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Abstract

Testing for uniformity of multivariate data is the initial
step in exploratory pattern analysis. We propose a new uni-
formity testing method, which first computes the maximum
(standardized) edge length in the MST of the given data.
Large lengths indicate the existence of well-separated clus-
ters or outliers in the data. For the data passing this edge
inconsistency test, we generate two sub-samples of the data
by a weighted re-sampling method, where the weights are
computed based on the normalized edge lengths of MST of
the entire data. The uniformity of the data is estimated by
running the two-sample MST-test on these two sub-samples.
Experiments with simulated and real data show the poten-
tial of the proposed test in identifying uniform or weakly
clustered data. This test can also be used to rank various
data sets based on their degree of uniformity.

1. Introduction

Although there exists a significant interest in exploratory
pattern analysis to describe the structure of a data set, such
as “how many clusters in the data?”, the question of whether
there exists any structure (clusters) in the data at all is still
an open problem [1], [5], [6]. If the data is described by
only two or three features, we can plot the patterns and use
our innate perceptual organization to capture the structure of
patterns. However, most pattern recognition problems deal
with a large number of features simultaneously, so the ap-
proach used for the two- or three-dimensional data is gener-
ally not applicable to d-dimensional data. Presence of clus-
ters in data can be generally identified by density variations
of patterns. Hence, our meaning of lack of structure in the
data corresponds to a uniform distribution of data; depar-
ture from uniformity (Fig. 1(a)) indicates the existence of
possible clusters.

What is meant by the uniformity of data? Smith and Jain

[7] argue that this notion involves specifying a “sampling
window” which is defined as the “support” set of the under-
lying distribution of points. In the absence of prior knowl-
edge, it is reasonable to make an assumption of connected-
ness of the sampling window. Consider the data shown in
Fig. 1(b) that contains uniformly distributed points inside
a small square enclosed by a unit square. If we assume the
small square as the sampling window, the data is uniformly
distributed. On the other hand, if the unit square is the sam-
pling window, the data may not be considered as uniform.
In practice, the support set is unknown and can be of arbi-
trary shape as in Fig. 1(c). To summarize, we say that the
given set of d-dimensional data has no structure if the data
is uniformly distributed on a connected set in <d, called the
sampling window. Hence, our goal is to test uniformity on
the sampling window (H0) against any structure due to den-
sity variations (H1). This test can also be used to determine
the “degree of clustering” present in the data such as in Fig.
2.

(a) (b) (c)

Figure 1. Notion of uniformity

Smith and Jain [7] proposed a method of testing uni-
formity in multidimensional data, which uses Friedman-
Rafsky’s MST test [2], [3], abbreviated as the two-sample
MST-test below. The two-sample MST-test can be sum-
marized as follows. Suppose we have two samples of size
m and n, respectively, from distributions Fx and Fy , both
defined on <d. The null hypothesis H0 is Fx = Fy and
the alternative hypothesis H1 is Fx 6= Fy . We generate a
weighted graph whose nodes represent the data points of the
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Figure 2. Degree of clustering. Data from a
Neyman-Scott process with s.d. (σ): (a) 0.08,
(b) 0.16, (c) 2.56.

pooled samples, where the edge weights are the Euclidean
distance between the points. We remove all the edges in
the MST for which the incident nodes originate from differ-
ent samples and define the test statistic, R, as the number
of disjoint subtrees. We reject H0 for a small number of
subtrees. If both the samples are clustered around different
cluster centers, this would produce a large number of MST
edges from the same sample, resulting in a small value of
the statistic R.

Let N = m + n, C be the number of edge pairs of MST
that share a common node, and di be the degree of the ith

node. Then C = 1
2

∑N

i=1 di(di − 1). Under H0,

E[R] =
2mn

N
+ 1, and

V ar[R|C] = 2mn
N(N−1) ×

{

2mn−N
N

+ C−N+2
(N−2)(N−3) ×

[N(N − 1) − 4mn + 2]} .

