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Abstract

This paper proposes a new connectionist approach to nu-
meric law discovery; i.e., neural networks (law-candidates) are
trained by using a newly invented second-order learning algo-
rithm based on a quasi-Newton method, called BPQ, and the
MDL criterion selects the most suitable from law-candidates.
The main advantage of our method over previous work of
symbolic or connectionist approach is that it can efficiently
discover numeric laws whose power values are not restricted
to integers. Experiments showed that the proposed method
works well in discovering such laws even from data containing
irrelevant variables or a small amount of noise.

1. Introduction

The discovery of a numeric law from a set of data is the cen-
tral part of scientific discovery systems. Such systems, for
example, can detect a relationship between the distance r to
the sun and the revolution period T of five planets known to
Kepler’s third law T = kr3/2 (k is a constant).

After the pioneering work of the BACON systems [5, 6], sev-
eral methods [7, 3, 8, 16, 17] have been proposed. The basic
search strategy employed by these methods is much the same:
two variables are recursively combined into a new variable
by using multiplication, division, or some predefined proto-
type functions. BACON and FAHRENHEIT [7] use trend
detectors to combine variables and employ a heuristic form of
depth-first search. ABACUS [3] creates a proportional graph
and performs a modified beam search. In IDS [8], correla-
tion analysis is applied, and a beam search is performed. The
E* algorithm [16] considers only bivariate functions. Also,
Sutton-Matheus’ algorithm [17] performs a regression, and the
correlation between the squared error and the square of the
variable’s value [15] is used to combine variables.

These existing methods suffer from the following problems:
first, because combining two variables into a new one must
be done in order, a combinatorial explosion may occur when
complex laws are sought for data consisting of a large num-
ber of variables, or the desired laws will be missed when some
heuristic search parameters are inappropriate. Second, when
some powers appearing in a law are not restricted to integers,
the law may remain unknown unless some appropriate pro-
totype functions are prepared in advance. However, a priori
information is rarely available. Third, these methods are often
criticized for their lack of robustness; noise tolerance is defi-
nitely required since real observed data contain noise [8, 16].

We believe a connectionist approach has great potential to
solve the above problems. In order to directly learn a general-
ized polynomial term whose power values are not restricted to
integers, a computational unit called a product unit has been

proposed [2]; instead of calculating a weighted sum of input
values, this unit calculates a weighted product, where each in-
put value is raised to a power determined by a variable weight.
However, serious difficulties have been reported when using
standard BP [13] to train networks containing these units [9].
Although some heuristic strategies such as multiple learning
algorithms have been proposed [9], their improvements over
BP have been less than remarkable. Moreover, these earlier
studies dealt only with binary data and did not specifically
address the problem of numeric law discovery.

In this paper, we propose a connectionist approach called RF5
for discovering numeric laws. Section 2 explains how neural
networks are used to discover a class of numeric laws. Section 3
describes a second-order learning algorithm called BPQ which
trains the neural networks described in Section 2. Section 4
explains a criterion for selecting the most suitable candidate
out of the trained ones. Section 5 evaluates the proposed
method RF5 by doing experiments using artificial data, real
data, and time series data.

2. Law Discovery using Neural Nets

This section explains a connectionist problem formaliza-
tion for numeric law discovery, first proposed in [2]. Let
{(x1, y1), · · · , (xm, ym)} be a set of examples, where xt is an
n-dimensional input vector and yt is a target value correspond-
ing to xt. In this paper, a class of numeric laws expressed as

yt = c0 +

h∑
i=1

cix
wi1
t1 · · ·xwin

tn (1)

is considered, where each parameter ci or wij is an unknown
real number and h is an unknown integer. If a target law
consists of periodic function or discontinuous function, we
cannot exactly discover it when Eq. (1) is assumed. How-
ever, if the range of each input variable is bounded, such a
law can be closely approximated to a multivariate polynomial
function with a finite number of terms. Moreover, since the
power values are not restricted to integer, we can expect that
the approximated polynomial function has a fewer number of
terms. Hereafter, (c0, · · · , ch)T and (wi1, · · · , win)

T are ex-
pressed as c and wi, respectively, where a

T means the trans-
posed vector of a. In addition, a vector consisting of all pa-
rameters, (cT ,wT

1 , · · · ,wT
h )

T is simply expressed as Φ, and
N(= nh+ h+ 1) denotes the dimension of Φ.

