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Abstract- Financial investment decision making is 
extremely difficult due to the complexity of the domain. 
Many factors could influence the change of share prices. 
FGP (Financial Genetic Programming) is a genetic 
programming based forecasting system, which is 
designed to help users evaluate impact of factors and 
explore their interactions in relation to future prices. 
Users channel into FGP factors that they believe are  
relevant to the prediction. Examples of such factors may 
include fundamental factors such as "price-earning 
ratio", "inflation rate" or/and technical factors such as 
"5-days moving average", "63-days trading range 
breakout", etc. FGP uses the power of genetic 
programming to generate decision trees through 
combination of technical rules with self-adjusted 
thresholds. In earlier papers, we have reported how FGP 
used well-known technical analysis rules to make 
investment decisions. This paper tests the versatility of 
FGP by testing it on shorter-term investment decisions. 
To evaluate FGP more thoroughly, we also compare it 
with C4.5, a well-known machine learning classifier 
system. We used six and a half years' daily closing price 
of the Dow Jones Industrial Average (DJIA) index for 
training and over three and half years' data for testing 
and obtained favourable results for FGP. 

1 Introduction 

Financial investment decision making in the stock market is 
extremely difficult due to the inherent complexity of the 
domain. Many factors could affect the future prices. For 
example, the future price of a share may be influenced by 
fundamental factors, such as "price-earning ratio", "inflation 
rate", as well as technical factors such as "n-days moving 
average", "n-days trading range breakout", etc. Other 
influential factors may include market indices, who said 
what in public, etc. Prediction is made more difficult by the 
fact that various factors often interact with each other. To 
help users evaluate the impact of different factors and 
explore their interactions in relation to market movement, 
we have developed a genetic programming based system 
FGP (Financial Genetic Programming). 

Genetic Programming (GP) (Koza 1992, Angeline & 
Kinnear 1996) is a promising variant of genetic algorithms 
(GAS) that uses tree instead of string representations. 
Genetic algorithms have been studied in financial markets 
for quite some time. Bauer (1994) reported his GAS 
intelligent systems that aimed at finding tactic market timing 
strategies. Allen & Karjalainen (1995) used genetic 
programming to identify profitable trading rules in the stock 
market. By conducting experiments using genetic 
programming, Chen & Yeh (1996) attempted to formalise 
the notion of unpredictability (as in the efficient market 
hypothesis) in terms of search intensity and the chance of 
success. Mahfoud & Mani (1996) presented a new genetic- 
algorithm-based system and applied it  to the task of 
predicting the future performances of individual stocks. 
Neely et al. (1997) and Oussaidene et al. (1997) applied 
genetic programming to foreign exchange forecasting and 
reported some success. In our earlier work (Butler 1997; 
Tsang et a1.1998; Li & Tsang 1999), we reported a genetic 
programming based system for predicting whether a return 
of r or more could be achievable within the next n trading 
days in a stock market. Specifically, we tested n = 63 (which 
is equivalent of 3 months) and r = 4% over ten years' data 
on the S&P 500 and Dow Jones Industrial Average (DJIA) 
indices. In both indices, FGP was able to generate rules that 
outperformed random runs and commonly used technical 
rules, in terms of prediction accuracy (to be elaborated 
below) and average annualised rate of return. The work in 
this paper is to extend our earlier work in following aspects: 

1) To test the versatility of FGP by asking it to make 
investment decisions over a relatively shorter period of 
time. Specifically, we ask FGP to recognize investment 
opportunities where a return of 2.2% or more can be 
achieved within 21 trading days (i.e. one month). We 
would like to test the effectiveness of FGP when r and n 
take on different values. 
To compare FGP with other machine learning system. 
Specifically, we compare FGP to C4.5 (Quinlan 1993), 
a well-known machine learning classifier system. Such 
comparison is highly relevant because like C4.5, FGP 
generates decision trees. 
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Procedure GA 
1. Create randomly the initial population P(0);  set i = 0 
2. Repeat 

(a) Evaluate the fitness of each individual in P(i)  using the fitness function 
(b) Select parents from P(i)  using selection strategies 
(c) Generate new offspring using crossover to join the next generation P(i + 1) 

3. Until i < Nor  the time is up; where N is maximum generation set by users 

Figure 1 A simple genetic algorithm 

In next section we shall explain how FGP works. Section 
3 describes the experimental data and performance criteria 
that we adopt. Section 4 reports comparison results among 
random runs, FGP and C4.5. Finally, we draw conclusion. 

