

1-4244-0166-6/06/$20.00 ©2006 IEEE.

Self-adjusting Associative Rules Generator for
Classification : An Evolutionary Computation

Approach

K. Lavangnananda
School of Information Technology

King Mongkut’s University of Technology Thonburi (KMUTT),
126 Pra-cha-u-tid Road, Bangmod, Bangkok 10140, Thailand.

E-mail: kitt@sit.kmutt.ac.th

Abstract — The problem of generating efficient association

rules can seen as search problem since many different sets of
rules are possible from a given set of instances. As the
application of evolutionary computation in searching is well
studied, it is possible to utilize evolutionary computation in
mining for efficient association rules. In this paper, a program
known as Self-adjusting Associative Rules Generator (SARG)
is described. SARG is a data mining program which can
generate associative rules for classification. It is an
improvement of the data mining program called Genetic
Programming for Inductive learning (GPIL). Both
utilize evolutionary computation in inductive learning.
The shortcoming of GPIL lies in the operations
crossover and selection. These two operations were
inflexible and not able to adjust themselves in order to
select suitable methods for the task at hand. SARG
introduces new method of crossover known as
MaxToMin crossover together with a self-adjusting
reproduction. It has been tested on several benchmark
data sets available in the public domain. Comparison
between GPIL and SARG revealed that SARG achieved
better performance and was able to classify these data sets
with higher accuracy. The paper also discusses relevant
aspects of SARG and suggests directions for future work.

I. INTRODUCTION
Applications of artificial intelligence in data mining [1]

have received much attention in the past few years. A major
benefit of data mining includes the ability to cluster or
generate patterns from large amount of data when
conventional statistical methods are proven ineffective. One
of the most popular methods to cluster the data is by means
of generating association rules [2]. Inductive learning is one
of many techniques in this sub-field where patterns can be
learned or induced from a collection of samples [3]. The
popular method in evolutionary computation employed in
inductive learning has been Genetic Algorithms (GAs).
Another well known technique in evolutionary computation,

Genetic Programming (GP), have also been introduced to
this area recently.

This paper begins with a brief introduction to how
evolutionary computation and inductive learning can be
applied to mining instances for associative rules. This is
followed by a review of related work. Genetic Programming
for Inductive learning (GPIL) is first explained, as it was the
basis for SARG. Improvement to GPIL in SARG is
described in the following section. Data sets used and the
results of their classification using SARG are then shown.
Finally, the paper is concluded and future work is
suggested.

II. ASSOCIATIVE RULES AND INDUCTIVE LEARNING
The knowledge discovery method association rules was

first introduced in [2] and was commonly known as the
market-basket problem. Association rules have an
application in clustering and, in particular, classification.
From this perspective, the problem of generating minimum
and most efficient association rules can also be seen as a
search problem as many possible set of rules are possible.

Evolutionary computation can be considered as a
searching method [4], it is applicable and appropriate where
the search space is very large and exhaustive search is not
feasible. Inductive learning [5] is a well known machine
learning technique where decision trees can be built from a
given data set. These trees can be converted into a set of IF-
THEN rules, and hence inductive learning may be
employed to generate associative rules. Using inductive
learning algorithm in classification has an advantage over
technique such as neural networks since decision trees or
rules are understandable to human where as numerical
weight values in neural networks cannot easily be
deciphered.

III. RELATED WORK
There have been numerous inductive learning tools, such

well known tools include C4.5 [6] and CART [7] where
decision trees are produced. Comparative study between
decision tree induction and genetic algorithms can be found
in [8]. The first two applications of evolutionary
computation to inductive learning were Genetic Algorithm
Batch concept Learner (GABL) [9] and Genetic Algorithm
Batch-Incremental concept Learner (GABIL) [10]. These
two algorithms represent rules by chromosomes of binary
strings where length of chromosomes were kept constant.

The application of evolutionary computation in the
production of association rules is plentiful. Two examples
of recent work include [11] which studied constrained-
syntax genetic programming for classification rules.
Another is in bioinformatics [12] where cooperative genetic
algorithms are executed in parallel to introduce diversity to
the solution. There have been several works which utilize
genetic programming with inductive learning for various
applications [13]. Extensive review of related works can be
found in [14].

