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Abstract — The problem of generating efficient association 

rules can seen as search problem since many different sets of 
rules are possible from a given set of instances. As the 
application of evolutionary computation in searching is well 
studied, it is possible to utilize evolutionary computation in 
mining for efficient association rules. In this paper, a program 
known as Self-adjusting Associative Rules Generator (SARG) 
is described. SARG is a data mining program which can 
generate associative rules for classification. It is an 
improvement of the data mining program called Genetic 
Programming for Inductive learning (GPIL). Both 
utilize evolutionary computation in inductive learning. 
The shortcoming of GPIL lies in the operations 
crossover and selection. These two operations were 
inflexible and not able to adjust themselves in order to 
select suitable methods for the task at hand. SARG 
introduces new method of crossover known as 
MaxToMin crossover together with a self-adjusting 
reproduction. It has been tested on several benchmark 
data sets available in the public domain. Comparison 
between GPIL and SARG revealed that SARG achieved 
better performance and was able to classify these data sets 
with higher accuracy. The paper also discusses relevant 
aspects of SARG and suggests directions for future work. 

I.  INTRODUCTION 
Applications of artificial intelligence in data mining [1] 

have received much attention in the past few years. A major 
benefit of data mining includes the ability to cluster or 
generate patterns from large amount of data when 
conventional statistical methods are proven ineffective. One 
of the most popular methods to cluster the data is by means 
of generating association rules [2]. Inductive learning is one 
of many techniques in this sub-field where patterns can be 
learned or induced from a collection of samples [3]. The 
popular method in evolutionary computation employed in 
inductive learning has been Genetic Algorithms (GAs). 
Another well known technique in evolutionary computation, 

Genetic Programming (GP), have also been introduced to 
this area recently. 

This paper begins with a brief introduction to how 
evolutionary computation and inductive learning can be 
applied to mining instances for associative rules. This is 
followed by a review of related work. Genetic Programming 
for Inductive learning (GPIL) is first explained, as it was the 
basis for SARG. Improvement to GPIL in SARG is 
described in the following section. Data sets used and the 
results of their classification using SARG are then shown. 
Finally, the paper is concluded and future work is 
suggested.  

II.  ASSOCIATIVE RULES AND INDUCTIVE LEARNING 
The knowledge discovery method association rules was 

first introduced in [2] and was commonly known as the 
market-basket problem. Association rules have an 
application in clustering and, in particular, classification. 
From this perspective, the problem of generating minimum 
and most efficient association rules can also be seen as a 
search problem as many possible set of rules are possible. 

Evolutionary computation can be considered as a 
searching method [4], it is applicable and appropriate where 
the search space is very large and exhaustive search is not 
feasible. Inductive learning [5] is a well known machine 
learning technique where decision trees can be built from a 
given data set. These trees can be converted into a set of IF-
THEN rules, and hence inductive learning may be 
employed to generate associative rules. Using inductive 
learning algorithm in classification has an advantage over 
technique such as neural networks since decision trees or 
rules are understandable to human where as numerical 
weight values in neural networks cannot easily be 
deciphered.  



III.  RELATED WORK 
There have been numerous inductive learning tools, such 

well known tools include C4.5 [6] and CART [7] where 
decision trees are produced. Comparative study between 
decision tree induction and genetic algorithms can be found 
in [8]. The first two applications of evolutionary 
computation to inductive learning were Genetic Algorithm 
Batch concept Learner (GABL) [9] and Genetic Algorithm 
Batch-Incremental concept Learner (GABIL) [10]. These 
two algorithms represent rules by chromosomes of binary 
strings where length of chromosomes were kept constant. 

The application of evolutionary computation in the 
production of association rules is plentiful. Two examples 
of recent work include [11] which studied constrained-
syntax genetic programming for classification rules. 
Another is in bioinformatics [12] where cooperative genetic 
algorithms are executed in parallel to introduce diversity to 
the solution. There have been several works which utilize 
genetic programming with inductive learning for various 
applications [13]. Extensive review of related works can be 
found in [14]. 

