been widely used. This disregard is proba-
bly due to the lack of suitable methods for the automated acquisition of implica-
tive fuzzy rules. In this paper a genetic programming based approach for the 
data-driven extraction of implicative fuzzy rules is presented. The proposed al-
gorithm has been applied to the acquisition of rule bases for the design of rein-
forced concrete structural members. Finally an outlook on the application of the 
presented approach within a machine learning environment for evolutionary de-
sign and optimization of complex structural systems is given.  

1   Introduction 

The preliminary structural design process is a knowledge intensive task. Knowledge 
based systems are suitable to support engineers within this process. These systems 
offer the possibility to represent knowledge in a transparent and comprehensible way. 
In order to handle the complexity, incompleteness and vagueness of experience 
knowledge, fuzzy reasoning mechanisms are of special interest [1]. 

In the following section the fundamentals of implicative rule bases as well as the 
differences between conjunctive-based and implicative-based inference are presented. 
In section 3 a new genetic programming based approach for the data-driven genera-
tion of implicative fuzzy rule bases is shown. The developed algorithm has been ap-
plied to the acquisition of rule bases for the design of reinforced concrete structural 
members. The results of these tests are demonstrated in section 4. An outlook on the 
application of the presented approach within a machine learning environment for 
evolutionary design and optimization of complex structural systems and concluding 
remarks is given in section 5. Conclusions and a short outlook are presented in the last 
section. 
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2   Implicative Fuzzy Rule Bases 

Two basic types of fuzzy rules can be distinguished [2]. A rule “If X is Ai, then Y is Bi” 
can be interpreted as a mapping of the domain U (X ∈ U) to the domain V (Y ∈ V). In 
this case each rule of a rule base encodes possible values for Y. This semantic is repre-
sented by using a conjunctive implication operator, e.g. the minimum or the product 
operator. As each conjunctive fuzzy rule defines a possible fuzzy point and a set of 
conjunctive fuzzy rules defines a fuzzy graph, rules have to be combined disjunctively. 
The aggregation of two (crisp) conjunctive rules is illustrated in figure 1a.  

Furthermore, the rule can be interpreted as a logic implication. In this case the rule 
excludes impossible values of V. Consequential the implication operator has to satisfy 
the equivalence of the implication Ai→Bi and the proposition ¬Ai∨Bi, e.g. the 
Kleene/Dienes or the Lukasiewicz operator. An implicative fuzzy rule base (FRB) 
represents a set of fuzzy constraints on the values of Y. Hence the rules have to be 
combined conjunctively. Figure 1b shows the aggregation of two implicative rules. 

 

Fig. 1. Aggregation of (a) conjunctive rules and (b) implicative rules 

The output fuzzy set of a conjunctive fuzzy rule base is the set of all possible val-
ues for Y given the situation X. By means of defuzzification a crisp value for Y can be 
derived. The output fuzzy set of an implicative fuzzy rule base represents an upper 
bound of possible values on V, according to the knowledge considered within the rule 
base. The determination of a crisp output value by means of defuzzification is not 
suitable in general. Often the incorporation of further knowledge is required. How-
ever, in combination with subsequent search mechanisms the elimination of impossi-
ble values can be very useful.  

Within the scope of knowledge based decision support different areas for the appli-
cation of the two types of rules bases can be stated. Depending on the structure of the 
knowledge to be represented the two reasoning mechanisms hold advantages and 
disadvantages. One advantage of conjunctive fuzzy rule bases is the possibility to 
directly obtain a crisp output value. To ensure the reliability a complete rule base and 
the consideration of all influence parameters is necessary. For the support of more 
complex decisions implicative rule bases are of advantage. In this case, not all influ-
ence parameters have to be considered in the rule base. On the one hand this leads to a 
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reduced specificity of output sets. On the other hand the size of the rule base is re-
duced significantly. Hence the interpretability is increased.  

3   Evolutionary Learning of Implicative Fuzzy Rules 

In recent years many approaches for the data-driven generation of conjunctive fuzzy 
rule bases have been proposed, e.g. neuro-fuzzy systems and genetic fuzzy systems 
[3]. In former works the authors have presented a genetic programming based algo-
rithm for the multi-objective optimization of fuzzy systems [4]. The optimization 
process is guided by the demands on the accuracy and the interpretability of fuzzy 
systems. Based on this approach the Rule Base Extraction and Maintenance (REM) 
algorithm has been developed. The REM algorithm serves for the generation and 
optimization of both, conjunctive and implicative FRBs. 