2 Background OF FGP 
FGP is based on Genetic programming (GP), which belongs 
to the paradigm of genetic algorithms (GAS) (Holland 1975 
and Goldberg 1989). In GA, a candidate solution is 
represented by a string. In GP, a candidate solution is 
represented by a tree. A fitness function is needed to 
evaluate the quality of each candidate solution with regard to 
the task to be performed (e.g. how good is a rule for 
prediction in our application?). Candidate solutions are 
selected randomly, biased by their fitness, for involvement 
in generating members of the next generation. General 
mechanisms (referred to as genetic operators, such as 
reproduction, crossover, mutation) are used to combine or 
change the selected candidate solutions in order to generate 
offspring, which will form the population in the next 
generation. The basic operations of GAS are summarised in 
Figure 1. 

In FGP, a candidate solution is represented by a genetic 
decision tree (GDT). The basic elements of GDTs are 
conditions and recommendations. A single condition 
comprises one financial indicator, such as 50-days moving 

average, one relational operator such as "greater than", or 
"less than", etc, and a threshold (a number). Conditions are 
combined in GDTs through logic operators such as "Or", 
"And", "Not", and "If-Then-Else". In this paper, we ask FGP 
to recognize investment opportunities where a return of 
2.2% or more can be achieved within the next 21 trading 
days. Recommendation in this application is either positive 
(which suggests that a return of 2.2% or more can be 
achieved within the next 21 trading days) or negative 
(otherwise). Indicators in rules should be relevant to 
decision problem at hand. We limit ourselves to technical 
indicators that are derived from finance literature (see, e.g., 
Alexanderl964, Sweeney 1988, Brock et al. 1992, and Fama 
& Blume 1966). They comprise the following three types of 
technical indicators (derived from three trading rules, 
namely moving average rules, filter rules, and trade range 
break rules in the literature). 

(1) MV-12 = Today's price - the average price of the 

(2) MV-50 = Today's price - the average price of the 

(3) Filter-5 = Today's price - the minimum price of the 

(4) Filter-63 = Today's price - the minimum price of the 

previous 12 trading days 

previous 50 trading days 

previous 5 trading days 

previous 63 trading days 

S ::= <PatternTree>; 
<PatternTree> ::= "If-then-else'' <Condition> <ThenBranch> <ElseBranch>; 
<Condition> ::= <Condition> "And" <Condition> I <Condition> "Or" <Condition> I 

<ThenBranch> ::= <PatternTree> I <Recommendation> ; 
<ElseBranch> ::= <PatternTree> I <Recommendation> ; 
<Relationoperation> ::= '5'' I "<" I "=" ; 
<Indicator> ::= "MV-12" 1 "MV-50 " I "Filter-5" I "Filter-63"I "TRB-5 " I "TRB-SO"; 
<Threshold> ::= Real Number; 
<Recommendation> ::= "Positive" I "Negative"; 

"Not" <Condition> I <Indicator> <Relationoperation> <Threshold> ; 

Figure 2 The BNF grammar that FGP uses for constructing GDTs 
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( 5 )  TRB-5 = Today’s price - the maximum price of the 
previous 5 trading days (based on the Trading 
Range Breakout rule [Brock et al., 19921) 

(6) TRBJO = Today’s price - the maximum price of the 
previous 50 trading days 

The syntax used in FGP to build GDTs can be precisely 
described by using the backus normal form (BNF) grammar 
(Backus, 1959), as shown in Figure 2. 

Figure 3 shows an example of a simple GDT built by 
using the above grammar. A useful GDT in the real world 
may be a lot more sophisticated than this. 

(IF (PMV-50 < -18.45) THEN Positive 
ELSE (IF ((TRB-5 > -19.48) AND (Filter-63 < 36.24)) 

THEN Negative 
ELSE Positive)) 

Figure 3 A (simplistic) GDT for decision making 

This rule suggests that if today’s price is 18.45 or more 
below the average price of the last 50 days, then the goal can 
be achieved if we invest today (we call today a positive 
position). Otherwise decision depends on the values of 
TRB-5 and Filter-63. If today’s price is no more than 19.48 
above the maximum price of the previous 5 trading days or 
today’s price is more than 36.24 above the minimum price in 
the last 63 days, then it is also an alternative good 
opportunity to make a buy decision. The search space for 
GDTs is enormous. One has to search in the space of 
indicators, operators as well as thresholds (such as 36.24). 
The hope is that GP will explore this search space 
efficiently. 