IV.  GENETIC PROGRAMMING FOR INDUCTIVE 
LEARNING (GPIL) 

The program which lies the foundation for this work is 
the program Genetic Programming for Inductive Learning 
(GPIL) [15]. GPIL was motivated by the early program 
known as Genetic Algorithm for Inductive Learning (GAIL) 
[16], its application is in classification where chromosomes 
represent classification rules. GAIL had been tested on 
benchmark data sets such as the IRIS flower classification 
[17] and the Cleveland heart data [18]. GAIL was furthered 
improved into SynGAIL [19], which achieved higher 
accuracy than GAIL, by adopting synergism of different 
GAIL units. The shortcoming of both GAIL and SynGail 
are their use of fixed length chromosomes by binary bits. 
Although they may be overcome, to some degrees, by the 
use of don’t care bits, it makes representation of the rules 
more tedious and increases computation complexity. This 
shortcoming is more effectively overcome in GPIL by 
representation of chromosomes by a tree as used in genetic 
programming. GPIL comprises 3 main components, data 
preprocessing, evolutionary computation and final rule 
builder, as shown in Figure 1. 

A. Data preprocessing 
The data set must be split into 2 sets, training set and test 

set. This component preprocesses the training set for the 
input to the evolutionary computation. 

B. Evolutionary Computation 
This component is responsible for generating rules. It 

comprises 2 processes as namely, Regrouping and Genetic 

Programming (GP). Referring to Figure 1, the number of 
Regrouping, GP and Rules sorting sequences are equal to 
the number of categories in the classification. Each 
sequence is responsible for generating rules for that 

 

 
Fig.1.  Three main components in GPIL 

 
category. The main process in each GP Unit is described in 
Figure 2. 

 
 

Fig. 2.  Evolutionary Computation in GPIL 
Values of X1 to X4 were percentile allowed for each 

genetic operation (i.e. X1 + X4 + X3 + X4 = 100). These 



values can be specified by user. The Final Rule Builder will 
be discussed in Section V. 

V.  SELF-ADJUSTING ASSOCIATIVE RULE GENERATOR 
(SARG) 

Although GPIL is a considerable improvement to GAIL 
and SynGAIL, numerous experiments and careful analysis 
had revealed some drawbacks and limitations. They can be 
summarized as follows : 

Limited crossover method : As size of a tree which 
represents a chromosome may vary. The position (i.e. node) 
in a tree, which crossover takes place, is selected randomly. 
Therefore, the success of reproducing new chromosomes 
with higher fitness values is left to chance too much. 

Rigid selection method : The selection method in GPIL  
is rank selection. While this is sufficient in ordinary cases, 
it is unproductive in situations, similar to plateau in hill 
climbing search [20], where progress cannot be made after 
number of generations. Hence, better rules cannot be 
generated.  

Self-adjusting Associative Rules Generator (SARG) is 
developed to overcome these drawbacks and limitations. 
During the inductive learning, SARG  has the ability to 
adjust its evolutionary computation to suit the nature of the 
data set (i.e. the training set) at hand. This ability is made 
possible by incorporation of two methods, MaxToMin 
Crossover and Self-adjusting Evolutionary Computation. 

A.  MaxToMin Crossover 
Adopting different crossover methods in evolutionary 

computation systems is not uncommon and have been 
incorporated into systems where binary bits were used to 
represent populations. Recent example can be found in [21] 
where individuals are categorized by their fitness value into 
three categories, suitable crossover rate is then assigned to 
each category accordingly. 

In GPIL, each chromosome (i.e. tree) is evaluated for its 
fitness value, this value represents the fitness of the whole 
tree. Hence, fitness is assigned to the composite structure 
rather than at each component (i.e. node) of the tree. If 
fitness value is assigned at component level, then it is 
possible to analyze at the strength and the weakness of each 
branch in a tree. Therefore, less favourable branches may be 
pruned off and more favourable ones can be retained rather 
than accepting or rejecting a whole tree. 

In MaxToMin crossover, it is believed that a new tree, 
which is the result of pruning off the least favourable 
branch and replacing it with the most favourable branch, 
ought to have a better chance of being fitter than its 
predecessors. In SARG, a possible association rule is 
represented by a tree. A tree comprises interior and terminal 
nodes, terminal nodes are possible values for attributes and 
interior nodes are boolean opeartors. The fitness value of a 
tree is a measure which assesses how accurate it can 

classify samples in the training set. Fitness value is also 
determined at each node too. Since each terminal node 
represent a value of an attribute, fitness value is assigned 
proportionally to frequency of its appearance in the training 
set. Similarly, fitness value is assigned to each interior node 
proportionally to number of samples in which that condition 
is satisfied. For example, assuming that a training set 
contains 4 samples; Sample 1: ACFJ, Sample 2: BCGK, 
Sample 3: ADGK and Sample 4: AENK. Figures 3(a) and 
3(b) depict the MaxToMin crossover. 

