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Abstract 
2. Character Recognition System 

The paper is about the problem of finding good 
prototypes for a condensed nearest neighbor classifiei- in 
a recognition system. A comparison study is done between 
two prototype representation schemes. The prototype 
search is done by a genetic algorithm which is able to 
generate novel prototypes (i.e. prototypes which are not 
among the training samples). I t  is shown that the 
generalized representation scheme is more powerful, 
giving significantly larger normalized interclass 
distances. It is also shown that both representation 
schemes with genetic algorithm give significantly better 
prototypes than a direct prototype selection algorithm, 
which can select only among the training samples. 

1. Introduction 

Nearest neighbor classification algorithms give good 
results in many recognition problems. However, the 
memory requirements and the computational burden due 
to the large number of prototypes makes utilization of 
nearest neighbor classification difficult. Many algorithms 
have been developed to improve the situation (see [9]). 

An approach to reduce the number of prototypes is to 
cluster the class samples, and use the center prototypes as 
class representatives in the classification stage. The center 
obviously depends on definition of the distance function, 
but the results also depend on the search algorithm. In [6] 
it was shown that a genetic algorithm produces better 
class centers than a selection algorithm for a simple 
character recognition algorithm 

In this paper we compare two representation schemes 
for the character data. The representation used in [6] is 
enlarged so that a new "don't care" symbol is added to the 
symbol set used for direction coding. The new symbol 
never occurs in the data itself, but only in the prototypes. 
It is shown that the enlarged representation enables even 
better centers for the nearest neighbor classifier. 

We applied a simple character recognition system, 
based on a nearest neighbor classifier. This chapter 
explains the basic principles. Somewhat similar character 
recognition system was explained in [l 11. 

2.1 K-Nearest Neighbor Classifier 

The classification decision was made by a k-nearest 
neighbor (k-nn) classifier [l-31, which is one of the 
simplest classification methods. The main principle is to 
make the decision by comparing an unknown sample 
against a large number of preclassified examples, and 
evaluating the class memberships of the k nearest 
examples. The power of the algorithm lies on the 
assumption that the most similar examples very probably 
belong to the correct class. 

2.2 Distance Measure 

The total distance between two characters was the sum 
of minimum distances between corresponding strokes and 
an extra term for every stroke in one character that had no 
corresponding strokes in the other character. Dynamic 
Time Warping algorithm [ 101 and Dynamic Programming 
implementation was used to compute the distances 
between direction sequences. Euclidean distances 
between stroke beginning and ending points, 
correspondingly, were added to that figure. A fixed cost 
table was defined for the direction code differences. 

2.3 Input Data Representation 

The input data was collected by a drawing tablet, and 
was a sequence of coordinate pairs in tablet coordinates. 
The strokes were separated; i.e. every separate line (from 
a pen down event to a pen up event) was a separate 
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sequence. Preprocessing contained normalization to a 
fixed size, resampling, and transformation to direction 
codes (chain codes were used [4]). After preprocessing 
the data consisted of structures of the following form: 

Char = { Stroke1 [dir. codes] [begin and end] 
Stroke2 [dir. codes] [begin and end] 
... 1, 

where the direction codes were from a set 
{ 1,2,3,4,5,6,7,8]. Begin and end locations were given in 
the normalized coordinates of [1,100], in the order [begin- 
x, begin-y, end-x, end-y]. Location of coordinate origo 
was in the upper-left comer. 

As an example one sample of a two stroke “A“ 
character is shown below: 

” A ” = (  [ 5 5 5 5 5 5 4 4 2 1  11111][010059100] 
[4 3 3 3 31 [6 65 36 651 }. 

2.4 Modified Prototype Representation 

In the original system the prototypes used the same 
representation as the input data. To decrease the intraclass 
distances we considered modifications to that. 

When the sample characters are evaluated, one notices 
that the beginnings and endings sometimes have extra 
symbols, which might result from accidental hooks in 
strokes. To counter the effect of those in the distance 
computations we added a special symbol that could be 
used as substitute for any symbol. I.e., there was a “don’t 
care” symbol that could be replaced by any other symbol 
with a relatively small cost. 

It was expected that the “don’t care” symbol was 
useful in some locations of the prototype strings, like 
beginnings and endings. To discourage an excessive 
usage of the symbol in strings, however, a real cost of 
replacing the symbol to other symbols was attached. 

As an example one extended prototype of an “A” 
character is shown below: 

“ A ” = (  [ 0 5 5 4 5 4 4 4 2 1  1 1  110][2936399] 
[33333][11604756] ). 