IV. GENETIC PROGRAMMING FOR INDUCTIVE
LEARNING (GPIL)

The program which lies the foundation for this work is
the program Genetic Programming for Inductive Learning
(GPIL) [15]. GPIL was motivated by the early program
known as Genetic Algorithm for Inductive Learning (GAIL)
[16], its application is in classification where chromosomes
represent classification rules. GAIL had been tested on
benchmark data sets such as the IRIS flower classification
[17] and the Cleveland heart data [18]. GAIL was furthered
improved into SynGAIL [19], which achieved higher
accuracy than GAIL, by adopting synergism of different
GAIL units. The shortcoming of both GAIL and SynGail
are their use of fixed length chromosomes by binary bits.
Although they may be overcome, to some degrees, by the
use of don’t care bits, it makes representation of the rules
more tedious and increases computation complexity. This
shortcoming is more effectively overcome in GPIL by
representation of chromosomes by a tree as used in genetic
programming. GPIL comprises 3 main components, data
preprocessing, evolutionary computation and final rule
builder, as shown in Figure 1.

A. Data preprocessing
The data set must be split into 2 sets, training set and test

set. This component preprocesses the training set for the
input to the evolutionary computation.

B. Evolutionary Computation
This component is responsible for generating rules. It

comprises 2 processes as namely, Regrouping and Genetic

Programming (GP). Referring to Figure 1, the number of
Regrouping, GP and Rules sorting sequences are equal to
the number of categories in the classification. Each
sequence is responsible for generating rules for that

Fig.1. Three main components in GPIL

category. The main process in each GP Unit is described in
Figure 2.

Fig. 2. Evolutionary Computation in GPIL
Values of X1 to X4 were percentile allowed for each

genetic operation (i.e. X1 + X4 + X3 + X4 = 100). These

values can be specified by user. The Final Rule Builder will
be discussed in Section V.

V. SELF-ADJUSTING ASSOCIATIVE RULE GENERATOR
(SARG)

Although GPIL is a considerable improvement to GAIL
and SynGAIL, numerous experiments and careful analysis
had revealed some drawbacks and limitations. They can be
summarized as follows :

Limited crossover method : As size of a tree which
represents a chromosome may vary. The position (i.e. node)
in a tree, which crossover takes place, is selected randomly.
Therefore, the success of reproducing new chromosomes
with higher fitness values is left to chance too much.

Rigid selection method : The selection method in GPIL
is rank selection. While this is sufficient in ordinary cases,
it is unproductive in situations, similar to plateau in hill
climbing search [20], where progress cannot be made after
number of generations. Hence, better rules cannot be
generated.

Self-adjusting Associative Rules Generator (SARG) is
developed to overcome these drawbacks and limitations.
During the inductive learning, SARG has the ability to
adjust its evolutionary computation to suit the nature of the
data set (i.e. the training set) at hand. This ability is made
possible by incorporation of two methods, MaxToMin
Crossover and Self-adjusting Evolutionary Computation.

A. MaxToMin Crossover
Adopting different crossover methods in evolutionary

computation systems is not uncommon and have been
incorporated into systems where binary bits were used to
represent populations. Recent example can be found in [21]
where individuals are categorized by their fitness value into
three categories, suitable crossover rate is then assigned to
each category accordingly.

In GPIL, each chromosome (i.e. tree) is evaluated for its
fitness value, this value represents the fitness of the whole
tree. Hence, fitness is assigned to the composite structure
rather than at each component (i.e. node) of the tree. If
fitness value is assigned at component level, then it is
possible to analyze at the strength and the weakness of each
branch in a tree. Therefore, less favourable branches may be
pruned off and more favourable ones can be retained rather
than accepting or rejecting a whole tree.

In MaxToMin crossover, it is believed that a new tree,
which is the result of pruning off the least favourable
branch and replacing it with the most favourable branch,
ought to have a better chance of being fitter than its
predecessors. In SARG, a possible association rule is
represented by a tree. A tree comprises interior and terminal
nodes, terminal nodes are possible values for attributes and
interior nodes are boolean opeartors. The fitness value of a
tree is a measure which assesses how accurate it can

classify samples in the training set. Fitness value is also
determined at each node too. Since each terminal node
represent a value of an attribute, fitness value is assigned
proportionally to frequency of its appearance in the training
set. Similarly, fitness value is assigned to each interior node
proportionally to number of samples in which that condition
is satisfied. For example, assuming that a training set
contains 4 samples; Sample 1: ACFJ, Sample 2: BCGK,
Sample 3: ADGK and Sample 4: AENK. Figures 3(a) and
3(b) depict the MaxToMin crossover.

