
Comparison Between Two Prototype Representation
Schemes for a Nearest Neighbor Classifier

Jari Kangas
Nokia China R&D Center

N0.11, He Ping Li Dong Jie
Beijing, 100013 China

jari.a.kangas@nokia.com

Abstract
2. Character Recognition System

The paper is about the problem of finding good
prototypes for a condensed nearest neighbor classifiei- in
a recognition system. A comparison study is done between
two prototype representation schemes. The prototype
search is done by a genetic algorithm which is able to
generate novel prototypes (i.e. prototypes which are not
among the training samples). I t is shown that the
generalized representation scheme is more powerful,
giving significantly larger normalized interclass
distances. It is also shown that both representation
schemes with genetic algorithm give significantly better
prototypes than a direct prototype selection algorithm,
which can select only among the training samples.

1. Introduction

Nearest neighbor classification algorithms give good
results in many recognition problems. However, the
memory requirements and the computational burden due
to the large number of prototypes makes utilization of
nearest neighbor classification difficult. Many algorithms
have been developed to improve the situation (see [9]).

An approach to reduce the number of prototypes is to
cluster the class samples, and use the center prototypes as
class representatives in the classification stage. The center
obviously depends on definition of the distance function,
but the results also depend on the search algorithm. In [6]
it was shown that a genetic algorithm produces better
class centers than a selection algorithm for a simple
character recognition algorithm

In this paper we compare two representation schemes
for the character data. The representation used in [6] is
enlarged so that a new "don't care" symbol is added to the
symbol set used for direction coding. The new symbol
never occurs in the data itself, but only in the prototypes.
It is shown that the enlarged representation enables even
better centers for the nearest neighbor classifier.

We applied a simple character recognition system,
based on a nearest neighbor classifier. This chapter
explains the basic principles. Somewhat similar character
recognition system was explained in [l 11.

2.1 K-Nearest Neighbor Classifier

The classification decision was made by a k-nearest
neighbor (k-nn) classifier [l-31, which is one of the
simplest classification methods. The main principle is to
make the decision by comparing an unknown sample
against a large number of preclassified examples, and
evaluating the class memberships of the k nearest
examples. The power of the algorithm lies on the
assumption that the most similar examples very probably
belong to the correct class.

2.2 Distance Measure

The total distance between two characters was the sum
of minimum distances between corresponding strokes and
an extra term for every stroke in one character that had no
corresponding strokes in the other character. Dynamic
Time Warping algorithm [101 and Dynamic Programming
implementation was used to compute the distances
between direction sequences. Euclidean distances
between stroke beginning and ending points,
correspondingly, were added to that figure. A fixed cost
table was defined for the direction code differences.

2.3 Input Data Representation

The input data was collected by a drawing tablet, and
was a sequence of coordinate pairs in tablet coordinates.
The strokes were separated; i.e. every separate line (from
a pen down event to a pen up event) was a separate

0-7695-0750-6/00 $10.00 0 2000 IEEE 773

mailto:jari.a.kangas@nokia.com

sequence. Preprocessing contained normalization to a
fixed size, resampling, and transformation to direction
codes (chain codes were used [4]). After preprocessing
the data consisted of structures of the following form:

Char = { Stroke1 [dir. codes] [begin and end]
Stroke2 [dir. codes] [begin and end]
... 1,

where the direction codes were from a set
{ 1,2,3,4,5,6,7,8]. Begin and end locations were given in
the normalized coordinates of [1,100], in the order [begin-
x, begin-y, end-x, end-y]. Location of coordinate origo
was in the upper-left comer.

As an example one sample of a two stroke “A“
character is shown below:

” A ” = ([5 5 5 5 5 5 4 4 2 1 11111][010059100]
[4 3 3 3 31 [6 65 36 651 }.

2.4 Modified Prototype Representation

In the original system the prototypes used the same
representation as the input data. To decrease the intraclass
distances we considered modifications to that.

When the sample characters are evaluated, one notices
that the beginnings and endings sometimes have extra
symbols, which might result from accidental hooks in
strokes. To counter the effect of those in the distance
computations we added a special symbol that could be
used as substitute for any symbol. I.e., there was a “don’t
care” symbol that could be replaced by any other symbol
with a relatively small cost.

It was expected that the “don’t care” symbol was
useful in some locations of the prototype strings, like
beginnings and endings. To discourage an excessive
usage of the symbol in strings, however, a real cost of
replacing the symbol to other symbols was attached.

As an example one extended prototype of an “A”
character is shown below:

“ A ” = ([0 5 5 4 5 4 4 4 2 1 1 1 110][2936399]
[33333][11604756]).

3. Optimization by genetic algorithms

Genetic algorithms belong to a group of heuristic
optimization algorithms, called evolutionary algorithms.
The basic idea is to mimic the problem solving methods
of evolution. For overviews, see, e.g. [7,8].