 
Fig. 3(a).  Two arbitrary trees before the MaxToMin crossover 

 

 
Fig. 3(b).  Result of the MaxToMin crossover 

B.  Self-adjusting Evolutionary Computation  
An ability to adapt itself to suit a unique task at hand is 

advantageous to any evolutionary computation system. 
Several approaches have been suggested in literature [13], 
[14]. Recent approach includes a system where population 
is divided into hierarchy of two classes, elite population and 
plain population [22]. It was found to be superior than a 
system with single-type population. 

One of the obstacles to progress in evolutionary 
computation is plateau where improvement cannot be made. 
In order to rectify this, modification to the current routine or 
operations is necessary. However, it must be borne in mind 
that this is under an assumption that an improvement is 
possible, since improvement may not at all be possible in a 
problem which is inherently too hard. Genetic programming 
(GP) units in SARG are self-adjusting. Three different 
modes are made possible according to the progress in the 
GP units. These three modes are shown in Table 1. Mode 1 
is the original techniques adopted in GPIL. They are 
selected by default initially. If a GP unit progresses well 
(i.e. better and better association rules are being generated), 
Mode 1 is satisfactory and hence no adjustment is required. 

 
TABLE 1.   

THREE MODES IN SARG 
 Mode 1 Mode 2 Mode 3 

Crossover Random Random MaxToMin 
Selection Rank Random Rank 



 
Mode 1 is the original techniques adopted in GPIL. They 

are selected by default initially. If a GP unit progresses well 
(i.e. better and better association rules are being generated), 
Mode 1 is satisfactory and hence no adjustment is required. 
The progress in a GP unit is monitored by means of slack 
value. This value is the number of generations in which a 
particular mode of operations is allowed to continue without 
producing better solution (i.e. association rules with higher 
fitness value than previously encountered). Once a plateau 
is reached for more than a specified slack value, SARG 
switches the GP operations to a different mode. Mode 2 
alone may be sufficient to move away from the plateau 
situation encountered in Mode 1. If Mode 2 fails or a 
similar but new situation in encountered, Mode 3 can then 
be reinforced. Experiments have shown that Mode 1 is 
suitable as default initially and oscillation between Mode 2 
and Mode 3 achieves the best performance. Figure 4 depicts 
the self-adjusting evolutionary computation in SARG. 

A. Final Rule Builder 
Referring to Figure 1, The Final Rule Builder in SARG is 

similar to GPIL. The association rule for each category is 
nested in the final classification rule in a nested IF..THEN.. 
ELSE format. Association rules are nested according to the 
fitness value rather than category number. This is because 
rules with higher fitness values are likely to classify 
samples more accurately than those with lower one. The 
format for the final rule for n categories is as follows: 

IF [condition(s) for the rule with highest fitness value] 
THEN (class = category of the rule with highest fitness value) 
ELSE IF [condition(s) for the rule with 2nd highest fitness 
                  value] 

 THEN (class = category of the rule with 2nd highest 
fitness value) 

 ………. 
 ELSE IF [condition(s) for the rule with lowest fitness 
                  value] 

  THEN (class = category of the rule with lowest 
  fitness value) 

  ELSE (sample is unclassified) 

B. Testing 
Once the final classification rule has been constructed, it 

is tested on the test data set to assess the accuracy. The 
testing process can be described in Figure 5. Classification 
of a new sample follows this process also. 

 
Fig. 4.  Self-adjusting Evolutionary Computation in SARG 

 

 
 

Fig. 5.  Testing and Classification 



VI.  CLASSIFICATION USING SARG 
SARG has been tested with benchmark data sets, These 

sets were the same as used in GPIL for valid comparison.  

A.  Datasets used 
Two benchmark data sets which are available in the 

public domain were selected. These are the IRIS flower 
classification [17] and the Cleveland heart data [18]. The 
first is 3-category classification and known to be relatively 
easy. It is used during the initial verification of SARG. The 
Cleveland heart data is relatively harder and is of 2-category 
classification. Another data set selected is the student data 
at School of Information technology, KMUTT, Thailand. 
This is the hardest among the three and is of 3-category 
classification. Their details are shown in Table 2. 

 

TABLE 2.   
DATA SETS USED 

 

 IRIS data Heart Data Student data 
No. of category 3 2 3 
No. of attributes 
in a sample 4 13 8 

 

Total no. of 
samples 150 297 276 

No. of samples in 
Training set 90 149 200 

No. of samples in 
Test set 60 148 76 

B.  Classification Results 
After numerous experiments for the best performance, 

parametric values for SARG on classification of the three 
data sets are as summarized in Table 3. 