Fig. 3(a). Two arbitrary trees before the MaxToMin crossover

Fig. 3(b). Result of the MaxToMin crossover

B. Self-adjusting Evolutionary Computation
An ability to adapt itself to suit a unique task at hand is

advantageous to any evolutionary computation system.
Several approaches have been suggested in literature [13],
[14]. Recent approach includes a system where population
is divided into hierarchy of two classes, elite population and
plain population [22]. It was found to be superior than a
system with single-type population.

One of the obstacles to progress in evolutionary
computation is plateau where improvement cannot be made.
In order to rectify this, modification to the current routine or
operations is necessary. However, it must be borne in mind
that this is under an assumption that an improvement is
possible, since improvement may not at all be possible in a
problem which is inherently too hard. Genetic programming
(GP) units in SARG are self-adjusting. Three different
modes are made possible according to the progress in the
GP units. These three modes are shown in Table 1. Mode 1
is the original techniques adopted in GPIL. They are
selected by default initially. If a GP unit progresses well
(i.e. better and better association rules are being generated),
Mode 1 is satisfactory and hence no adjustment is required.

TABLE 1.

THREE MODES IN SARG
 Mode 1 Mode 2 Mode 3

Crossover Random Random MaxToMin
Selection Rank Random Rank

Mode 1 is the original techniques adopted in GPIL. They

are selected by default initially. If a GP unit progresses well
(i.e. better and better association rules are being generated),
Mode 1 is satisfactory and hence no adjustment is required.
The progress in a GP unit is monitored by means of slack
value. This value is the number of generations in which a
particular mode of operations is allowed to continue without
producing better solution (i.e. association rules with higher
fitness value than previously encountered). Once a plateau
is reached for more than a specified slack value, SARG
switches the GP operations to a different mode. Mode 2
alone may be sufficient to move away from the plateau
situation encountered in Mode 1. If Mode 2 fails or a
similar but new situation in encountered, Mode 3 can then
be reinforced. Experiments have shown that Mode 1 is
suitable as default initially and oscillation between Mode 2
and Mode 3 achieves the best performance. Figure 4 depicts
the self-adjusting evolutionary computation in SARG.

A. Final Rule Builder
Referring to Figure 1, The Final Rule Builder in SARG is

similar to GPIL. The association rule for each category is
nested in the final classification rule in a nested IF..THEN..
ELSE format. Association rules are nested according to the
fitness value rather than category number. This is because
rules with higher fitness values are likely to classify
samples more accurately than those with lower one. The
format for the final rule for n categories is as follows:

IF [condition(s) for the rule with highest fitness value]
THEN (class = category of the rule with highest fitness value)
ELSE IF [condition(s) for the rule with 2nd highest fitness
 value]

 THEN (class = category of the rule with 2nd highest
fitness value)

 ……….
 ELSE IF [condition(s) for the rule with lowest fitness
 value]

 THEN (class = category of the rule with lowest
 fitness value)

 ELSE (sample is unclassified)

B. Testing
Once the final classification rule has been constructed, it

is tested on the test data set to assess the accuracy. The
testing process can be described in Figure 5. Classification
of a new sample follows this process also.

Fig. 4. Self-adjusting Evolutionary Computation in SARG

Fig. 5. Testing and Classification

VI. CLASSIFICATION USING SARG
SARG has been tested with benchmark data sets, These

sets were the same as used in GPIL for valid comparison.

A. Datasets used
Two benchmark data sets which are available in the

public domain were selected. These are the IRIS flower
classification [17] and the Cleveland heart data [18]. The
first is 3-category classification and known to be relatively
easy. It is used during the initial verification of SARG. The
Cleveland heart data is relatively harder and is of 2-category
classification. Another data set selected is the student data
at School of Information technology, KMUTT, Thailand.
This is the hardest among the three and is of 3-category
classification. Their details are shown in Table 2.

TABLE 2.
DATA SETS USED

 IRIS data Heart Data Student data
No. of category 3 2 3
No. of attributes
in a sample 4 13 8

Total no. of
samples 150 297 276

No. of samples in
Training set 90 149 200

No. of samples in
Test set 60 148 76

B. Classification Results
After numerous experiments for the best performance,

parametric values for SARG on classification of the three
data sets are as summarized in Table 3.

TABLE 3.
SUITABLE PARAMETRIC VALUES

 IRIS data Heart Data Student data
Population size 40 40 50
No. of generations 5000 50,000 5000

Duplication rate 25% 25% 25%
Crossover rate 30% 30% 25%
Reproduction rate 25% 25% 25%
Mutation rate 20% 20% 25%

Slack value 30 150 50

Among the above parameters, crossover and reproduction
rates are most sensitive.

