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Fuzzy K-means clustering algorithm is a popular approach 
for exploring the structure of a set of patterns, especially 
when the clusters are overlapping or fuzzy. However, the 
fuzzy K-means clustering algorithm cannot be applied 
when the data contain missing values. In many cases, the 
number of patterns with missing values is so large that if 
these patterns are removed, then the number of patterns to 
characterize the data set is insufficient. This paper 
proposes a technique to exploit the information provided 
by the patterns with the missing values so that the 
clustering results are enhanced. There are various 
preprocessing methods to substitute the missing values 
before clustering the data. However, instead of repairing 
the data set at the beginning, the repairing can be carried 
out incrementally in each iteration based on the context. It 
is thus more likely that less uncertainty is added while 
incorporating the repair work. Fine-tuning the missing 
values using the information from other attributes further 
consolidates this scheme. Applications of the proposed 
method in medical domain have produced good 
performance.   
Keywords: Fuzzy K-means clustering and missing values. 

1.  Introduction 

Motivation: In medicine and biology, we often need 
exploratory analysis like grouping the patterns such that 
the patterns within the same cluster have a high degree of 
similarity, and the patterns from different clusters have a 
high degree of dissimilarity. Clustering can be formally 
defined as follows [1]: Given a set of data 

, find an integer  

( ) and  number of partitions of  that 
exhibit categorically homogeneous subsets. 
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Importance of clustering: Some tasks for which the 
clustering algorithms can be employed are as follows: 
1. Clustering can abstract or compress certain properties 

of the data set.  
2. A classifier can be constructed through clustering. To 

build a classifier, we group a data set, and 
subsequently assign a class label (crisp or fuzzy) to 
each cluster. The class label of a new pattern is 
determined based on the cluster in which the pattern 
falls.  

3. Clustering can be applied to decide whether the 
representation of a problem on computers is 
appropriate for processing. If the representation is not 
appropriate, then the data set behaves like a set of 
random numbers without any underlying regularity. In 
that case, the bad clustering results indicate that the 
user needs to modify the representation of the 
problem.  

 
Basics of clustering: Three types of clustering approaches 
are commonly used [1]. They are (1) hierarchical 
approach, (2) graph theoretic approach, and (3) objective 
function-based approach. The objective function-based 
approach is very popular. One extensively used objective 
function-type clustering algorithm is hard K-means 
clustering algorithm [1]. It assigns each pattern exactly to 
one of the clusters assuming well-defined boundaries 
between the clusters. However, there may be some 
patterns that belong to more than one cluster. In order to 
overcome this problem, the idea of fuzzy K-means (FKM) 
algorithm has been introduced. Unlike the hard K-means, 
in the FKM each input pattern belongs to all the clusters 
with different degrees or membership values. 
Incorporation of the fuzzy theory in the FKM algorithm 
makes it a generalized version of the hard K-means 
algorithm. From the psycho-physiological point of view, 
the problem of pattern clustering is unsuitable for 
approaches with precise mathematical formulations.  
 
However, the FKM algorithm cannot be applied to the 
real-life clustering problems when the data contain 
missing values. The missing values in a pattern imply that 
the values of some of the attributes of the pattern are 
unknown. Missing values can occur due to various reasons 
like (a) patient entries for some attributes are irrelevant or 
unknown, (b) in the questioning session, the patient did 
not want to provide the values, (c) errors have led to 
incomplete attributes, (d) random noises have led to some 
impossible values, and they have been removed 
intentionally, (e) patients have died before an experiment 
was finished. 
 
Problem definition: This paper addresses how to apply 
the FKM algorithm efficiently in the presence of missing 
values. It is assumed that the values are missing at random, 
i.e., the probability of missing a value does not depend on 
the quantity of the value [6].  