By adding an adequate value to each element of the input
vectors, if necessary, without losing generality we can assume
xti > 0; then, Eq. (1) is equivalent to

yt = c0 +

h∑
i=1

ci exp

(
n∑

j=1

wij ln(xtj)

)
. (2)



Equation (2) can be regarded as the feedforward computation
of a three-layer neural network where the activation function
of each hidden unit is exp(s) = es. Here h, wi, and c denote
the number of hidden units, the weights between the input
units and hidden unit i, and the weights between the hid-
den units and the output unit, respectively. Hereafter, the
output value of hidden unit i is described as vi(xt;wi) =

exp
(∑n

j=1
wij ln(xtj)

)
and then the output value of the out-

put unit is described as z(xt;Φ) = c0 +
∑h

i=1
civi(xt;wi).

The hidden units defined by v(x;w) are called product units
[2]. The discovery of numeric laws subject to Eq. (1) can thus
be defined as the following learning problem in neural net-
works. That is, the problem is to find the Φ that minimizes
the following objective function:

f(Φ) =
1

2

m∑
t=1

(yt − z(xt;Φ))
2. (3)

3. BPQ Algorithm

In our early experiments and as reported in earlier studies
[9], the problem of minimizing Eq. (3) turned out to be quite
tough. Thus, in order to efficiently and constantly obtain good
results, this paper employs a new second-order learning algo-
rithm called BPQ [14]; by adopting a quasi-Newton method
[4, 10] as a basic framework, the descent direction, ∆Φ, is
calculated on the basis of a partial BFGS update and a rea-
sonably accurate step-length, λ, is efficiently calculated as the
minimal point of a second-order approximation. In first-order
learning algorithms which calculate the search direction as
the gradient direction, a large number of iterations are often
required until convergence. On the other hand, in existing
second-order methods [4, 10] which converge more quickly by
using both gradient and curvature information, it is difficult
to suitably scale up for large problems, and a large amount
of computation is required for calculating the optimal step-
length. BPQ can be reasonably scaled up by introducing a
storage space parameter, and the computational complexity
for calculating the optimal step-length is reasonably small,
almost equivalent to that of gradient vector evaluation.

For the problem of minimizing Eq. (3), the partial BFGS up-
date can be directly applied, while the basic procedure for
calculating the step-length λ must be slightly modified. In
the step-length calculation, since λ is the only variable, we
can express f(Φ + λ∆Φ) simply as ζ(λ). Its second-order
Taylor approximation is given as ζ(0) + ζ ′(0)λ + 1

2 ζ
′′(0)λ2.

When ζ′(0) < 0 and ζ′′(0) > 0, the minimal point of this
approximation is given by λ = −ζ′(0)/ζ′′(0). Here, the
method for coping with the other cases is exactly the same
as described in [14]. For three-layer neural networks de-
fined by Eq. (3), we can efficiently calculate both ζ ′(0) and
ζ′′(0) as follows. By differentiating ζ(λ) and substituting
0 for λ, we obtain ζ ′(0) = −∑m

t=1
(yt − z(xt;Φ))z

′(xt;Φ),
ζ′′(0) =

∑m

t=1

(
(z′(xt;Φ))2 − (yt − z(xt;Φ))z

′′(xt;Φ)
)
. Now

that the derivative of z(xt;Φ) is
defined as z′(xt;Φ) = d

dλz(xt;Φ+ λ∆Φ)|λ=0, we obtain z′t =
∆c0+

∑h

i=1
(∆civit + civ

′
it) and z′′t =

∑h

i=1
(2∆civ

′
it + civ

′′
it),

where v′i(xt;wi) = vi(xt;wi)
∑n

j=1
∆wij ln(xtj), v

′′
i (xt;wi) =

v′i(xt;wi)
∑n

j=1
∆wij ln(xtj), and ∆ci and ∆wij are modifica-

tion values corresponding to ci and wij, respectively.

Incidentally, we can employ other second-order learning algo-
rithms such as SCG [11] or OSS [1], but BPQ worked the most

efficiently among them in our own experience.