An evolutionary algorithm maintains a population of
potential solutions to the optimization problem. Each
solution is evaluated to get a measure of fitness, i.e. how
good a solution it would be. A new population of
solutions is initialized by selecting the more fit solutions.
The selected solutions undergo transformations, thereby
creating novel solutions. There exist several types of
transformations, in some only one solution is modified

(mutation), in some others several solutions are combined
and modified by taking parts from each (crossover).

1. Initialize a solution population
While termination condition is not satisfied do

{
2. Evaluate all individuals
3. Select the best individuals
4. Generate new individuals from the selected

I

4. Prototype Selection Problem

K-nearest neighbor classifier is simple in principle, but
all the prototypes must be stored and the comparison
phase often becomes time consuming.

In many classification problems it is only necessary to
store a small subset of samples and still achieve
comparable performance to the full prototype set. A well-
known algorithm to reduce prototype number along those
lines is the Condensed Nearest Neighbor (CNN) rule [5].
The basic principle in CNN is to find a subset of
prototypes, which classify correctly all the remaining
samples in the training set.

In this paper we used two prototype selection
algorithms to find one average prototype for each class in
the training samples. The first algorithm is a
straightforward selection among the example cases; i.e.
one of the example cases is used as a prototype. The
second algorithm can use a novel prototype, which is not
among the example cases.

4.1 Prototype Selection among the Cases

For every sample si the sum si of distances from the
sample to every other sample was computed,

s i = C D T o r (S i , S j) ,
i . j e A , i # j

where si and s j both belong to the same class. The

sample, which gave the minimum sum, was used as the
prototype. Because the search is restricted to the training
samples only, we used quite many samples (30 samples of
each class) just to make sure that there is enough variation
to find a reasonable average.

4.2 Prototype Search by A Genetic Algorithm

The prototype search by a genetic algorithm followed
the basic function optimization approaches [7,8]. The
prototype representations were directly taken as the
chromosomes. The parameters were encoded as discrete
symbols for the directions, and real valued parameters for
the locations. The length of strokes (the number of

774

direction codes in each stroke) was naturally variable. The
number of strokes was fixed for all samples in each class;
that followed directly from the knowledge that all the
character samples were collected from one person that
had used consistently the same writing style. The fitness
values were found by computing the cumulative distance
of each prototype from all training samples.

We used crossover and mutation. To generate new
individuals for the next generation we used a mixture of
techniques based on a rank order. First we used an
"elitist" selection by saving N , fittest prototypes directly.

Then the N , next fit individuals were mutated and saved

as such. Last, the already selected N , + N , individuals
were used to generate new individuals for the next
generation by crossover operation. The number of
individuals in each generation was fixed. Also the number
of generations was fixed; we used a number that was
found to be large enough for saturation.

4.2.1 Mutation operation. The mutation operation

expected that data from one writer will form a unimodal
set (of each character), with which the usage of one class
prototype would be well motivated. If there were several
modes in a character set, the usage of selection method
especially would be questionable.

We used a Wacom ArtPad I1 drawing tablet connected
to a Windows NT machine to collect the data. The
drawing area was a square of about 2-cm times 2-cm.
Because the character sizes were later normalized the
character size was not critical. The sampling frequency
was approximately 100 Hz, and the resolution in both
directions was 100 points at most.

5.2 Indicator variables

We looked for two prototype quality variables. The
first variable D, was an estimate of how far from the
correct class prototypes the samples are located on the
average. That variable value should be minimized. The
variable, however, is sensitive to overall scale changes.

was separately applied for the direction code parameters, To compensate for that we used another variable D, that
and for the location parameters. The mutated strokes were
selected by a random operation.

Each direction code in a sequence was separately
mutated given a certain small probability. In mutation a
code was replaced by a random code among all direction
codes. In enlarged representation the candidate symbol set

was a ratio of the interclass distance of each sample from
the nearest incorrect class prototype and the average
intraclass distance computed over all classes. Both
variables are computed classwise; i.e. samples from only
one class are grouped together.

thus included also the "don't care" symbol. Mutation was
the only source of "don't care" symbols. The prototype
search was started from original sample strings, which did
not contain any "don't care" symbols. It was up to the
search algorithm to find positions for the symbols, if any.

In mutation the location parameters were deviated by
a small random values each.

4.2.2 Crossover operation. One-point crossover was
used, and applied only in the direction code section. The
location parameters were copied from the first parent.

The crossover location was selected in one parent
sequence and a "nearby" location was selected in the other
parent sequence. Because they were not exactly the same
(as measured from the beginning of sequence) the length
of resulting offspring sequence could vary as well. That
was very convenient, because the sample sequences were
not of the same length and defining an optimal sequence
length analytically would have been difficult.

5. Experiments

5.1 Character Data

For the prototype search experiments we collected data
of 10 handprinted characters (uppercase characters "A"-
"J"), 30 samples of each from one writer only. One writer
was used to keep the sample sets rather compact. It was

where N is the number of test samples, dL? is the

distance of i :th test sample to the correct prototype, and

d: is the distance of i :th test sample to the nearest

wrong prototype. The normalizing value Di is an
average of the first variable over all classes.

