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Abstract o )

A methodology for using Rough Set for preference modeling in decision problem is presented in this
paper; where we will introduce a new approach for deriving knowledge rules from medical database based on
Rough Set combined with Genetic Programming. Genetic Programming belongs to the most newly techniques
in applications of Artificial Intelligence. Rough Set Theory, which emerged about twenty years ago, is
nowadays rapidly developing branch of Artificial Intelligence and soft computing. At the first glance the two
methodologies we talk about have not in common. Rough Set constructs representation of knowledge in terms
of attributes, semantic decision rules, etc. On the contradictory, Genetic Programming attempts to automatically
create computer programs from a high-level statement of the problem requirements. But, in spite of these
differences, it is interesting to try to incorporate both approaches into combined system. The challenge is to get
as much as possible from this association.

structure of the model to gain new insight into the

1. Introduction problem at hand. By model structure we mean the
Knowledge discovery in database (KDD), often type of the model’s different components, how they
called data mining, aims at the discovery of useful related to each other, and how they can be
information from large collection of data [1,2]. interpreted. Finally we will describe application of
Rough set methodology for knowledge discovery our approach for mining decision rules on medical
provides a powerful tool for knowledge discovery data.

from large and incomplete data. A number of 2. Genetic Rough Induction (GRI)

algorithms and systems have been developed based 2.1. Rough Set Theory

on the rough set theory (for example - see Rough set concept, which introduced by Pawlak
[3,4,5,6,7,8,9,10,11,12,13,2]), which may induce a [14], and one of its essential merits is its direct
set of decision rules from a given data, and may use relation to classification problems [15], is founded
induced rules to classify future examples. Most of on the assumption that each object is associated
them are attempting to find and select the best with some information (data, knowledge). Objects
minimal set of rules, the use only minimal subset of that characterized by the same information are said
attributes from the given data. to be indiscernible in the view of available data.
The advantage of employing various sources of This induces the indiscernibly relation which is the
knowledge and various structures of knowledge in mathematical base of rough set theory.

data mining and knowledge discovery implies that Information system IS=(U,C) is wused for
new algorithmic method are desirable for hybrid representing knowledge, where U is non-empty
systems in which rough set will be applied along finite set of objects called universe, and C is non-
with methods based on the following: Fuzzy Set; empty finite set of attributes. Decision table A=(U,
Neural Nets; Genetic Algorithms; etc. [8,2]. The Cu{d}) is a special case of information system
main reason for combining different techniques in introduced in rough set theory as tool to present
the hybrid systems is that a single technique is data, where C is called condition attributes, and
often not appropriate for every domain or dataset. de C is called decision attribute. Let v, be the value
Another reason is that such a hybrid system has an set for attribute c, then the attribute ¢ can be
advantage over a single method approach because considered as a map c¢:U-v,, i.e. c(x)=v,,% € C.

the technologies ~complement each other’s Let XcU be a set of objects and BCC be a set of
shortcomings. Here we will present a new approach attributes, the indiscernibly relation is defined as:

to task of incorporating rough set and genetic 1(B)={(x,y) € Ux U: ¢(x) = c(y), VceB}.

programming methods into one system for decision
or classification support. We want not only to be
determining the outcomes of new knowledge based
on data, but also we are interested in analyzing the

Objects x, y satisfying the relation I(B) are
indiscernible by attributes from B. An order pair
AS=(U,I(B)) is called an approximation space.
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According to I(B), we can define two crisp sets

B X and B X called lower and upper
approximation of the set of objects X in the
approximation space AS as:

B X={x eU: Ig(x) c X}, and
BX={xe U: I(x) n X#0}.
B X consists of all objects that can be with
certainty classified as elements of set X, and EX

consists of all objects - that can be possibly
classified as elements of set X. The difference

BNp(X)=( B X- B X) is called boundary of X,
which contains all objects that cannot be classified
either to X or complement of X. ’

The indiscernibly relation I(B) partitions the set U
into number of disjoint equivalent-classes denoted -

by UNB)={X,, X3,.:.,
n
i#jand | JX, =U.

i=1

Xu}, where X#X; for every

Decmon ‘rules can be percelved as’ data patterns,‘

which represent relationship -between: attributes
values of a classification system. If A=(U,Cu{d})
is a decision table and V=U{v.ce C}uvd, is a set
of values for attributes, then the decision rule is a
logical form:

IF (c;=v)) &...& (¢;=vy) THEN (d Va).
There exist several measurements in order to
evaluate the decision rule [7:8,2,12]. The
classification accuracy and coverage of rule r are
defined as follows:

Ace(r )_|sup(r)mD[ 1
| sup(r)|
{sup(r)N D | ;
Cov(r)= - 2
D] :

where A| is the cardinality of & set A, Acc(r) is the
classification accuracy of the rule r, Cov(r) is the
coverage of the rule r, sup(r) i is the number of cases
that match the condition part of rule r, and |D| is the
number of cases that match the decision part of rule
r. It is clear that Acc(r) and €ov(r) belong to the
interval [0,1]. Also we: will “inferest in the
measurements of set of rules beside of one rule [8].
The simple strength of set of rules is defined as:
| MRul(X ,u,)|
| Rul(X ;)]
for u; ¢ U is a tested object, Rul'(X;) is the set of all
rules for decision class X;, and MRul (Xj,u;) c Rul
(X;) is a set of rules that matching tested object u;
for decision class X;.
2.2. Genetic Rough Induction gGRl[
Genetic programming [16,17,18,19] 'is one of
several problem solving methods based on analogy
computation to natural evolution under title
evolutionary computations, developed by John
Koza, which automatically creates a computer

sterngth(X ;,u, ; —=(3)
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program from a high-level statement of problem’s
requirements. Since Genetic programming depends
on tree-structure representation, we use C4.5
algorithm [20] to convert the data from decision
table into tree-structure.

For our further considerations let us assume that we
are given a data in the form of decision table A=(U,
Cu{d}), by running C4.5 to construct number of
trees we convert the data into tree representation.
Each tree T over the decision table A consists of
terminal nodes (classes of decision attribute), non-
terminal nodes (the set of attributes C), and edges
(the attribute values V).

The complete path [2] in the tree T is a sequence s

=Vg, do, +++5 Vi, dms Vine1, Where vy is the root of tree,
Vm+1 is the terminal one, dy...dy, are the edges. If v;
is the initjal, then vy is the terminal of edge d;,
i=0,...., m. Let h(s) = m be defined as the length of
path s. if PATH(T) is the set of all complete paths
in the tree T, then h(T)=max{h(s):se PATH(T)} is
called the depth of tree T.

A decision rule r is associated with a complete path
s over the tree T which is denoted by r = rule(s).
The set of paths PATH(T) gives us a set of rules S,
where each rule re S is associated with each path s
€ PATH(T). Sometimes the rules derived from
some paths may have a high error rate, or may
duplicate rules derived from other paths, so the
algorithm usually yields fewer rules than the
number of paths in the tree.

Let ST(A) be the set of all trees over a decision
table A that are constructed by run C4.5 number of
times. The ~set of trees ST(A) represents a
population in genetic programming concept, and
each tree is an individual from this population. The
number of trees in ST(A) is called the population
size M. STo(A) is the set of trees over A in
generation 0 or initial population, and so STi(A) is
the population at generation i. The terminal nodes
in cach tree from ST(A) are assigned values from
Vg, SO we can say that the classes of decision
attribute give here a set called terminal set in
genetic programming. In the same manner the
function set is the set of attributes C where each
attribute is a function c(x). By applying genetic
operators, we build a new population from old ones.
We will define three types of genetic operators:
crossover operator, mutation operator, and
reproduction operator.

Crossover operator [18] is a mapping C:ST(A)* —

ST(AY, ie. C(T,,T,)=(Ty,T,) , where TyT,

€ ST;(A) are called parents and Tl',TZ' € ST (A)

are called offspring. It operates on two parental
trees and creates two new two-offspring consisting
of parts of each parent. The offspring are inserted
into the new population at the next generation
ST;+1(A). These offspring trees are typically of
different sizes and shapes than their parents.
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Mutation operator is a mapping M:ST(A) —8T(A).
It generates a unique offspring tree T from exist

tree T, where M(T)=T " for Te ST(A) and T ' € .