4. Criterion for Selection

In general, for a given set of data, we cannot know the opti-
mal number of hidden units in advance. Moreover, since the
data is usually corrupted by noise, the law-candidate which
minimizes Eq. (3) is not always the best one. We must thus
consider a criterion to adequately evaluate the law-candidates
discovered by changing the number of hidden units. In this pa-
per, by assuming that the target output values are corrupted
by Gaussian noise with a mean of 0 and an unknown stan-
dard deviation of σ, finding an adequate number of hidden
units is formalized as a model selection problem of the maxi-
mum likelihood estimation problem. Thus, we adopt the MDL
(Minimum Description Length) criterion [12] for this purpose.
The MDL fitness value is defined by

MDL = 0.5m log(MSE) + 0.5N log(m), (4)

where MSE represents the value of the mean squared error
defined by

MSE =
1

m

m∑
t=1

(yt − z(xt; Φ̂))
2. (5)

Here, Φ̂ is a set of weights which minimizes Eq. (3), N is the
number of parameters in Φ, andm is the number of examples.
Hereafter, our discovery method employing the connectionist
problem formalization, the BPQ algorithm and the MDL cri-
terion, is called RF5 (Rule extraction from Facts version 5).

5. Evaluation by Experiments

5.1. Artificial data

The rule discovery method, RF5, was evaluated by using an
artificial problem proposed by Sutton and Matheus [17] and
our modified version.

The original problem is to restore a law described as

y = 2 + 3x1x2 + 4x3x4x5, (6)

while a law for the modified problem is described as

y = 2 + 3x−1
1 x3

2 + 4x3x
1/2
4 x

−1/3
5 . (7)

Each example is generated as follows: each value of variables
x1, · · · , x5 is randomly generated in the range of [0, 1], and
the corresponding value of y is calculated using Eq. (6) or (7).
In these problem, the total number of variables is 9 (n = 9).
Each value of irrelevant variables x6, · · · , x9 is also randomly
generated in the range of [0, 1], each value of y is corrupted
by adding noise generated according to a normal distribution
with a mean of 0 and a standard deviation of 0.1, and the
number of examples is set to 200 (m = 200).

In the experiments, the initial values for the weights between
the input and hidden units were independently generated ac-
cording to a normal distribution with a mean of 0 and a
standard deviation of 1; the initial values for the weights be-
tween the hidden and output units were set to 0, but the
bias value at the output unit was initially set to the average
output value of all training examples. The iteration was ter-
minated when the gradient vector was sufficiently small, i.e.,
‖∇f(Φ)‖2/N < 10−8, or the total processing time exceeded
100 seconds.



Table 1: Learning statistics (artificial data)

hidden MSE value MDL value iteration time
unit best avg. s.d. best avg. s.d. avg. s.d. avg. s.d.
h = 1 0.160 0.160 0.000 -154.0 -154.0 0.0 68 4 0.31 0.02

original problem h = 2 0.009 0.009 0.000 -416.0 -416.0 0.0 93 9 0.77 0.07
h = 3 0.008 0.008 0.000 -405.5 -405.3 0.8 784 82 9.80 1.02
h = 1 2.326 2.326 0.000 113.6 113.6 0.0 90 12 0.41 0.05

modified problem h = 2 0.010 0.031 0.207 -403.9 -398.6 53 228 134 1.90 1.11
h = 3 0.009 0.009 0.000 -388.9 -384.9 1.2 753 127 9.41 1.58

In the experiments, we changed the number of hidden units
from 1 to 3 (h = 1, 2, 3) and performed 100 trials for each of
them. Table 1 shows the basic statistics of MSE values, MDL
values, iterations, and processing times (sec.).1 The best MSE
values were minimized when h = 3, while the best MDL values
were minimized when h = 2: this indicates the correct number
of hidden units was found again for the both problems. The
original and modified laws discovered by RF5 were

y = 1.97 + 3.03x1.00
1 x0.97

2 x−0.01
4 x−0.01

5 x0.01
7 x−0.01

8

+3.88x−0.03
1 x−0.01

2 x1.03
3 x1.00

4 x1.05
5 x−0.01

6 x−0.02
7

y = 2.01 + 3.00x−1.00
1 x3.00

2

+3.98x1.02
3 x0.50

4 x−0.33
5 x−0.01

6 x−0.01
9 .

where the weight values were rounded off to the second dec-
imal place. When the weight values were rounded off to the
first decimal place, these laws become

y = 2.0 + 3.0x1.0
1 x1.0

2 + 3.9x1.0
3 x1.0

4 x1.0
5

y = 2.0 + 3.0x−1.0
1 x3.0

2 + 4.0x1.0
3 x0.5

4 x−0.3
5 .