 
Related work: The approaches to deal with missing 
values can be categorized into the following groups [3] 
[4][5][6][7]: 
Deductive imputation: Missing values are deduced with 
certainty, or with high probability from the other 
information of the pattern.   
Hot-deck imputation: Missing values are replaced with 
values from the closest matching patterns.  
Mean-value imputation: The mean of the observed values 
is used to replace the missing values. 
Regression-based imputation: Missing values are replaced 
by the predicted values from a regression analysis.  
Imputation using Expectation-Maximization: Missing 
values are repaired in two steps. In the E-step, the 
expected value of the loglikelihood is calculated, and in 
the M-step, the missing values are substituted by the 
expected values. Then the likelihood function is 
maximized as if no data were missing.  
 
Overview of the proposed method: Most of the current 
methods repair or impute the missing values before the 
clustering starts. This paper attempts to repair the missing 
data while performing clustering. Exploiting this trick is 
difficult because while updating a cluster center, the 
distance between the pattern with missing values and the 
cluster center cannot be measured. Using the law of large 
numbers, if we assume that the distances between the 
cluster center and the patterns form a Gaussian 
distribution, then the distance between a pattern with 
missing values and the cluster center can be replaced by 
the weighted mean of the distances between the cluster 
center and the complete patterns. The missing values are 
further fine-tuned by exploiting the information from the 
other attributes.  

2.  Background 

2.1 Fuzzy Sets 
In traditional two-state classifiers, where a class  is 
defined as a subset of the universal set X, any input pattern 

 can either be a member or not be a member of the 
given class . This property of whether or not a pattern 

 of the universal set belongs to the class C  can be 
defined by a characteristic function  as 
follows:          
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In real-life situations, boundaries between the classes may 
be overlapping. Hence, it is uncertain whether an input 
pattern belongs totally to the class C . To consider such 
situations, in fuzzy sets [1] the concept of the 
characteristic function has been modified to the fuzzy 
membership function : [ . This function is 

called membership function because larger value of the 
function denotes more membership of the element to the 
set under consideration. 
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2.2. Fuzzy K-Means Clustering 
Clustering a data set  implies that the data set is 
partitioned into K clusters such that each cluster is 
compact and far from other clusters. One way to achieve 
this goal is through the minimization of the distances 
between the cluster center and the patterns that belong to 
the cluster. Using this principle, the hard K-means 
algorithm minimizes the following objective function [8]: 

NX ⊆ R
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where  is a distance measure between the 

center  of the cluster  and the pattern . 
Eqn. (2) can be rewritten as  
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where  is the characteristic function, i.e., 

 if , else . When the 
clusters are overlapping, each pattern may belong to more 
that one cluster, i.e., . Hence,  
should be interpreted as a membership function rather than 
the characteristic function. Therefore, the objective 
function (3) can be modified to the following:   
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where  is now a fuzzy membership 
function, and q is a constant known as the index of 
fuzziness that controls the amount of fuzziness. Since the 
minimization of the objective function (4) may lead to a 
trivial solution, the following two constraints are satisfied 
while minimizing the objective function:  

( ) [0,1k iµ ∈x
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The first constraint guarantees that there is no empty 
cluster, and the second constraint imposes the condition 
that each pattern needs to share its membership with all the 
clusters such that the sum of memberships is equal to one. 
Differentiating the objective function (4) with the 
constraints (5) and (6), we obtain 
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Eqn. (7) and (8) are used in an iterative fashion to update 
the memberships and the cluster centers. The updating 
continues until the changes in the membership values of 
all the patterns become negligible or the required number 
of iterations is over (Fig. 1).  
 
The worst-case time complexity of the algorithm is as 
follows: To find the distance between the cluster center 
and all the patterns, we need  computations. For 
all the clusters, the number of computations needed is 

. If the clustering needs T iterations, then the 
worst-case complexity is . 
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INPUT: 
(1) A set of input data . X
(2) The value of the fuzziness index . (1, )q∈ ∞
(3) Number of clusters . K
(4) A distance measure  

between  and , where A is a positive definite matrix. 
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(5) A small, positive constant , and an appropriate matrix 

norm . .  

(6) Maximum number of iterations T. 