STi+1(A). It operates on one parental tree: and
creates one new offspring to be inserted into the
new population at the next generation.
Reproduction operator is a mapping R:ST(A) —
ST(A), where it selects one individual T and makes
a copy of the tree for inclusion in the next
generation of the population. L.e. R(T)=T, for T
eST(A).
To evaluate each individual in the population, we
covert the tree into set of rules and evaluate it. Let
define the significant of the set of rules L as:
n
2 stragth(X ;,u,)
po= i
n

where strength(X,u,) is defined in formula (3), but
here since we only use training cases to generate
rules and testing cases to measure the efficient of
the method (see the experiments section), so we
select e U and make summation over t to all
cases in the training examples where n is the
number of cases. Since we divide by number of
cases n, so 0 <p <1. The value | can be called the
fitness value of this set of rules that derived from
tree T, so each individual has a value p called the
fitness value of this individual (i.e. L; is the fitness
value of individual i). Depend on the fitness: value
the genstic operators select the individuals to be
processed (the better the fitness, the more likely the
individual is to be selected).
The task is to find all rules such that the significant
of set of rules is at least a threshold. This is the
maximum significant that is found in all previous
generations, and there is a chance that offspring are
fitter than parents. Where there is no predefined
limit for combinations of attributes in the left-hand
side of rule, and the right-hand side is not fixed,
either; this is important so that unexpected rules are
not ruled out before the processing start.
Sometimes the combination of two unimportant
attributes may result in a very good model, or may
two attributes that are found to be important may
depend on each other and combining them would
not add anything. And here the search space of the
rules has exponential size in the number of
attributes.
We mainly achieve two points beside the strength
of the set of rules in the fitness measure:: The
number of rules, and average rule length. This
depends on the data we use, so we will define the
fitness function f; as:
fi= oy(strength of rules W) + ox(no. of rules) + o
(1/average rule length) +oy(1/no. of rules), where
Oy, Oy, 03, and 0 are parameters and by controlling
these parameters we can control which rules we

4)
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will get (e.g. o and oy control what we need: large

or few number of rules as a result).

2.3. The algorithm

In this® subsection we present a classification

algorithm based on the techniques described in the

previous subsection.

Input: Decision Table.

Qutput: Set of rules.

Process:

Stepl:

Read the decision table; determine the upper and

lower approximation for each class in the decision

table, determine the thresholds A for classification

accuracy and 0 for the coverage.

Step2:

Generate number of trees = M (the population size)

by using C4.5 and running it M times. In each run

of C4.5 method we change the probability of

pruning for tree to get differ one. In the end of run

C4.5 method, we store all trees as initial population.

Step3:

Iteratively perform the following sub-steps until

reach the maximum of generation:

a. Evaluate each individual in the population by
the following:

i Convert the tree into set of rules (each
rule is associated with a complete path).

ii.  Remove the duplicated rules.

iii. ~ Compute the classification accuracy and
rule coverage for each rule, and remove
the rule if its accuracy or coverage less
than the thresholds A and 6.

iv. Use the formula (4) as fitness measure to
assign value for each set of rules.

b. Create a new population by applying the
following operations:

i.  Reproduce an existing individual
(selected based on its fitness) and copy it
into the new population.

il. Create two new individuals from two
existing individuals by genetically
recombining randomly chosen parts of

two existing trees using crossover
operation.
iii.  Create new individual from existing one

by randomly mutating a randomly chosen
part of selected tree using mutation
operation.
Step 4:
The best-so-far individual is designated as the
result of run (i.e. the set of rules).
3. Experiments
To wverify the wusefulness of the presented
methodology, a computational experiment has been
performed. We report results of experiments on the
Medical data (Meningitis dataset). This data was
colleted at the Medical Research Institute, Tokyo
Medical and Dental University. It has 140 cases;
cach of which is described by 38 attributes: 19
numerical and 19 categorical. The attribute
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descriptions exist in Table 1. Some instances of the
data are with missing values. We divided this data
into 121 training cases and 19 testing cases. The
problem is to find factors important for three
decisions: Diagnosis (DIAG), Detection of bacteria
or virus (CULT_FIND), and Prediction prognosis
(COURSE).

The dataset was divided into a training set and
testing set, and the computations of rules have been
done only to training data. The results of
computations of rules were applied to the
classification the objects from the testing dataset.
To evaluate the classification process, we use a
measure called classifier’s error rate [8], which is
defined by the ratio of the number of error to the

number of all cases. We will compare the results of
our method with that are obtained from C4.5 and

standard rough set methods..For the standard rough
set, we use ROSETTA software to induce the rulés

from the dataset. In the classification process we.

use the same technique as in C4.5 that the rules are
ordered and the first rule that covers a case is taken
as the operative one. The default rule, rule without
conditions that is put in the end of the list of rules,
comes into play when no other rule covers a case.
The algorithm requires a set of parameters that
have to be manually specified and may have
considerable impact on the performance of the
algorithm. Furthermore, it is desirable to repeat the
same process with different sets of parameters. We
give in details the best set of parameters that we
found through the run of our method.
Table 1: Attribute descriptions for medical data