As pointed out in the previous section, the output fuzzy sets of both types of FRBs 
are interpreted in a different manner. Thus, the evaluation of the quality differs. In 
case of conjunctive FRBs a major measure of quality is the approximation error of the 
defuzzified outputs and the training data. Further measures have been proposed, e.g. 
the completeness of the rule base [5]. For the evaluation of implicative FRBs three 
measures are proposed: the specificity of the output fuzzy sets, the consistency of the 
output values of case examples with the corresponding output fuzzy sets and the con-
gruency of the input space region covered by the case base with the region covered by 
the rule base.   

Given a set of NCB case examples (case base), where each case is represented by a 
set of M input variables and one output variable. Assume an implicative fuzzy rule 
base, consisting of NR rules is to be evaluated.  

3.1   Specificity 

A major purpose of an implicative FRB is the elimination of impossible values of the 
output variable. A measure for this purpose is the mean specificity of the output fuzzy 
sets on the input vectors of the case base. The specificity is defined by 

( )( )CBN

SP i CB
i 1

F 1 y dy / dy / N
=

= − μ∑ ∫ ∫  (1) 

where ( )i yμ  is the membership function of the output fuzzy set on the ith case ex-

ample. The higher the specificity, the more values of the output variable are (partly) 
excluded and consequently the more valuable is the rule base in terms of finding a 
crisp output value.    

3.2   Consistency 

By increasing the specificity the rule base might get inconsistent with the case knowl-
edge. That means the output value of a case example is determined as an (highly) 
impossible value. The mean consistency of the rule base with the underlying case 
knowledge is derived by  
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( )
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where yi is the output value of the ith case example and ( )i iyμ is the corresponding 

degree of membership to the output fuzzy set on case i.  

3.3   Congruency 

An implicative FRB should only fire in those areas of the input domain that are cov-
ered by the knowledge contained in the case base. In order to determine the congru-
ency two parameters, the fuzzy coverage of the input domain U ( x U∈ ) by the case 

base ( )CB xμ  and the coverage by the rule base ( )RB xμ  are defined. The coverage of 

U  by the case base is derived by  

( ) ( )( )CB C,i CBx max x , i 1,2,..., Nμ = μ =  (3) 

with 
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=

μ = ∏  (4) 

and with xm,i is the value of the mth input variable of case i and mσ is the predefined 

fuzziness of input variable m. By means of this fuzziness the degree of coverage in 
the neighbourhood of a case can be adapted.  

The coverage of U  by the rule base is derived by  

( ) ( )( )RB R, j Rx max x , j 1,2,..., Nμ = μ =  (5) 

where ( )R, j xμ is the degree of confidence of rule j. 

The congruency measure is defined by 

( ) ( )( ) ( )CG RB CB RBF 1 max 0, x x dx / x dx= − μ − μ μ∫ ∫  (6) 

The overall accuracy fitness FAC of the rule base is composed of the presented 
measures: 

( ) ( )AC SP SP CS CS CG CG SP CS CGF a F a F a F / a a a= ⋅ + ⋅ + ⋅ + +  (7) 

By means of the weight parameters aSP (specificity), aCS (consistency) and aCG (con-
gruency) the optimization process can be adapted in order to increase a preferred 
quality.  

Besides this objective the REM algorithm takes into account the demands on the 
interpretability of the rule base represented by the number of rules [4]. The overall 
fitness of an individual is determined by the pareto-rank based approach presented by 
Fonseca and Fleming [6].   
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4   Evaluation 

The developed approach was evaluated by applying it to a real world data set for the 
determination of the beam height of a beam slab. The input variables are the span 
length of the beam lb, the span length of the slab ls and the life load on the slab q. The 
output variable is the beam height hb. 

To demonstrate the advantages of implicative FRBs the goal was to find a rule base 
considering only the major influence parameters for this design decision. In order to 
simulate knowledge incompleteness only case examples covering parts of the input 
domain were chosen. The fuzzy coverage by the case base is shown in figure 2a. 

The REM algorithm was run for 300 generations; the population size was set to 
200 individuals. The maximum number of rules was set to 8 rules. The weight pa-
rameters of the accuracy fitness components were set to aSP = aCS = aCG = 1.0.  