(7) An n matrix U , where the element of the ith row and 

the kth column indicates . 

K×
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ALGORITHM: 
Assign t .  0=
Randomly initiate the fuzzy K-partition ofU . 

t

DO 

         Set  . 1t t= +
         FOR k K  1,2,...,=
                   Calculate the cluster center using  km
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         ENDFOR 

         Update U  by calculating U  as follows: 
1t+ t

         Determine the content of the following set:  
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         ENDIF 

ENDDO UNTIL 1t tU U ε+− >  OR  t T<
 
OUTPUT: 
(1) , i.e., the belongingness of the patterns in 

the clusters.  

( )  ,k i i kµ ∀x

(2) . denotes the cluster  in which 

 belongs to when the membership is considered crisp.  

argmax ( )k i
k

u µ= x u
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Fig. 1: Fuzzy K-means algorithm.  

3.  Proposed Method 

Algorithm: Let all the missing values in the data set X 
occur in the dth attribute. We shall relax this constraint 
later. Let us call the set of all the patterns with missing 
values Z, and the set of all complete patterns Y (i.e., 

). Each pattern 
 can be 

made complete by substituting by 

X Y Z= ∪
1 2[ ,j jz zz ( 1) ( 1),..., ,?, ..., ]j j d j d jNz z z Z− + ′= ∈

jdz 1
Y ∑ dY

y
∈y

, 

where Y  indicates the cardinality of the set Y and  
indicates the transpose of [u]. Subsequently, the standard 
FKM can be applied to the data set since there is no 
missing value in the data set.  

[ ]u ′

 
However, we can modify the clustering algorithm so that 
the substitution operation is more context dependent. In 
the clustering, we need the substitution operation while 
finding the distance between a cluster center (say kth) and 
an incomplete pattern. We can fill the pattern at that point 
of time, and thus, we fill the pattern differently and 
incrementally for each cluster center. Therefore, instead of 

filling  by jdz 1
dY Y

y
∈∑ y

2)id kdy m

, we fill ( )  by the 

mean of {( , i.e., 

2
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. Here the assumption is that the 

members of {(  are i.i.d. 
(independent and identically distributed), and hence, from 
the law of large numbers, they form a Gaussian 
distribution. In the above procedure, we treat each 
complete pattern 

2,..., | |}Z

y  equally. However, the                    

complete patterns that are close to  should influence 
the update of the cluster center more. In other words, we 
can use the concept of weighted mean instead of a simple 
mean. Hence, we choose the weights as the membership 
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The substituted value 
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same for all patterns with missing values although some of 
the patterns with missing values are very close to the 
cluster center  and some are far away from . If 

we assume that the weighted distance  
linearly depends on the weighted distance between 

, and m , then we can estimate 

 using the following linear regression 
or weighted mean:   
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where  indicates the importance of the hth attribute,  hw
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can be determined by using some a priori knowledge or by 
using some feature extraction algorithms (when the data 
are labeled). In this paper, we are not assuming that we 
know the importance of the attributes, and hence we are 
distributing the importance equally among all the 
attributes by making .  

hw

N  {1,2,..., }h= ∀ ∈
Till now we have shown all the derivations when the 
values are missing only in the dth attribute. Similar 
procedure can be adopted when we have patterns with 
missing values in more than one attribute. Thus, the 
modified FKM needs some extra steps to consider the 
incomplete patterns.  
 
Particular case: The mean-value imputation, in which the 
missing value  of the pattern is replaced by jdz jz
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Y
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, can be derived from the proposed method 

when (a) the cluster centers are assumed to be at the 
origin, (b) all the patterns receive equal importance, and 
(c)  and (d) the repairing is 

done only in the first iteration. Moreover, if  and 

all  are equal, then the proposed 
algorithm reduces to that of [8]. 
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Convergence: When the missing value occurs only in the 
dth attribute, we partition the data set into the two sets Y 
and Z. If we use the proposed algorithm for this type of 
data set, we actually minimize the following objective 
function:  

     

2

2
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( , )]

i i

i i

m y

z m z

           (10) 

It is straightforward to show that the objective function 
(10) under the constraints (5) and (6) is monotonically 
decreasing, and hence, the iterative minimization 
guarantees the convergence. The same result holds if the 
values are missing in more than one attribute. 
 