ABSCESS, BACTERIA,
3 DIAG BACTE (E), TB (E), VIRUS
(E), VIRUS. .
4 DIAG2 BACTERIA, VIRUS.
5 COLD L
6 HEADACHE ;| Numerical.
7 FEVER Numerical. _.
8 NAUSEA Numerical.
9 LOC Numerical.
10 SEIZURE Numerical. .
11 | ONEST RECURR, ;S%BACUTE’
12 BT ‘Numerical.
13| STIFF 0,1,2,3,4,5. -
14 | KERNIG 0,1. )
15 LASEGUE 0, 1.
16 GCS Numerical.
17 | LOC_DAT +5 -
18 | FOCAL +, -
1ABOTIoT e XA At .
19 | WBC Numerical. =
20 CRP Numerical.
21 ESR Numerical.

22 CT_FIND
23 EEG_WAVE

Normal, Abnormal.
Normal, Abnormal.
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24 | EEG_FOCUS +, -.

25 | CSF_CELL Numerical.
26 CELL_POLY Numerical.
27 CELL_MONO | Numerical.
28 | CSF_PRO Numerical.
29 CSF_GLU Numerical.
30 CULT_FIND F,T.

-, Neisseria, Strepto, Staphylo,
Tb, Influenza, Measles, Pi (B),
Varicella, Rubella, Adeno,
Herpes.

31 CULTURE

PLE,

M ABPC+CZX,
FMOX+AMK, ABPC, OPE,
DARA_P, ABPC+FMOX,

LMOX, PCG, ABPC+LMOX,

32 | THERAPY2 | pipciCTX, NO_THERAPY,

ABPC+CTX, INH+RFP,
ABPC+CEX,  ZOBIRAX,
ARA_A, INH, GLOBULIN,
33 | CSF_CELL3 Numerical,
34 | CSF_CELL7 Numerical.

Negative, Dead, Frontal_sign,
EEG_abnormal,

CT_abnormal, Paralysis,
3 C_COURCE Amncsia, Headche, Ataxia,
Aphasia, Epilepsy,
Memory_loss.
36 COURSE N, P.
N, LC, Bechet, Sinusitis,
37 RISK Broncho, Myeloma, LC_DM,
DM, Hepatits, TB.
RISK
| Growpey | NP
Decision attribute Diagnosis (DIAG={Bacteria,
Virus})
We use 33 attributes (Personal Information, Present
History, Physical Examination, Laboratory

Examination, and Therapy and Course), and take
only group attributes (e.g. we take attribute
COURSE and delete attribute C_COURSE see
Table 1). The best set of rules is obtained in
generation 2 (Table 3) with number of rules fewer
and shorter average rule length than which is
obtained from C4.5 or standard rough set method.
The error rate of the set of rules that is obtained
from our method is the same as that is obtained
from C4.5 method but the rules are obtained from
standard rough set method have very high error rate
with this data. The fitness function here depends on
parameters 0;=0.9, 0,=0.1, ¢z =0, and 0,=0. In
another run for our method we get from generation
58 the best set of rules, where it has also the same
error rate = 0.00, but number of rules is 4.00 and
average rule length is 1.00 (see third row of Table
3). Table 2 shows the run parameters that are used
in our experiments where we mainly depend on
crossover operator (probability rate is 0.8). Two
sets of rules that are obtained from our method and
C4.5 method are showed in Table 4.
Table 2: Run parameters for medical data
(Decision Diagnosis and Prediction)

Max generation 32

Population size 600

Max depth for trees 17

Crossover rate 0.8
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Mutation rate

0.1

Reproduction rate

0.1

Table 3: Results from medical data (Diagnosis
decision). :

#rules | Average rule size Error
rate
C4.5 4 1.75 0.00 %
3 1.33 0.00 %
GRI 4 1.00 0.00 %
Rough | 16 2.00 78.9 %
Set

Table 4: Sets of rules are resulted from experiments
with medical data (decision Diagnosis).

