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Abstract 
John Koza [ 13 demonstrated that a form of machine learning could be constructed by using the techniques of 
Evolutionary Computation with LISP statements. We describe here an extension to this principle using Fuzzy 
Logic sets and operations instead of LISP. We show that Genetic programming can be used to generate trees of 
fuzzy logic statements that optimise some external process, that these can be converted to natural language rules, 
and that these rules are easily comprehended by a lay audience. As an example we use financial traders. We 
demonstrate an application of these techniques to automating financial trading. We also show that even with 
minimal data preparation the technique produces rules with good out of sample performance on a range of 
different financial instruments. 

Introduction 
In 1965 Lotfi Zadeh [2] first published a description and analysis of Fuzzy Logic. This is a true superset of 
Boolean Logic and permits the description of functions and processes with a degree of vagueness or uncertainty. 
Since then various workers in the field have extended the concept of rule based expert systems [3] to embrace 
Fuzzy Logic [4] [ 51 [ 61. 
John Holland [7] published his book on Genetic Algorithms in 1975. This described a methodology for 
optimisation of arbitrary functions using techniques gleaned from the processes of natural evolution. This 
methodology is both robust in optimising noisy and non-linear functions and powerful in that multiple solutions, 
where they exist, are automatically generated by the technique. In 1992 Koza [ 11 published his extension to 
Holland’s work that used Genetic techniques to modify an initial randomly generated set of LISP statements. 
Koza used LISP because statements in this language can be easily converted to a parse-tree representation. In 
Koza’s methodology a set of parse trees are evaluated using some external test set and performance measure, and 
mated to form a new set with selection of pairs at random, but with a bias towards those with the highest 
performance. Mating, unlike Holland’s crossover technique, is performed by cutting the parent parse trees at 
randomly selected points and swapping the pruned subtrees to produce offspring that are copied into the next 
generation. It has been found that the performance of succeeding generations improves, if hesitantly, and that a 
wide variety of problems can be solved by this technique. 

Implementation 
In our implementation the parse trees contain fuzzy  operators and fuzzy  sets. We follow Koza’s methodology but 
limit the combinations permitted under mating so that the trees generated could be converted back to production 
rules of the form: 

if <Conditions> then <Crisp Classification> 

where <Conditions> are: 
<Conditions> And <Conditions> 
<Conditions> Or < Conditions> 
Not <Conditions> 
<operand> is <Fuzzy Comparative Set> <operand> 
<operand> is <Fuzzy Set> 

Fuzzy Operators: 
And is defined as the Min operation on two variables 
Or is defined as the Max operation on two variables 
Not is the inversion of a single variable (output = 1-input) 
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Fuzzy Sets 
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Figure 1, Threshold function 

This is used to generate fuzzy sets with linguistic values such as “greater than”, “less than”, “much larger than”, 
“large”, “small” etc.. The two parameters a and g control the position and steepness of the threshold. The second 
set type has a range function: 
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Figure 2, Range function 

The two parameters a and c control the width and position of the fuzzy set respectively. The range function is 
used to generate fuzzy sets with linguistic values such as “close to”, “fairly close to”, “medium” etc.. 

Genetic Programming of the Fuzzy Rule Sets 

The initial population 
The size of the initial population may be varied in our application, but we have found that Koza’s suggested size 
of 500 provides a good selection of genetic material without imposing excessive processing overheads. 
We generate rule sets using Koza’s ‘ramped half-and-half method. In this, equal numbers of rules are generated 
for each depth between 2 and the maximum (default 5). Of these, half the trees are ‘full’, (i.e. all branches are 
full length) and the rest are ‘grown’ (i.e. branches may be different lengths). Our default maximum depth is 9. 
Inputs to a fuzzy link (And, Or, Not) may be other links or fuzzy sets. Inputs to fuzzy sets can only be terminals 
(leaf nodes). The inputs to comparative fuzzy sets must be different, so ‘if A is greater than A’ is illegal. 
However, we have not, at present, disallowed deeper forms of contradiction or tautology, e.g. ‘if A is greater than 
B or A is much greater than B’. 
We exclude the expression ‘Not Not’. 
Terminal nodes are selected randomly from the general pool of input values. 
We normalised the data we supplied to the genetic programming system to the interval 0,l. This enabled us to 
limit the fuzzy set parameters to the interval - 1,1 
The fuzzy set functions above were recast to give two parameters that controlled the centre or transition point of 
the set, and the rate of transition or crispness of the set. In the initial generation the centre parameters were 
selected randomly with a uniform distribution. The crispness parameter was randomly chosen with a gaussian 
distribution centred on 0, and the result squared to give a single ended result. 