Under the asymptotic normality of R under H0, we re-
ject the null hypothesis H0 at the significance level α if and
only if

R − E[R]
√

var[R|C]
< Φ−1(α),

where Φ−1(α) is the α-quantile of the standard normal dis-
tribution. For simplicity, it is assumed that m = n.

The above test is a two-sample test, but we only have one
sample (n points in d-dimensional space) available. So, we
need to generate a second sample. Smith and Jain [7] ap-
proximate the sampling window by a convex hull and gen-
erate the second sample uniformly over this convex hull.
Their experiments show that the power of this test is good.
The main problems with the convex hull assumption of the
sampling window are: (i) large computational requirement,
and (ii) uniform data inside non-convex sampling window
may be identified as non-uniform as in the case of Fig. 1(c).
We propose a new method for testing the uniformity where
the two samples needed in the “ two-sample” test are gener-
ated from the given data using a re-sampling technique.

2. Proposed Uniformity testing

Given n patterns {x1, x2, . . . , xn} in a d-
dimensional Euclidean space, construct its MST,
T = ({xi}n

i=1, {ej}n−1
j=1 , {lj}n−1

j=1 ), where lj is the

weight of edge ej . We normalize lj as l̃j =
lj−µ

σ
, where µ

is the mean of {lj} and σ is the standard deviation of {lj}.
The proposed uniformity test is composed of following two
phases: (i) test if the data is well separated into two or more
subsets; (ii) if the data is not well separated (is distributed
on a connected set), we test its uniformity by a re-sampling
technique-based MST-test.

Suppose the data contains two clusters that are well sep-
arated. The MST of this data will contain an “ inconsistent”
edge [4], [8] whose length is significantly larger than the av-
erage length of the nearby edges. We use the maximum of
the normalized edge lengths of MST to define an inconsis-
tent edge. Let ρ = max1≤i≤n l̃j be the normalized length
of the longest edge. We have observed that the distribution
of ρ does not change much with respect to the underlying
uniform distribution. Based on this observation, we choose
a threshold ρ0 = 6 and reject the claim that the given data
is uniformly distributed on a connected set if ρ > ρ0. Once
the data has passed the edge inconsistency test, we subject it
to a re-sampling-based two-sample test as described below.

Regions of points with low average edge length in MST
represent regions of high density and vice versa. Based
on this observation, we consider points with small average
edge length as defining one sample and the points with large
average edge length as the second sample. Now, if the data
are not uniform and we run the two-sample MST-test on the
pooled sample, it should produce a large number of joins
from the same sample, thus reducing the value of the statis-
tic R defined earlier, which leads to the rejection of the null
hypothesis. The re-sampling method discussed below pro-
vides a possible solution to identify points with low (high)
average edge length.

Let Ei = {j|ej ∈ T is incident to xi, 1 ≤ j ≤ n − 1}.

Compute two weights for xi as ω̄i = 1
di

∑

j∈Ei
el̃j and

ωi = 1
di

∑

j∈Ei
e−l̃j , where di is the degree of xi in T and

e(.) is the exponential function. Notice that ω̄i(ωi) is pos-
itively (negatively) correlated to the edge length for edges
incident to point xi. Let S̄ =

∑n

i=1 ω̄i and S =
∑n

i=1 ωi.
We obtain two probability distributions on {xi}n

i=1 as p̄i =
p̄(xi) = ω̄i/S̄ and p

i
= p(xi) = ωi/S. Now using the

probabilities {p
i
}n

i=1 and {p̄i}n
i=1, respectively, we resam-

ple the given patterns {xi}n
i=1 without replacement and ob-

tain two sub-samples {x̄i}nr

i=1 and {xi}nr

i=1, where nr is
the re-sampling size. Hence, {x̄i}nr

i=1({xi}nr

i=1) represents
the points in the original data set with high (low) average
edge length in the low (high) density regions. Finally, we
run MST-test on the two samples {x̄i}nr

i=1 and {xi}nr

i=1 and



compute the statistic R and reject the null hypothesis (the
uniformity of patterns) for small values of R.