The pareto-optimal rule base consisting of 6 rules is presented in further detail: 
Figure 2b shows the coverage of the input domain by this rule base. It is obvious that 
any rule fires significantly outside the fuzzy support of the case base, confirmed by 
the value of the congruency measure FCG = 0.978.     

 

Fig. 2. Coverage of the input domain (a) by the case base and (b) by the rule base  

Figure 3 shows the output fuzzy sets for three situations: S1(lb = 5 m, ls = 5m),  
S2(lb = 10 m, ls = 7 m) and S3(lb = 8 m, ls = 6 m). For S1 a highly specific fuzzy set is 
obtained (fig. 3a). This set is in accordance with the case examples C1(lb = 5 m, ls = 5 
m, q = 3 kN/m², hb = 35 cm) and C2(lb = 5 m, ls = 5 m, q = 9 kN/m², hb = 42 cm). The 
fuzzy set obtained for S2 is less specific (fig. 3b), representing well the larger range of 
the optimal beam height (hb = 65 ~ 82 cm) for typical values of the life load (q =  
3 ~ 9 kN/m²).  

For S3 almost any value of hb is ruled out (fig. 3c). There was no case highly simi-
lar to this situation in the case base. Consequently almost any information can be 
provided and a nearly unrestricted search for a suitable output value has to be per-
formed. Assumed a solution for this situation was found, the rule base can be ex-
tended based on this newly discovered knowledge.     

The mean specificity for all case examples is FSP = 0.586. The generated rule base 
is highly consistent with the underlying case base (FCS = 0.956). 
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Fig. 3. Output fuzzy sets for (a) lb/ls = 5m/5m, (b) lb/ls = 10m/7m and (c) lb/ls = 8m/6m 

5   A Machine Learning Environment for Structural Design 

The developed REM algorithm has been implemented into a machine learning envi-
ronment for the conceptual design of concrete structures. Its core is a hybrid knowl-
edge based evolutionary design system for the optimization of high-rise concrete 
structures. A prototype of this system has been presented in [7]. It was developed for 
the discrete optimization of the structural topology as well as the continuous optimi-
zation of single structural members. The structure is represented by a 3D product 
model based building information model. A finite element system for static and dy-
namic analyses of design candidates is included.  

5.1   Knowledge Augmented Design Optimization 

The conceptual design of high-rise structures includes major decisions on structural 
systems, e.g. the lateral load-bearing system, and subsidiary decisions on the dimension 
of structural members. In order to reduce the problem size two methods for the incorpo-
ration of design knowledge within the optimization process have been implemented.  

Conjunctive fuzzy rule bases are used for direct determination of design variables. 
Thereby the number of optimization variables is decreased. Since the generation of 
reliable conjunctive fuzzy rule bases requires complete knowledge this method is 
restricted to secondary design decisions and ordinary conditions.    

 Highly complex design decisions are supported by implicative fuzzy rule bases. 
The search space of optimization variables is restricted according to the output fuzzy 
sets. Provided that knowledge is available for a given situation, the search space can 
be reduced significantly.   

5.2   Machine Learning of Design Knowledge 

In the scope of knowledge based systems the acquisition of knowledge by human 
experts is laborious and time-consuming. To overcome this problem the REM algo-
rithm for the automated acquisition of design knowledge has been implemented into 
the presented design system. Figure 4 shows the architecture of the proposed machine 
learning environment.  

The project data base contains the building information models of completed de-
signs. When a new rule base is to be generated, the input and output variables have to 
be defined. Based on the project data base a set of case examples is retrieved. In the 
next step a fuzzy rule base is generated by the REM algorithm. The manual knowl-
edge acquisition component serves human experts for checking and manipulation of  
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Fig. 4. Architecture of a machine learning environment for structural design  

the knowledge base. Learned rule bases are incorporated within further optimization 
tasks as described in section 5.1. 

Every time a project is completed, the project data base and, subsequently, the case 
base is updated. If necessary, the rule base is revised or extended.  

6   Conclusions 

In this paper a genetic programming based approach for the data-driven generation of 
implicative fuzzy rules was presented. Three measures for the evaluation of implica-
tive fuzzy rule bases were proposed. The evaluation of the developed REM algorithm 
on a real world problem has shown that the generated fuzzy rule bases fulfill the de-
mands on the specificity and the consistency with the knowledge of the underlying 
case base.  

The application of REM within a machine learning environment for evolutionary 
design and optimization of complex structural systems was presented. Currently the 
authors investigate the impact of the proposed approach on the exploration of innova-
tive design solutions. 
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