Subsequent generations 
Subsequent generations are produced by a roulette selection of tree pairs based upon their fitness calculated in 
the previous generation (see below for details of the fitness algorithm). The rules for legal sets are the same as 
those described above, but the maximum depth of created trees is greater (default 9). 



After selecting a pair of trees, we randomly determine whether they will be passed directly to the next generation 
(probability 0.1) or mated together (probability 0.9). Mating is done by randomly selecting crossover points 
anywhere on each tree, then swapping the cut limbs. This may involve a single node or almost the entire tree. 
When mating produces an illegal tree, as defined above, an alternate cross point is selected. If a pair of legal 
trees cannot be generated, then the parent trees are transferred to the next generation unchanged. 
Elitism (where the best tree so far is always passed to the next generation) was employed for all the examples 
discussed. 

Experiments 
We are interested in the apparent ability of this technique to generate rules that optimise some external process 
that are both effective and easily understood. We have chosen the generation of financial trading rules as a test of 
this technique partly because of personal and corporate interest, but also because the making of money is the 
most widely accepted measure of effectiveness. 
The process in this case to be optimised is the trading of financial instruments. We use as input the price history 
of the instrument of interest consisting of 500 daily samples. The samples contain the open price, High achieved 
during the day, low achieved, and closing price. 
The other vital constituent is a simulation of trading. Financial trading is not a homogenous activity, in particular 
the time scale over which traders work varies dramatically. Because only daily data was initially available we 
chose to simulate trades with a minimum duration of 1 day. In most of the markets we looked at short trading 
was possible, i.e. as well as buying an instrument in the expectation of a price rise, one can also borrow an 
instrument in the expectation of a price drop, and thus make a profit on either direction of market movement. 
Instruments are traded with bid-ask spreads, this means that the selling price is higher than the buying price by 
some narrow margin which is a source of profit to the dealer, and there can be commission charges. We 
simulated each of these attributes of trading and had our simulation checked by a suitably qualified external 
organisation. 
The inputs to the rules were constructed by moving a time window over the historical data, the rules were 
evaluated with the input data and a trading decision for each day was generated. The trading decisions were to 
buy, or not to buy. not buying was interpreted as a command to go short, or to borrow a quantity of the 
instrument. We settled on an output above 0.5 representing a buy decision. In our simulation we kept the capital 
employed at a nominal $1 million, profits were accumulated but not committed. The data window was swept 
across the historical data and a trading history generated along with a total final profit or loss figure. 

The pool of input values used for input to the rules was created from the sampled time series using a time 
window. If we were determining the rules trading advice for day n, and had for example set a window size of 3, 
the pool from which inputs were initially randomly extracted would consist of Clos%.l,Close,.z,Close,.3, Open,- 
l,0pen,.2, etc.. In previous work [8],[9], we have made much of the importance of window size in non-linear 
time series prediction; here we select only the maximum size of the window and let natural selection decide on 
embedding parameters. In the work described here a window size of 20 was used 

Fitness Algorithm 
The profit earned by a trading rule was calculated as described above, and a running total profit/loss series was 
generated. Various measures derived from this series have been tried out as fitness algorithm, our current 
favourite is a mixture of final profit and linearity of the equity curve. It has also proved helpful to pre-test the 
initial generation for profitability, and discard and replace non-profit making rules until the entire generation is 
profitable.. 