Performance of SARG is superior to GPIL in terms of
both classification accuracy as well as computation
efficiency. It yielded higher classification accuracy and was
able to find better solutions in shorter time. Comparison in
terms of classification accuracy between GPIL and SARG
on the three data sets can be summarized in Table 4.

TABLE 4.
SARG V.S. GPIL : CLASSIFICATION PERFORMANCE

(ACCURACY)

 IRIS data Heart Data Student data
GPIL 96% 83.11 % 53.94%
SARG 100% 87.83 % 55.26%

VII. DISCUSSION
Experiments on the data sets revealed some aspects

which must be considered in utilizing evolutionary
computation in classification and inductive learning as
follows :

Sufficient number of training samples : Enough samples is
crucial to the learning process in GP units. Insufficient number of
samples will not allow the learning process to discover useful
patterns and regularity in the training set. It is better to split the
original data set to allow considerably more number in the training
set than in the test set.

Similar number of samples in each category : There
ought to be similar number of samples in each category in
both training and test sets. A training set which is
dominated by particular category/categories is detrimental
to the learning process. It can be difficult for a GP Unit,
which is responsible for category with too few samples, to
generate rules with high fitness value. This is because a rule
is likely to classify other categories more accurately than
the intended one due to higher numbers of samples present.
In effect, GP unit is likely to learn what is not rather than
what is.

Fitness value in each category : Final Rule Builder in
Figure 1 arranges the nested IF.. THEN ..ELSE according to
fitness value instead of category number to achieve
optimum performance. This presumes that a rule with
reasonably high fitness value is attained for each category.
If GP units can only obtain rules with low fitness values,
this indicates that the classification may be inherently too
hard.

Suitable fitness function : While the importance of this is
commonly understood in evolutionary computation, the
same can be said about SARG and should not be
overlooked. This may likely be application dependent.

Suitable slack value : Performance, especially in terms of
computation efficiency, of SARG depends on setting
appropriate slack value. This study, so far, indicated that
optimum slack value may also depend on the maximum size
of tree (i.e. number of nodes) allowed as well as number of
attributes under consideration.

VIII. CONCLUSION AND FUTURE WORK
While there have been several applications of

evolutionary computation in inductive learning, the work
described in this paper is yet another attempt to apply
Evolutionary Computation in inductive learning for
classification. Ability to adjust the evolutionary

computation to suit the task at hand is advantageous and can
rectify lack of progress similar to those in plateau situations.
This work presents a MaxToMin crossover for genetic
programming and Self-adjusting selection. MaxToMin
crossover may improve the chance of producing better
chromosomes while Self-adjusting selection provides an
alternative path to reproducing new chromosomes in
situations where no progress is possible after successive
number of generations.

Future work can be carried out in the following areas:
Generic fitness function : As fitness function is critical to

the rules generation in GP units. While a routine to produce
a tailor made fitness function for every data set may not be
possible, a generic fitness function may be possible. A
routine can then be implemented to determine optimal
parametric values for the generic fitness function.

Methods used for Final Rule Builder : The nested IF..
THEN.. ELSE for the final rule is ordered according to
fitness value at present. Further investigation can be done
on ordering the final rule according to other properties.
Candidates for this are number of conditions in the rules
and number of samples in each category.

Optimal slack value determination : A suitable slack
value is likely to depend on the nature of the data set. The
study so far has indicated that two factors, maximum tree
size (i.e. no. of maximum nodes) allowed and number of
attributes in a sample, have an influence on the performance
of each GP unit. These two factors are strong candidates
which merit further analysis.

Acknowledgment
The author gratefully acknowledges the technical advice

from Dr. R. Alcock. He also wishes to acknowledge Mr.
Ekarat Rattagan for his contribution and assistance
throughout the project. The support for computing facilities
offered by School of Information Technology at King
Mongkut’s University of Technology Thonburi is
appreciated. Preparation of this paper would not have been
possible without the help and moral support from his wife,
Dr. P. Lavangnanada.

References
[1] R. Kennedy, e. al., Solving Data Mining Problems Through Pattern

Recognition, Prentice Hall, New Jersey, USA, 488 p., 1998.
[2] R. Agrawal and R. Srikant, “Fast algorithms for mining association

rules”, In Proceedings of the 20th Intl. Conf. On Very Large
Databases, Santiago, Chile, September 1994.