Although some weight values were slightly different, laws al-
most equivalent to the true ones were found. This shows that
RF5 is robust and noise tolerant to some degree. Note that
without preparing some appropriate prototype functions, ex-
isting numeric discovery methods cannot find such laws as
described in Eq. (7). This point is an important advantage of
RF5 over existing methods.

5.2. Real data

For real data, we used three data sets supporting Hagen-
Rubens’ law, Kepler’s third law, and Boyle’s law.2 In this
experiment, since the number of examples for each data set
was small, the number of hidden units was fixed at 1. Note
that since we consider a constant term c0, the problem cannot
be reduced to a simple regression problem. The trials were
performed 10 times for each data set, and the weight values
in the discovered laws were rounded off to the second decimal
place. The other experimental conditions were exactly the
same as before.

Hagen-Rubens’ law is a relation among the frequency ν of
incident light, the electrical conductivity σ of metal, and the
reflectance R. The original law is described as

R = 1− 2
(
ν

σ

) 1
2
.

1Our experiments were done on HP/9000/735 computer.
2We obtained the sets of Kepler’s data and Boyle’s data from

the UCI repository of machine learning databases.

The law discovered by RF5 is

R = 1.00− 2.08ν0.57σ−0.57.

Although the data has some outstanding outlier examples, the
discovered law is very similar to the reference relation.

Kepler’s third law is a relation between the distance r to the
sun and the revolution period T of five planets. The original
law is described as

T = 0.41r1.5.

The law discovered by RF5 is

T = 0.41r1.50 + 0.19.

An undesired constant term appeared here, but the law is
very similar to the reference relation. The value of the con-
stant term is small in the discovered law; as such we can per-
form another trial using the model where the constant term
is omitted.

Boyle’s law is a relation between the pressure p and volume V
of a quantity of enclosed air. The original law is described as

V = 29.30/p.

The law discovered by RF5 is

V = 29.05p−1.08 − 0.61.

5.3. Time series data

If time series data {x1, · · · , xt, · · ·} are generated according to
a nonlinear difference equation such as kxt = xt−1(1− xt−1)
(k is a constant and x0 ∈ [0, 1]), then, it is known that we
can observe a chaotic behavior. Since our target law defined
by Eq. (1) is a generalized polynomial function, it is expected
that the law of chaotic time series can be identified by RF5.
Hereafter, a nonlinear autoregressive function defined by

xt = z(xt−1, · · · , xt−τ ;Φ), (8)

is considered, where z(·) denotes the right hand-side of Eq. (2)
and τ is the length of delayed inputs. For real time series data,
we used a data set recorded from a Far-Infrared-Laser in a
chaotic state [18] 3, where we used a series of 1,000 training
points (Data Set A) and τ was set to 8.

In the experiments, we changed the number of hidden units
from 1 to 7 and performed 10 trials for each of them. The

3This data set was used in the Santa Fe Institute Time Series
Prediction and Analysis Competition.
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Figure 1: learning results

other experimental conditions were exactly the same as before.
Figure 1 shows the best MSE values and MDL values. This
indicates the best MDL values were minimized when h = 6.
In this experiments, the law discovered by RF5 was not able
to outperform the best result reported in the competition [18],
and we must go further to improve our preliminary result. Ac-
tually, for the successive 100 test points, the prediction perfor-
mance of the discovered law was the 9th position among the
14 results submitted to the competition. However, the discov-
ered law shows a good short-term prediction performance for
the unknown data. Figure 2 shows a part of the predictions
by the discovered law, where only first 8 points were given to
the law. We can see that the predicted points are very close
to the true ones.

6. Conclusion

To discover an underlying law from a set of numeric data, we
have proposed a new connectionist method called RF5. Af-
ter employing the connectionist problem formalization, RF5
adopts a second-order learning algorithm BPQ for train-
ing and the MDL criterion for model selection. Experi-
ments showed that RF5 successfully discovered underlying
laws whose power values are not restricted to integers, even
if the data contained irrelevant variables or a small amount
of noise. In the future, we plan to do further experiments to
evaluate the proposed method using a wider variety of prob-
lems.
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