CT_FIND = Abnormal
CELL_MONO <=12

GRI C4.5 method
CELL_POLY >220 CELL_POLY >220
- Class - Class
BACTERIA BACTERIA

CT_FIND =Abnormal
CELL_MONO <=12

- Class -= Class
BACTERIA BACTERIA
CELL_MONO >12 CELL_POLY<=220

- Class CELL_MONO >12
VIRUS -=> Class

VIRUS
CT_FIND = Normal
CELL_POLY <=220
- Class
VIRUS
Default Class: VIRUS | Default Class: VIRUS
Decision attribute Detection (CULT FIND={T,
)
We use 16 attributes only (Personal Information,
Present History, Physical Examination) and ignore
laboratory examination (to get new knowledge and
the laboratory examination is very expansive also).
The values for o-parameters of fitness function are
the same as decision DIAGNOSIS. The best set of
rules is obtained in generation 117 (Table 5) with
number of rules better than C4.5 and shortest
average rule length. Our method is the best one in
error rate compared with C4.5 method and standard
rough set method. The parameters for run here are
shown in Table 7 where we increase mutation
operator rate to 0.5. The list of rules that are
obtained from our method and C4.5 method is
showed in Table 6.
Table 5: Result of run in medical data
decision attribute Detection).

#rules | Average rule size Error
rate
C4.5 1 6 26.3%
GRI 5 2.40 21.1 %
Rough |, 11.00 63.2 %
Set

Table 6: Rules resulted from experiments with
medical data (decision attribute Detection).
GRI C4.5 ]
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AGE<=46 AGE<=46
COLD <=7 COLD <=7
NAUSEA <=9 NAUSEA <=9
LOC <=0 LOC <=0
ONEST = ACUTE ONEST = ACUTE
BT >36.1 BT >36.1

- Class F - Class F
GCS <=10

- Class F
COLD >7
COLD <=9

-2 Class T
ONEST=CHRONIC

-2 Class T
AGE >37
COLD >7

-> Class T
Default Class: F Default Class: F

Decision attribute Prediction (COURSE ={n, p})
We use with this data 16 attributes (Personal
Information, Present History, Physical
Examination) and we ignore Laboratory
Examination. The rules resulted from our run with
new method and C4.5 method are showed in Table
9. The best set of rules is obtained in generation 4
(Table 8) with number of rules, average rule length,
and error rate is same as C4.5 method, but better
than standard rough set method, where from Table
9 we observe that the rules obtained from our
method differ than that are obtained from C4.5
method except only one rule is the same. The
parameters for run are showed in Table 2 as in
decision attribute DIAGNOSIS.
Table 7: Parameters for run in medical data
(Decision attribute Detection).

Max generation 200
Population size 800
Max depth for trees 17
Crossover rate 0.4
Mutation rate 0.5
Reproduction rate 0.1

Table 8: Results from medical data
(Decision attribute Prediction).

#rules | Average rule size Error
rate
C4.5 4 2.50 5.26%
GRI 4 2.50 5.26 %
Sough | 95 14.00 73.7%
et

Table 9: Rules resulted from experiments with
medical data (decision attribute Prediction).

GRI C4.5
COLD>9 AGE>21
FOCAL =+ FEVER <=8

-> Class P AGE <=62
SEX =M FOCAL =-
AGE >62 -> Class N
HEADACHE >2.6e-09 | COLD>9

- ClassP | FOCAL =+ |
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LOC >2 -2 Class P
STIFF =2 SEX =M

-=> Class P AGE >62
AGE <=62 --> Class P
FEVER <=21 LOC>2
FOCAL =- BT <=38.6

- Class N -=> Class P

Default Class: N Default Class: N

Regarding the application we introduced, our
approach achieves a more accuracy than heuristics
of C4.5 and standard rough set theory. But C4.5 is
faster, however the execution time was not a major
tasks involved in its utilization. These results are
suggesting that our method can be treated as a
promising tool for. extracting laws from
experimental datasets and its.performance is fully
comparable with the performance of other
classification systems.

4. Conclusions

On the basis of a modified rough set theory, we
have presented a new algorithm, which provides an
efficient and effective mechanism for knowledge
discovery in database system:. In the hybrid
framework, rough set  theory and genetic
programming are integrated into hybrid system and

used cooperatively to generate a“set of rules: from:
database. We believe that, successful research:
requires good co-operation between theoreticians:

and practitioners,” so we. preserited in this paper the
analysis of structure of the model for our new
method and compared
extracting laws from decision table based.on rough
. set theory and that based on C4.5 algorithm with
our new method on medical dataset. We observe
that the rules extracted by our new method are
relatively better predisposed in classification than
both C4.5 and standard rough set approaches.
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