FGP maintains a population (a set) of GDTs and works in 
iterations. Initially, each GDT is generated randomly. In 
each iteration, FGP creates a new generation of population 
using standard genetic operators, including crossover, 
mutation and reproduction. Given two GDTs (called 
parents), the crossover operator in FGP works as follows: 

a) FGP randomly selects a node within each parent GDTs as 

b) To generate two children, FGP exchanges the subtrees 
a crossover point; 

rooted at the selected nodes. 

Mutation is employed to keep a population with sufficient 
diversification. It works as follows: 

a) FGP randomly selects a node x within a GDT as the 
mutation point; x can be an internal node as well as a 
terminal node; 

b) FGP replaces the subtree below x with a new tree with a 
limited depth. 

In general, we employ a high crossover rate (e.g. 0.9) and 
a low mutation rate (e.g. 0.01). Besides, reproduction is used 
in the process (e.g. with probability 0.1) to increase the 

number of occurrences of individual GDTs with higher 
fitness. FGP provides the users with the choice of two 
selection strategies, namely roulette wheel and tournament. 
We used the latter in our tests reported in this paper. 

The evolutionary process in FGP is driven by a fitness 
function. It evaluates each GDT, and assigns to it a fitness 
value, which reflects the quality of the GDT to solve the 
problem at hand. Based on whether the given goal can be 
achieved, any given day is classified into either a positive 
position (goal is achievable) or a negative position (goal 
cannot be achieved). In this paper, we use the Rate of 
Correctness (RC), which we refer to as prediction accuracy, 
as the fitness function. 

P + N  
T 

R C =  - 

where 
P = The number of positive positions predicted correctly 

(i.e. the number of times that FGP recommends 
“positive” on a positive position); 

N = The number of correct negative positions predicted; 
T = The total number of predictions made. 

3 Experimental Index Data and Performance 
Criteria 

Available to us is the closing prices of the Dow Jones 
Industrial Average (DJIA) Index from 7 April 1969 to 5 
May 1980, which includes 2,800 data cases. We took the 
index data from 7 April 1969 to 11 October 1976 (1,900 
cases) as training data, and took the index data from 12 
October 1976 to 5 May 1980 (900 data cases) as test data. 
The whole data series can be visualised in Figure 4. The 
whole training data and test data contain roughly 50% of 
positive positions. Our prediction problem is essentially a 
two-classification problem, to which the classifier system 
C4.5 is applicable. 

Figure 4 Training and test DJIA index series 
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Objective To find FGP rules with high accuracy 
Input terminals (six technical indicators I MV 
and real values) as thresholds. 
Prediction terminals { 0, 1 }, with 1 representing "Positive"; 0 representing "Negative" 
Non-terminals If-then-else, And, Or, Not,, > ,e., = 

Total data cases: 2800 (07/04/1969 to 05/05/1980) 
Data The training data cases: 1900 (07/04/1969 to 11/10/1976) 

The test data cases : 900 (12/10/1976 to 05/05/1980) 

I MV_50,, , I TRB-5,, , I TRB-50,, , I P,lar-S,, , I wllec63,, and Real values 

Fitness function I RC = no. of correct decisions over total no. of decisions made 
Crossover rate 0.9 
Mutation rate 0.01 
Parameters 

Termination criterion 

Selection strategy 
Max depth of individual program 
Max depth of initial individual program 

Population size = 1,200; maximum no. of generations = 30 
The maximum number of generations has been run or FGP 
programme has run for more than 2 hours. 
Tournament selection, Size = 4 
17 
4 

Run times (hours) 1-2 
Hardware and operating system 

Software 

Pentium PC 200MHz running Windows 95 with 64M RAM 
Borland C++ (version 4.5) 

Table 1 Tableau for FGP experiments on DJIA data 

RC was used as the fitness function in FGP, hence it 
should be used to evaluate how well FGP does its job. For 
reference, as well as for practical reasons, we would also 
like to have some way of measuring the return should the 
GDTs generated be used for investment decisions. The point 
is, even if the predictions are accurate, the actual return 
depends on how we use the predictions. This depends on our 
trading behaviour. For simplicity, we use the following 
hypothetical trading behaviour: 

we assume that when a positive position is predicted, 
one unit of money was invested in a portfolio 
reflecting the DJIA index. Ifthe DJIA index does rise 
by 2.2% or more at day t within the next 21 trading 
days, then we sell the investment at the index price of 
day t. I f  not, we sell the investment on the 21st day, 
regardless of the price.' 