-

5.3 Experimental setup

The test runs were conducted using a leave-one-out
principle. One test sample at a time was removed from the
sample set, the prototypes were found out using the
remaining samples, and the distances of the test sample to
corresponding (the correct and the nearest incorrect)
prototypes were computed. We made, therefore, 300
prototype searches, and acquired 300 pairs of distances
(dL! and d y) for both prototype search algorithms, and
for two representation schemes. From these we computed
the average values for both test variables.

The quality variables were computed classwise; i.e. the
variable values were given separately for each class. The
classwise differences between the methods were
computed to see if there was any significant difference.

775

6. Results

Inter
S - G
S-G+

For each of the ten classes we found out the average
intraclass distances given by the 30 leave-one-out
experiments. The results for both search methods and
both representation schemes are given below.

Mean of diff. Conf. Interv. Significant
-1.25 -2.03 - -0.47 X
-4.2 1 -6.85 - - 1 -57 X

A 3.38 I 3.18 1 2.79

H 4.77 4.61 3.18

B
C
D

2.45 2.06 1.58
0.62 0.63 0.64
2.37 2.12 1.31

To see the significance of the differences in the
intraclass distances we computed the means of the
difference values between different methods, and the
confidence intervals (for 99 % confidence level) of the
means. Because zero was in two cases out of three outside
the confidence interval, the intraclass distances given by
both genetic search algorithm implementations are
significantly smaller than the corresponding values for
the selection method. There is no significant difference
between the different representations.

I
J

0.7 1 0.50 0.53
0.56 0.57 0.55

J G - G + I 0.40 I -0.03 -0.83 I

Intra
S - G
S - G +

Corresponding results for the average interclass
distances are given in the following table.

Mean of diff. Conf. Interv. Significant
0.19 0.08 - 0.30 X
0.59 0.10 - 1.09 X

Interclass
A
B

Selection Genetic Genetic+
25.92 28.33 35.57

2.39 2.66 3.02
C 11.79 I 14.57 I 15.74

As above we computed the means of the difference
values between different methods, and the confidence

D

intervals (for 99 % confidence level) of the means. In all
combinations the differences are significant, even
between the two different representation schemes.

1.72 I 1.68 I 1.57
E 10.74
F 10.51
G 12.82

I G-G+ I -2.96 I -5.03 - -0.89 I X

11.65 13.86
1 1.20 13.89
13.88 17.13

7. Conclusions

H
I
J

It has been shown that the genetic algorithm can be
used to find significantly better prototypes in a nearest
neighbor classification scheme. The comparison is against
a direct optimal selection scheme. The intraclass distances
from the prototypes to independent samples decrease and
the normalized interclass distances between the samples
and the best incorrect prototypes increase significantly.

When the representation scheme of the prototypes is
changed the genetic algorithm gives even better
prototypes. The modified prototypes are significantly
better than the unmodified prototypes in normalized
interclass distances.

29.04 31.39 38.77
9.37 10.12 12.65

13.94 15.28 18.18

8. References

[l] Cover, T. M., and Hart, P. E., "Nearest Neighbor Pattern
Classification," IEEE Transactions on Information Theory,

[2] Dasarathy, B. V. (editor), Nearest Neighbor (NN) Norms:
NN Pattern Classification Techniques, IEEE Computer Society
Press, 1991.
[3] Fix, E., and Hodges, J. L., Discriminatoiy Analysis -
Nonpar-ametric Discrimination: Consistency Properties, Tech.
Report No 4, USAF School of Avia. Med., Texas, USA, 1951.
[4] Freeman, H., "On the Encoding of Arbitrary Geometric
Configurations," IRE Transactions on Electronic Computers,
pp. 260-268, June 1961.
[5] Hart, P. E., "The Condensed Nearest Neighbor Rule," IEEE
Transactions on Information Theory, pp. 515-516, May, 1968.
[6] Kangas, J., "Prototype Search for a Nearest Neighbor
Classifier by a Genetic Algorithm," Proc. of 1999 Int. Conf. on
Computational Intelligence and Multimedia Applications

[7] Michalewicz, Z . , Genetic Algorithms + Data Structures =
Evolution Programs, Springer-Verlag, 1996.
[8] Mitchell, M., An Introduction to Genetic Algorithms, MIT
Press, 1996.
[9] Ripley, B. D., Pattern Recognition and Neural Nehvorks,
Cambridge University Press, 1996.
[lo] Sankoff, D, and Kruskal, J. B., Time Warps, String Edits,
and Macromolecules: The Theory and Practice of Sequence
Comparison, Addison-Wesley, 1983.
[ll] Yuen, H., "A Chain Coding Approach for Real-time
Recognition of On-line Handwritten Characters," Proc. of Int.
Conf. on Acoustics, Speech and Signal Processing, vol. 6, pp.

13(1), pp. 21-27, January 1967.

ICCIMA99, pp. 117-122, 1999.

3426-3429. 1996.

776