3. Experimental Results

Let the number of simulation trials ns = 1, 000, the
number of patterns per dimension nd = 100 and the sam-
ple size n = nd × d = 100d where d is the dimension-
ality. We fix the resampling size as nr = 50. Let r0 be
the percentage of rejections of the null hypothesis H0 using
the edge inconsistency test. Let r(α) be the percentage of
rejections of H0 at the α level using the two-sample MST
test. Then the total percentage of rejections of H0 at the α
level is r = r0 + r(α). The entries in Tables 1 and 2 are
(r0, r(0.01)). First we consider the performance of the test
on synthetically generated uniform and normal data. Table

Table 1. Uniformity test on uniform and normal
data

2-dim 5-dim 10-dim
U([0, 1]d) (0.1%, 1.5%) (0%, 5.2%) (0%, 4.1%)

N(0,I) (45.5%,
12.6%)

(9.7%,
36.4%)

(2.5%,
14.4%)

N(0,3I) (43.7%,
13.6%)

(10.6%,
38.9%)

(1.4%,
15.5%)

1 shows that our uniformity test works well. The rejec-
tion percentage of normal data due to edge inconsistency
reduces dramatically with dimensionality, which is also ob-
served in Table 2. One possible reason could be the sparsity
of normal data in a high dimensional space.

Next, we consider the following three mixtures of nor-
mal data.

MN1 = 0.5N(0, I) + 0.5N(
1√
d

1, I),

MN2 = 0.5N(0, I) + 0.5N(
4√
d

1, I),

MN3 = 0.5N(0, I) + 0.5N(
8√
d

1, I),

where 1 is the unit vector and I is the unit covariance matrix.
The cluster centers in these three mixtures are separated by
a distance of 1, 4 and 8, respectively. Table 2 shows that
rejection by edge inconsistency decreases with dimension-
ality significantly. Once the data pass the edge inconsis-
tency test, rejection by the resampling method with d = 10
is significantly lower than rejection with d = 5. This is an
indication that sparsity of data in high dimensional spaces
could reduce the power of our test significantly for nonuni-
form data, and it could also change the rejection error of
uniform data slightly.

Table 2. Uniformity test for mixture of normal
data

2-dim 5-dim 10-dim
MN1 (43.3%, 14.7%) (10.2%, 37.8%) (2.6%, 14.5%)
MN2 (28.1%, 10.4%) (6.8%, 28.1%) (2.1%, 10.8%)
MN3 (99%, 0.2%) (59.4%, 10.8%) (1.5%, 8.3%)

We apply our test on two real datasets: BUPA liver disor-
der data set1 and Fisher’s iris data. BUPA data contains 345
patterns and six features. Since the features in BUPA have a
large difference of scales, we normalize each feature so that
it has mean zero and standard deviation one. A projection
of the data on the first two principal components shows that
the data are not uniformly distributed and there is a dense
core with a sparse and long tail. The maximum edge length
ρ = 5.33, so the data set passes the edge inconsistency test.
Two subsamples with size nr = 50 are drawn represent-
ing the dense region and the sparse region. The test statistic
R = −3.636 and the P-value is 0.000138. Hence, the null
hypothesis is rejected and we claim that the BUPA data is
not uniformly distributed.

The Fisher’s iris data consists of 150 patterns in 4 di-
mensions. Among the three classes, Setosa, Virsicolor and
Virginica, the latter two are well separated from the first
one. The maximum edge length is 7.8. Hence, the null hy-
pothesis is rejected and we claim that the Iris data set is not
uniform. Next, we consider the Iris23 data, which consists
of patterns belonging to Versicolor and Virginica. Now, the
maximum edge length is 3.7. Hence, Iris23 passes the edge
inconsistency and we now subject it to the two-sample MST
test. Since the test statistic depends on the specific sub-
samples randomly drawn (this seldom happens when n is
large and the P-value of the MST-test is significantly large
or small), we compute 20 values of the test statistic, R. The
average P-value of 20 test statistics is 0.29. Hence, there
is no significant evidence to reject the null hypothesis al-
though the P-value is quite low.