Results 

In Sample Performance 
Initial training runs on foreign exchange data produced results rapidly as can be seen in Figure 3 which shows that 
the best profit evolved after 12 generations. 
The best result found in our initial trials, however, was: IF Dall2 is small OR Day3 is small OR Day4 is small 
then buy DM, which yielded a profit of 18%. This is simply a summary of the simple rule ‘buy low, sell high’. 
Whilst it was encouraging to find that the system spotted the obvious, this is clearly not useful information since 
the system clearly took advantage of the normalisation to which the data was subjected before use. In taking 
advantage of the normalisation, the system made use of data not available to the trader. Trading rules which 



make use of level information will not generalise well to subsequent years in financial trading. We can obtain 
rules that generalise better by making use of the relationships between input values. We found that comparative 
sets were driven out of the population by absolute sets as training continued. 
We overcame this by only allowing comparative sets. This yielded the results shown in Figure 4. Note that the 
profit returned by this algorithm is 62%. 
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Figure 3, Training run and best rule with mixed sets 
Best  Training Profit: 62.0% p.a. 
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Figure 4, Training run and best rule with comparative sets only 

Evolutionary anomalies 
We observed an occasional tendency for the population to evolve towards a non-productive special case. For 
example, a population produced with the same initial conditions as the example above (Figure 4) evolved into a 
population containing only Or links and only Range sets To prevent this, we added mutation to the parse trees. 
All nodes were given a probability of 0.005 of mutation. If selected for mutation, the following transformation 
would be performed on the node: 

If an operator: 
And * Or, 
Or And, 



Not Not. 

either a) threshold =$ range, range 3 threshold, 
or b) a new pair of parameters is randomly chosen, 
or c) the input terminals are exchanged. 

If a set: 

with equal probability of each. 

This made little difference to the general performance of the algorithm, but the anomalous evolution described 
above has not recurred. 

Effects of Population Size 
We tried training with both very large and very small populations, to determine the trade-off between training 
times and growth in fitness. The time for one generation is approximately proportional to the size of population, 
although smaller populations seem to generate larger mean tree sizes. The results are plotted in Figure 5.  

0 0 1  
250 

Average of 10 best rules in 
run 

500 

0 0 

0 
m fe . . . * *  -2000 
0- 

I I ,  I I 

0 5 10 15 20 25 
Thousands of Rule Evaluations 

$160,000 
$140,000 
$120,000 
$100,000 
$80,000 
$60,000 
$40,000 
$20,000 

$0 
250 500 1000 2000 

Population 

Figure 5, Mean profit growth and best profit for different population sizes 

Out of Sample Performance 
In order to find out if this technique produced rules that generalised well with out-of sample data we tried 5 
different daily time series of over 500 days, and left the last 30 trading days out of the training set as an out of 
sample test. It is our practice to store the best 10 rules, in terms of in-sample performance, of any particular 
training run as they are generated. The figures below are the average in-sample and out of sample scores of those 
ten rules annualised so as to make comparison possible. 

Average in sample 
Annualised profit % 

US T. Bond 61.35 
NIKKEI 61.57 
FTSE 73.75 
S&P 8 1.93 
DM 39.58 

Average out of sample 
Annualised profit % 

11.58 
7.67 
13.11 
3.00 
13.73 

The system was retrained for each series. The random number generator we use is seeded with the time on first 
use in a training session. Each run therefore contains different sets of random numbers. [ 101 Is a good overview 
of the non-stationary and non-linear nature of financial time series that make them such a stern task for this 
technique. 
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Conclusion 
We have shown that the combination of Genetic Programming and a Fuzzy Logic Inference engine produces a 
powerful methodology for the generation of Fuzzy production rules that are both effective and intelligible. We 
have provided a simple example of the use of this methodology drawn from the world of financial trading that 
generates trading signals that are profitable both in and out of sample . 
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