For simplicity, we ignore transaction cost. We define two 
investment performance criteria, namely the average 
annualised rate of return (AARR) and rate of positive return 
(RPK) for evaluating the performance of the GDTs based on 
the above trading behaviour. An annualised rate of return 
(ARR) is defined as follows: 

253 * Pt - PO Mi=-- - 
t Po 

where Po is the buy price, P, is the sell price. t is the number 
of days that the investment is held, 253 is total 
number of trading days in one calendar year. 

Therefore, for one GDT which generates N+ number of 
predictive positive positions, its average ARR is: 

Even if the goal cannot be achieved, we would like to know 
how often a GDT recommends investments that cause the 
investor to lose money. For this purpose, we define W R ,  the 
proportion of positive returns to the total number of positive 
recommendations: 

otherwise 
N+ RPR= -&I where I = N +  

It is worth re-iterating that RC should be the main criterion 
for evaluating the performance of both FGP and C4.5 
because it is what FGP and C4.5 was asked to maximize. 
AARR and RF'R should only be used for reference. 

1 A better approach would be to run a version of FGP to predict 
when it is a good time to buy, and another version which 
recommends when it is a good time to sell.. 
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Numbers 

1 
2 
3 

9 
10 

Highest 
Lowest 

L 

Mean I 54.78% I 46.07% I 62.13% I 49.53% I 36.84% 1 57.27% I 
STD I 0.58% 1 1.70% 1 1.6% I 2.14% 1 3.18% I 1.6% I 

54.67% I 44.22% I 59.92% 
54.67% I 44.92% I 60.17% 

Table 2 Performance of random decisions, FGP and C4.5 on DJIA index, 
12/10/1976 to 5/5/1980 (900 data cases) 

4 Experimental Results 
In our experiments, we ran FGP 10 times. The termination 
condition was set to 2 hours on a Pentium PC (200 MHz) or 
30 generation, whichever reached first. Main parameters of 
the experiments are displayed in Table 1. For each run, a 
GDT generated, based on the training data, was applied to 
the test data. The results of applying the  10 GDTs on the test 
data were recorded in Table 2. To assess the quality of FGP 
results, we compare its results with those of random 
decisions and results generated by C4.5, both of which are 
also reported in Table 2. 

According to the efficient market hypothesis (EMH) 
(Malkiel 1992), stock prices follow a random ‘ walk 
behaviour and therefore no trading rules could out-perform 
random decisions. Our empirical results do demonstrate that 
there is some predictability in the DJIA index based on 
historical data alone. For GDTs, the mean RC, AARR, and 
RPR are 54.78%, 46.07% and 62.13% respectively. These 
are much higher than the mean RC (49.53%), AARR 
(36.84%) and RPR (57.27%) achieved by the 10 random 
decisions. In fact, even the poorest results of 10 GDTs 
(54.00%, 43.29%, and 61.00% for RC, AARR, and RPR 
respectively) is better than the best results of the 10 random 
runs under each of three criteria used here (53.67%, 42.35%, 
and 59.57% respectively). Results here are consistent with 
our results achieved in the past (Tsang et a1.1998; Li & 
Tsang 1999), which shows that FGP is capable of out- 
performing random decisions under any one of above three 
criteria. 

C4.5 is one of the most commonly used decision tree 
learning classifier systems, which was developed by Quinlan 
(1986, 1993). Both FGP and C4.5 take the same type of 
input (training examples) and generate decision trees, which 

C4.5 converts to rulesets that is more easily understood by 
people. We fed C4.5 with the six technical rule indicators 
that we used for FGP. We ran C4.5 system on the same 
training data and applied the rulesets that it generated to the 
test data. Following is an example of a single rule generated 
by C4.5: 

If (PMV-50 > -33.075) And (PMV-50 <= -28.0292) And 
(TRB-SO <= -69.15 And (Filter-5 > -0.26) 
Then Positive Position 