To investigate how well the R statistic can be used as a
descriptive measure of the degree of uniformity (or cluster-
ing tendency) of a data set, we designed three experiments
each using a series of data sets featuring a controlled, con-
tinuous degradation of a uniform distribution. The continu-
ous degradation of uniformity is introduced by mixing sam-
ples from a uniform distribution (D1) with samples from
a nonuniform distribution (D2) with varying proportions.
In Experiment 1, D1 is taken to be the uniform distribu-
tion in the unit square U([0, 1] × [0, 1]) and D2 is a normal
distribution N(0.51, 0.1I). In Experiment 2, D1 is again
U([0, 1] × [0, 1]) and D2 is a second uniform distribution
clipped to a smaller region U([0, 0.5]× [0, 0.5]). Both these

1http://www.ics.uci.edu/∼mlearn/MLRepository.html.



two experiments use two-dimensional data. Experiment 3 is
done in several dimensionalities d = 2, 3, 4, 5 and in each
case D1 and D2 are clipped to a concave sampling window
that is the union of hyper-rectangles Ri(i = 1, 2, . . . , d),
where Ri has the ith coordinate restricted to [0.45, 0.55].

In each experiment, 20 data sets are created with varying
numbers of samples from D1 and D2 as shown in Figure 3.
Thus, in each case, first we start with a non-uniform data in
set 1 and evolve into a uniform distribution in set 20. For
each data set, the R statistic is calculated using both the
re-sampling method and the convex hull method. The re-
sampling method uses two subsamples that are 1/16th of
the size of the data set (125/2000 points). Because of ran-
dom variations involved in the re-sampling procedure and
the realization of random samples in the convex hulls, we
apply both methods for 10 independent passes on each data
set and take the mean value of the statistic to be the descrip-
tive measure.

In each of the two-dimensional experiments we observe
a nearly monotonic decrease in the maximum edge length
as the data approach a globally uniform distribution, indi-
cating that this is a good measure for assessing the degree of
uniformity. However, with higher dimensional data, mono-
tonicity of the trend is maintained only for highly nonuni-
form data. The R statistic given by the re-sampling method
also increases nearly monotonically. Using a significance
level α = 0.01 (critical z = −2.33), the null hypothesis
is rejected for data sets 1 − 15. For data sets 16 and 17,
the 10-pass mean of the statistic is very close to the critical
value. For data sets 18 − 20 the null hypothesis is accepted
in most passes. This reconfirms that the test is generally
useful. Interestingly, stronger discrimination between uni-
form and non-uniform data sets is achieved with the higher
dimensional data in Experiment 3.

The convex hull statistic also increases monotonically as
the data sets become uniform. However, with concave sam-
pling windows (Experiment 3), the statistic is not effective
for testing the uniformity (null) hypothesis. On the other
hand, the resampling method performs consistently well in
these cases, regardless of the sampling window geometry
and data dimensionality. This demonstrates an advantage
of the resampling statistic as a descriptor of uniformity over
both the maximum edge length and the convex hull statis-
tics.

4. Conclusions

We have developed a test based on the minimal spanning
tree to determine whether a give set of multidimensional
patterns is distributed uniformly on a connected sampling
window. Simulation studies on the power and rejection er-
ror of the test are encouraging but some sensitivity to data
dimensionality is observed. Finally, we found that the pro-

posed statistic correlates well with continuous degradations
of uniformity. As a measure of degree of uniformity, it com-
pares favourably with a previously proposed statistic based
on convex hull sampling in terms of robustness to variations
in the sampling window geometry and data dimensionality.

Figure 3. Data used for degree of uniformity
experiments.
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