3. Optimization by genetic algorithms 

Genetic algorithms belong to a group of heuristic 
optimization algorithms, called evolutionary algorithms. 
The basic idea is to mimic the problem solving methods 
of evolution. For overviews, see, e.g. [7,8]. 

An evolutionary algorithm maintains a population of 
potential solutions to the optimization problem. Each 
solution is evaluated to get a measure of fitness, i.e. how 
good a solution it would be. A new population of 
solutions is initialized by selecting the more fit solutions. 
The selected solutions undergo transformations, thereby 
creating novel solutions. There exist several types of 
transformations, in some only one solution is modified 

(mutation), in some others several solutions are combined 
and modified by taking parts from each (crossover). 

1. Initialize a solution population 
While termination condition is not satisfied do 

{ 
2. Evaluate all individuals 
3. Select the best individuals 
4. Generate new individuals from the selected 

I 

4. Prototype Selection Problem 

K-nearest neighbor classifier is simple in principle, but 
all the prototypes must be stored and the comparison 
phase often becomes time consuming. 

In many classification problems it is only necessary to 
store a small subset of samples and still achieve 
comparable performance to the full prototype set. A well- 
known algorithm to reduce prototype number along those 
lines is the Condensed Nearest Neighbor (CNN) rule [5]. 
The basic principle in CNN is to find a subset of 
prototypes, which classify correctly all the remaining 
samples in the training set. 

In this paper we used two prototype selection 
algorithms to find one average prototype for each class in 
the training samples. The first algorithm is a 
straightforward selection among the example cases; i.e. 
one of the example cases is used as a prototype. The 
second algorithm can use a novel prototype, which is not 
among the example cases. 

4.1 Prototype Selection among the Cases 

For every sample si the sum si of distances from the 
sample to every other sample was computed, 

s i  = C D T o r ( S i , S j ) ,  
i . j e A , i # j  

where si and s j  both belong to the same class. The 

sample, which gave the minimum sum, was used as the 
prototype. Because the search is restricted to the training 
samples only, we used quite many samples (30 samples of 
each class) just to make sure that there is enough variation 
to find a reasonable average. 

4.2 Prototype Search by A Genetic Algorithm 

The prototype search by a genetic algorithm followed 
the basic function optimization approaches [7,8]. The 
prototype representations were directly taken as the 
chromosomes. The parameters were encoded as discrete 
symbols for the directions, and real valued parameters for 
the locations. The length of strokes (the number of 
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direction codes in each stroke) was naturally variable. The 
number of strokes was fixed for all samples in each class; 
that followed directly from the knowledge that all the 
character samples were collected from one person that 
had used consistently the same writing style. The fitness 
values were found by computing the cumulative distance 
of each prototype from all training samples. 

We used crossover and mutation. To generate new 
individuals for the next generation we used a mixture of 
techniques based on a rank order. First we used an 
"elitist" selection by saving N ,  fittest prototypes directly. 

Then the N ,  next fit individuals were mutated and saved 

as such. Last, the already selected N ,  + N ,  individuals 
were used to generate new individuals for the next 
generation by crossover operation. The number of 
individuals in each generation was fixed. Also the number 
of generations was fixed; we used a number that was 
found to be large enough for saturation. 

4.2.1 Mutation operation. The mutation operation 

expected that data from one writer will form a unimodal 
set (of each character), with which the usage of one class 
prototype would be well motivated. If there were several 
modes in a character set, the usage of selection method 
especially would be questionable. 

We used a Wacom ArtPad I1 drawing tablet connected 
to a Windows NT machine to collect the data. The 
drawing area was a square of about 2-cm times 2-cm. 
Because the character sizes were later normalized the 
character size was not critical. The sampling frequency 
was approximately 100 Hz, and the resolution in both 
directions was 100 points at most. 

5.2 Indicator variables 

We looked for two prototype quality variables. The 
first variable D, was an estimate of how far from the 
correct class prototypes the samples are located on the 
average. That variable value should be minimized. The 
variable, however, is sensitive to overall scale changes. 

was separately applied for the direction code parameters, To compensate for that we used another variable D, that 
and for the location parameters. The mutated strokes were 
selected by a random operation. 

Each direction code in a sequence was separately 
mutated given a certain small probability. In mutation a 
code was replaced by a random code among all direction 
codes. In enlarged representation the candidate symbol set 

was a ratio of the interclass distance of each sample from 
the nearest incorrect class prototype and the average 
intraclass distance computed over all classes. Both 
variables are computed classwise; i.e. samples from only 
one class are grouped together. 

thus included also the "don't care" symbol. Mutation was 
the only source of "don't care" symbols. The prototype 
search was started from original sample strings, which did 
not contain any "don't care" symbols. It was up to the 
search algorithm to find positions for the symbols, if any. 