 

TABLE 3.   
SUITABLE PARAMETRIC VALUES 

 

 IRIS data Heart Data Student data 
Population size 40 40 50 
No. of generations 5000 50,000 5000 

 

Duplication rate 25% 25% 25% 
Crossover rate 30% 30% 25% 
Reproduction rate 25% 25% 25% 
Mutation rate 20% 20% 25% 

 

Slack value 30 150 50 
 

Among the above parameters, crossover and reproduction 
rates are most sensitive. 

Performance of SARG is superior to GPIL in terms of 
both classification accuracy as well as computation 
efficiency. It yielded higher classification accuracy and was 
able to find better solutions in shorter time. Comparison in 
terms of classification accuracy between GPIL and SARG 
on the three data sets can be summarized in Table 4. 

 

TABLE 4.  
SARG V.S. GPIL : CLASSIFICATION PERFORMANCE 

(ACCURACY) 
 

 IRIS data Heart Data Student data 
GPIL 96% 83.11 % 53.94% 
SARG 100% 87.83 % 55.26% 

VII.  DISCUSSION 
Experiments on the data sets revealed some aspects 

which must be considered in utilizing evolutionary 
computation in classification and inductive learning as 
follows : 

Sufficient number of training samples : Enough samples is 
crucial to the learning process in GP units. Insufficient number of 
samples will not allow the learning process to discover useful 
patterns and regularity in the training set. It is better to split the 
original data set to allow considerably more number in the training 
set than in the test set. 

Similar number of samples in each category : There 
ought to be similar number of samples in each category in 
both training and test sets. A training set which is 
dominated by particular category/categories is detrimental 
to the learning process. It can be difficult for a GP Unit, 
which is responsible for category with too few samples, to 
generate rules with high fitness value. This is because a rule 
is likely to classify other categories more accurately than 
the intended one due to higher numbers of samples present. 
In effect, GP unit is likely to learn what is not rather than 
what is. 

Fitness value in each category : Final Rule Builder in 
Figure 1 arranges the nested IF.. THEN ..ELSE according to 
fitness value instead of category number to achieve 
optimum performance. This presumes that a rule with 
reasonably high fitness value is attained for each category. 
If GP units can only obtain rules with low fitness values, 
this indicates that the classification may be inherently too 
hard. 

Suitable fitness function : While the importance of this is 
commonly understood in evolutionary computation, the 
same can be said about SARG and should not be 
overlooked. This may likely be application dependent. 

Suitable slack value : Performance, especially in terms of 
computation efficiency, of SARG depends on setting 
appropriate slack value. This study, so far, indicated that 
optimum slack value may also depend on the maximum size 
of tree (i.e. number of nodes) allowed as well as number of 
attributes under consideration. 

VIII.  CONCLUSION AND FUTURE WORK 
While there have been several applications of 

evolutionary computation in inductive learning, the work 
described in this paper is yet another attempt to apply 
Evolutionary Computation in inductive learning for 
classification. Ability to adjust the evolutionary 



computation to suit the task at hand is advantageous and can 
rectify lack of progress similar to those in plateau situations. 
This work presents a MaxToMin crossover for genetic 
programming and Self-adjusting selection. MaxToMin 
crossover may improve the chance of producing better 
chromosomes while Self-adjusting selection provides an 
alternative path to reproducing new chromosomes in 
situations where no progress is possible after successive 
number of generations. 

Future work can be carried out in the following areas: 
Generic fitness function : As fitness function is critical to 

the rules generation in GP units. While a routine to produce 
a tailor made fitness function for every data set may not be 
possible, a generic fitness function may be possible. A 
routine can then be implemented to determine optimal 
parametric values for the generic fitness function.  

Methods used for Final Rule Builder : The nested IF.. 
THEN.. ELSE for the final rule is ordered according to 
fitness value at present. Further investigation can be done 
on ordering the final rule according to other properties. 
Candidates for this are number of conditions in the rules 
and number of samples in each category. 

Optimal slack value determination : A suitable slack 
value is likely to depend on the nature of the data set. The 
study so far has indicated that two factors, maximum tree 
size (i.e. no. of maximum nodes) allowed and number of 
attributes in a sample, have an influence on the performance 
of each GP unit. These two factors are strong candidates 
which merit further analysis. 
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