[3] T. M. Mitchell, Machine Learning, McGraw-Hill, Massachusetts,
USA., 414 P., 1997.

[4] W. Banzhaf, e. al., Genetic Programming : An Introduction, Morgan
Kaufmann, California, USA ., 450 p., 1998.

[5] J. R. Quinlan, “Induction of decision trees”, Machine Learning, Vol.
1, No. 1, pp. 81 - 106, 1986.

[6] J. R. Quinlan, C4.5: Programs for Machine Learning, Morgan
Kaufmann, San Mateo, USA, 1993.

[7] Breiman, et al., Classification and regression trees, Wadsworth
International Group, Belmont, California, USA, 1984.

[8] P. Povalej, et al., “Classic Decision Tree Induction Versus Genetic
Algorithms”, In Proceedings of 4th Asia-Pacific Conference on
Simulated Evolution And Learning (SEAL’02), 18-22 November,
Singapore, 2002.

[9] W. Spears and K. A. DeJong, “Using Genetic Algorithms for
Supervised Concept Learning”, In Proceedings. of IEEE Conference
on Tools for AI, Washington DC, USA, pp. 335-341, 1990.

[10] K. A. DeJong, W. Spears and D,F. Gordon, “Using Genetic
Algorithms for Concept Learning”, Machine Learning, Vol. 13, pp.
161-188, 1993.

[11] C. C. Bojarczuk, et al., “A constrained-syntax genetic programming
system for discovering classification rules: application to medical
data sets”, Artificial Intelligence in Medicine, Vol. 30, pp.27-48,
2004.

[12] M. Khabzaoui, C. Dhaenens and E-G. Talbi, “Parallel Genetic
Algorithms for multi-objective rule mining”, In Proceedings of 6th
Metaheuristic International Conference (MIC2005), pp. –179-188,
22nd-26th August, Vienna, Austria, 2005.

[13] A. Ghosh and A. A. Freita (Eds.), Special issue on data mining and
knowledge discovery with evolutionary algorithms, IEEE Trans. on
Evolutionary Computation, Vol. 7, No. 6, pp. 517-575, 2003.

[14] A. A. Freitas, Data Mining and Knowledge Discovery with
Evolutionary Algorightms, Springer-Verlag, 262 p., 2002.

[15] K. Lavangnananda, “A Genetic Programming Approach to Inductive
Learning”, In Proceedings of the Int. Conf. Computational
Intelligence for Modelling, Control and Automation (CIMCA’2004),
12th – 14th July, Gold Coast, Australia, 2004.

[16] R. J. Alcock and Manolopoulos, “Using Genetic Algorithms for
Inductive Learning”, In Proceedings of 3rd Int. Multiconference on
Circuit, Systems, Communications and Computers (CSCC’99),
Athens, Greece, 4th – 7th July, 1999.

[17] R. A. Fisher, “The Use of Multiple Measurements in Taxonomic
Problem”s, Annual Eugines, Vol. 7, Part 2, pp. –179-188, 1936.

[18] C. Blake, E. Keogh and C. J. Merz, UCI Repository of Machine
Learning Databases, Irvine, CA : University of California, Dept. of
Information and Computer Science,
[http://www.ics.uci.edu/~mlearn/MLRepository.html], 1998.

[19] K. Lavangnananda, “Synergistic Genetic Algorithm for Inductive
Learning (SynGAIL)”, In Proceedings of the Int. ICSC Congress on
Computational Intelligence : Methods and Applications
(CIMA’2001), pp. 443-449, 19-22 June, University of Wales Bangor,
U.K., 2001.

[20] S. J. Russell and P. Norvig, Artificial Intelligence A modern
approach, 2nd Edition, Prentice-Hall International, Inc., USA., 2003.

[21] A. Kamiya, et al., “Worker Ants’ Rule-Based Genetic Algorithms
Dealing with Changing Environments”, In Proceedings of 2005 IEEE
Mid-Summer Workshop on Soft Computing in Industrial Applications
(SMCia/05), pp. 117 – 121, 28th – 30th June, Helsinki University of
Technology, Espoo, Finland, 2005.

[22] J. Martikainen and S. J. Ovaska, “Hierarchical Two-Population
Genetic Algorithm”, In Proceedings of 2005 IEEE Mid-Summer
Workshop on Soft Computing in Industrial Applications (SMCia/05),
pp. 91 – 98, 28th – 30th June, Helsinki University of Technology,
Espoo, Finland, 2005.