In mutation the location parameters were deviated by 
a small random values each. 

4.2.2 Crossover operation. One-point crossover was 
used, and applied only in the direction code section. The 
location parameters were copied from the first parent. 

The crossover location was selected in one parent 
sequence and a "nearby" location was selected in the other 
parent sequence. Because they were not exactly the same 
(as measured from the beginning of sequence) the length 
of resulting offspring sequence could vary as well. That 
was very convenient, because the sample sequences were 
not of the same length and defining an optimal sequence 
length analytically would have been difficult. 

5. Experiments 

5.1 Character Data 

For the prototype search experiments we collected data 
of 10 handprinted characters (uppercase characters "A"- 
"J"), 30 samples of each from one writer only. One writer 
was used to keep the sample sets rather compact. It was 

where N is the number of test samples, dL? is the 

distance of i :th test sample to the correct prototype, and 

d: is the distance of i :th test sample to the nearest 

wrong prototype. The normalizing value Di is an 
average of the first variable over all classes. 

- 

5.3 Experimental setup 

The test runs were conducted using a leave-one-out 
principle. One test sample at a time was removed from the 
sample set, the prototypes were found out using the 
remaining samples, and the distances of the test sample to 
corresponding (the correct and the nearest incorrect) 
prototypes were computed. We made, therefore, 300 
prototype searches, and acquired 300 pairs of distances 
( dL! and d y  ) for both prototype search algorithms, and 
for two representation schemes. From these we computed 
the average values for both test variables. 

The quality variables were computed classwise; i.e. the 
variable values were given separately for each class. The 
classwise differences between the methods were 
computed to see if there was any significant difference. 
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6. Results 

Inter 
S - G  
S-G+ 

For each of the ten classes we found out the average 
intraclass distances given by the 30 leave-one-out 
experiments. The results for both search methods and 
both representation schemes are given below. 

Mean of diff. Conf. Interv. Significant 
-1.25 -2.03 - -0.47 X 
-4.2 1 -6.85 - - 1  -57 X 

A 3.38 I 3.18 1 2.79 

H 4.77 4.61 3.18 

B 
C 
D 

2.45 2.06 1.58 
0.62 0.63 0.64 
2.37 2.12 1.31 

To see the significance of the differences in the 
intraclass distances we computed the means of the 
difference values between different methods, and the 
confidence intervals (for 99 % confidence level) of the 
means. Because zero was in two cases out of three outside 
the confidence interval, the intraclass distances given by 
both genetic search algorithm implementations are 
significantly smaller than the corresponding values for 
the selection method. There is no significant difference 
between the different representations. 

I 
J 

0.7 1 0.50 0.53 
0.56 0.57 0.55 

J G - G +  I 0.40 I -0.03 -0.83 I 

Intra 
S - G  
S - G +  

Corresponding results for the average interclass 
distances are given in the following table. 

Mean of diff. Conf. Interv. Significant 
0.19 0.08 - 0.30 X 
0.59 0.10 - 1.09 X 

Interclass 
A 
B 

Selection Genetic Genetic+ 
25.92 28.33 35.57 

2.39 2.66 3.02 
C 11.79 I 14.57 I 15.74 

As above we computed the means of the difference 
values between different methods, and the confidence 

D 

intervals (for 99 % confidence level) of the means. In all 
combinations the differences are significant, even 
between the two different representation schemes. 

1.72 I 1.68 I 1.57 
E 10.74 
F 10.51 
G 12.82 

I G-G+ I -2.96 I -5.03 - -0.89 I X 

11.65 13.86 
1 1.20 13.89 
13.88 17.13 

7. Conclusions 

H 
I 
J 

It has been shown that the genetic algorithm can be 
used to find significantly better prototypes in a nearest 
neighbor classification scheme. The comparison is against 
a direct optimal selection scheme. The intraclass distances 
from the prototypes to independent samples decrease and 
the normalized interclass distances between the samples 
and the best incorrect prototypes increase significantly. 

When the representation scheme of the prototypes is 
changed the genetic algorithm gives even better 
prototypes. The modified prototypes are significantly 
better than the unmodified prototypes in normalized 
interclass distances. 

29.04 31.39 38.77 
9.37 10.12 12.65 

13.94 15.28 18.18 
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