Time complexity: Let us first look at the time complexity 
when the values are missing only in the dth attribute. For 
finding the mean and variance of all complete patterns, we 

need  computations in each iteration. For each 

iteration and cluster center, we require ( )N

( )K

O Z  

computations to do the regression. Since 
, the time-complexity for all the 

cluster centers and iterations is bounded by O n . 
When the missing values occur in more than one attribute, 
then the worst-case time complexity becomes 

. Since in practical cases , the 
repair work does not significantly change the order of the 
time complexity of the original FKM algorithm.  
 
Quality of clustering: The quality of the clustering can be 
measured in two ways: directly or indirectly. In the direct 
method, we can apply some cluster validity measures to 
check whether the quality of the clustering is improving. 
In the indirect method, we cluster the data using the 
proposed method, and then the clusters are utilized to build 
the classifiers. The classifier performance is used as an 
indirect way to quantify the quality of the clustering. Note 
that this is possible only when the data are labeled.  

4.  Results and Discussion 



We have conducted the experiments on the Wisconsin-
Madison breast Cancer data from UCI machine learning 
repository [2]. We have compared the result of the 
proposed algorithm with that of mean substitution, hot 
deck, regression, EM and C4.5 algorithms. The presence 
of a breast mass may indicate (but not always) malignant 
cancer. The University of Wisconsin Hospital has 
collected 699 samples using the fine needle aspiration test. 
Each sample consists of the following ten attributes: (1) 
Patient's i.d., (2) clump thickness, (3) uniformity of cell 
size, (4) uniformity of cell shape, (5) marginal adhesion, 
(6) single epithelial cell size, (7) bare nuclei, (8) bland 
chromatin, (9) normal nucleoli and (10) mitosis. Except 
the patient's i.d., all other measurements are assigned to an 
integer value between 1 and 10, with 1 being closest to the 
benign and 10 the most anaplastic. Each sample is either 
benign or malignant.  
 
The data set contains 16 samples each with one missing 
attribute. Since the number of missing values is small, we 
introduced more missing values with probability 0.25 to 
all attributes of each pattern. Using the t-test, we first 
ensured that the data are missing at random. We find the 
quality of the clustering through indirect way, i.e., through 
classification performance. We partition the data set into 
training and test sets. The training set consists of some 
patterns with missing values, but the test set contains only 
complete patterns. Using the proposed technique, the 
training set is grouped into K clusters, and each cluster is 
fuzzily labeled. Next, each pattern of the test set is 
classified based on which fuzzy clusters it falls in. Similar 
scheme is also used with four other imputation techniques, 
and the classification performances of these techniques are 
shown in Table 1. The proposed method performs better 
than the other methods.  
 
The advantages of the proposed method are: (a) the 
substitution of a particular missing value is carried out 
differently for different cluster centers, (b) the substitution 
is carried out incrementally so that better clusters are 
formed. The limitations of the proposed method are 
appearing from the assumptions that it requires: (a) the 
members of {(  to be i.i.d., 
and (b) the attribute with missing values linearly depends 
on the other attributes. In future, we would attempt to relax 
these assumptions. In addition to medical problems, we 
intend to apply the proposed technique to cluster the 
microarray genomic data, where missing values are 
encountered quite often due to the limitations of the 
experiments.  

2) | 1, 2,...,| |}jd kdz m j Z− =

 
Table 1: Comparative results of the proposed method with 
respect to other methods. 

Techniques Classification rates 
FKM with hot deck 92.67% 

FKM with mean substitution 93.18% 
FKM with regression 95.67% 
FKM with EM algorithm 96.34% 
FKM with the proposed method 98.43% 
C4.5 after pruning 94.31% 
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