A parameter that significantly affects the performance of the 
rulesets generated by C4.5 is the “certainty factor” (run with 
-c CF), which ranges from 0 to loo.* The certainty factor is 
used to controls pruning, details of which will not be 
elaborated here. The value -c 25 represents default pruning 
in C4.5. Small values usually lead to small rulesets, whereas 
large values imply less pruning and therefore large rulesets. 
Showed in Table 2 under the row of “C4.5 Ruleset Results” 
are -c options with seven different CF values and their 
performances of the corresponding rulesets generated. Mean 
results for RC, AARR, and RPR are 53.40%, 

’ Other parameters can be used to run C4.5. These could potentially 
influence the performances of rule-sets generated. These 
parameters are “confidence” (-F) and “redundancy” (-r). According 
to our experience, using confidence values other than the default, 
such as 20, 10, 5 ,  1, and 0.1, made no difference to C 4 . 5 ’ ~  
performance on our data set. Quinlan (1993, p88) pointed out that 
the setting of the redundancy parameter is only beneficiary if the 
user knows the data well and can estimate appropriate values. We 
have no knowledge to guide us on setting the redundancy value. 
However, to allow a fair comparison, we experimented with 
redundancy values of 2.0, 3.0 and 4.0 in addition to the default 
value (1.0). We observed no results better than those reported in 
Table 2. 
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Groups 

Criteria 

t values 

I D values I 0.0312 I 0.0167 I 0.0029 I 0.0011 I 0.0009 I 0.0224 I 

FGP Vs C4.5 C4.5 Vs Random Runs 

ForRC ForAARR ForRPR ForRC ForAARR ForRPR 

2.0133 2.3406 3.2201 3.7003 3.7379 2.1883 

Table 3 t-statistics for comparing mean performances of two groups 
(FCP versus C4.5 and C4.5 versus Random Runs) 

43.03%, and 59.24%, each of which is lower than the 
corresponding mean result of GDTs, but higher than the 
mean result of random runs respectively. 

To determine whether result differences are statistically 
significant, the statistical one-tailed unpaired t-test can be 
applied on the null hypothesis that mean performances of 
two groups are not statistically different under each of the 
three criteria. Showed in Table 3 are test results for both 
comparisons of FGP versus C4.5 and C4.5 versus random 
runs. p values for comparing FGP and C4.5 sample groups 
are 0.0312, 0.0167 and 0.0029 for RC, AARR, and RPR 
respectively. Notably, all three p values are less than 0.05, 
which means results of FGP are at least better than those of 
C4.5 in terms of any one of three criteria at the conventional 
Statistical significant level (p=0.05). Meanwhile, p values for 
comparing C4.5 and random runs demonstrate that C4.5 
outperforms random runs with more than 95% statistical 
confidence level in terms of any three criteria. It is 
encouraging that both FGP GDTs and C4.5 Rulesets seem to 
grasp plausible hidden patterns in financial data as to 
achieve better performances that cannot explained by 
random decisions. More important is that our FGP 
outperforms C4.5 statistically significantly in this case. Poor 
performances of C4.5 may be contributed to its overfitting 
problem. On training data, the results of rulesets are much 
higher than results of GDTs (both results are not showed in 
this paper). This means rulesets are too overfitting on 
training data to be as good as GDTs on test data. 

5 Conclusion and Further Work 
In this paper, FGP takes some well-known technical analysis 
rules as input indicators to predict whether one can achieve 
2.2% or more within 21 trading days. Using technical 
analysis rules for financial prediction is supported by a fairly 
quantity of finance studies (e.g. Lukac et al. 1988, Neftci 
1991, Brock et al. 1992, Campbell 1997). Consistent with 
the findings in our earlier work, results in this paper 
demonstrate that even over a shorter period (21 trading days 
versus 63 trading days in our earlier paper), FGP still 
reliably generated accurate GDTs. Though the number of 
runs for FGP is small in this paper, results are consistent and 
statistically significant that FGP outperforms C4.5 in terms 
of any criteria including one mainly concerned prediction 

performance of RC and two reference investment 
performances of AARR and RPR. 

So far, our consistent and encouraging results have 
demonstrated that FGP is a promising genetic programming 
based system that is worth further investigation and 
development. We are exploring the possibility of 
incorporating constraint satisfaction techniques (Tsang 
1993, Lau & Tsang 1997) into FGP to improve its capability 
as a forecasting tool. More specifically, we are now 
advancing the fitness function in FGP to generate specific 
rules which are able to meet different demands for investors 
with different investment attitudes. 
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