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Abstract 
Three  soft comput ing  paradigms f o r  automated 

learning in robotic s y s t e m s  are briefly described. 
T h e  f i r s t  emp loys  G e n e t i c  Programming  (GP) t o  
evolve ru l e s  f o r  f i z zy -behav iors  t o  be used in m o -  
bile robot control.  T h e  second paradigm devel- 
ops a two-level  hierarchical f u z z y  control s tructure 
f o r  f lexible man ipu la tor s .  It incorporates  G e n e t i c  
A l g o r i t h m s  ( G A )  in a learning scheme  t o  adapt  
t o  var ious  env i ronmen ta l  condi t ions.  T h e  third 
parad igm concentrates  o n  a methodology t h a t  u s e s  
a Neura l  N e t w o r k  (NN) t o  adapt a f u z z y  logic con- 
trol ler  (FLC) in m a n i p u l a t o r  control tasks .  Simu- 
la t ion  resul ts  of f u z z y  controllers learned w i t h  t h e  
aid of t hese  soft comput ing  paradigms are pre- 
sented.  

1 Introduction 

Traditional methods which address robotics control is- 
sues rely upon strong mathematical modeling and anal- 
ysis. The various approaches proposed to date are suit- 
able for control of industrial robots and automatic guided 
vehicles which operate in structured environments and 
perform simple repetitive tasks that require only end- 
effector positioning or motion along fixed paths. How- 
ever, operations in unstructured environments require 
robots to perform more complex tasks for which ana- 
lytical models for control can often not be determined. 
In cases where models are available, it is questionable 
whether or not uncertainty and imprecision are suffi- 
ciently accounted for. Under such conditions fuzzy logic 
control is an  attractive alternative that can be success- 
fully implemented on real-time complex systems. Fuzzy 
controllers are robust in the presence of perturbations, 
easy to  design and implement, and efficient for systems 
that deal with continuous variables [l]. In many practical 
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instances, fuzzy control alone is not sufficient for address- 
ing the complex intelligent control problems of robotic 
systems. Additional tools are necessary to achieve adap- 
tation and learning capabilities. The control schemes de- 
scribed herein are examples of approaches that augment 
fuzzy logic with soft computing paradigms to achieve the 
level of intelligence required of complex robotic systems. 

The 
first incorporates fuzzy logic control, with rule learning 
by genetic programming (GP) [2], into the framework of 
behavior control for mobile robot navigation. The second 
develops a two-level hierarchical fuzzy control structure 
for flexible manipulators. It incorporates genetic algo- 
rithms (GA) 131 in a learning scheme to  adapt to various 
environmental conditions. The third concentrates on a 
methodology that uses a Neural Network (NN) to learn 
rules or change membership functions for a fuzzy logic 
controller (FLC) in a two rigid link control. 

Three fuzzy control approaches are described. 

2 Rule Learning for Mobile Robots 

In the fuzzy-behavior control scheme, a mobile robot be- 
havior is encoded as a fuzzy rule-base designed to map 
relevant sensor inputs to control outputs according to the 
desired control policy. In developing fuzzy-behaviors we 
take into consideration the notion that humans may not 
have the best solutions for designing knowledge-based 
controllers with interacting rule-bases. As an alternative, 
good results have been achieved by employing genetic 
programming to learn a subset of the fuzzy-behaviors 
141 that comprise a given behavior control system. In 
GP, a population is comprised of computer programs 
(individuals) that  are candidate solutions to a partic- 
ular problem. These individuals participate in a simu- 
lated evolution process wherein the population evolves 
over time in response to selective pressure induced by 
the relative fitnesses of the individuals in a particular 
problem environment. In our approach, each program 
executes condition-action statements which collectively 
serve as a rule-base to be embedded in a fuzzy-behavior. 
In the process of learning fuzzy control rules, G P  ma- 
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nipulates the linguistic variables directly associated with 
the behaviors and enhances diversity of a population of 
behaviors by allowing for rule-sets of various sizes. 

Given a desired motion behavior, the behavior search 
space is contained in the set of all possible rule-bases 
that can be composed recursively from a set of functions 
and a set of terminals. The function set consists of com- 
ponents of the generic if-then rule and common fuzzy 
logic connectives, i.e. functions for antecedents (ANT),  
consequents (CONSQ),  fuzzy intersection (f A N D ) ,  rule in- 
ference (IF-THEN), and fuzzy union (f -OR). The function 
f -OR takes a variable number of arguments (equal to the 
number of rules) and the remaining functions each take 
two arguments. The terminal set is made up of the in- 
put and output linguistic variables and the correspond- 
ing membership functions associated with the problem. 

2.1 Example 

We applied GP  for developing a mobiile path-tracking 
behavior. Its task was to learn/evolve fuzzy rules to 
properly steer a mobile robot for path following in the 
plane. The problem is taken from Hemami [5] where it 
is formulated for a class of low-speed (less than 2 m/s) 
tricycle-model vehicles. The state vector consisted of 
measurable pose errors associated with path following. 
The position error ( E d )  is taken as the deviation from the 
nearest point on the desired path. The orientation error 
( € 0 )  is the angular deviation of the robot's heading from 
the tangent t o  the desired path. The front wheel steering 
angle (6) is the corrective control action that causes the 
error states to decay to zero, thus forcing the robot to 
follow the path. Thus, the rule-base to be learned is a 
two-input-one-output fuzzy-behavior that will map the 
error states into a steering angle a t  each time step. In 
our GP applications we focus the effort on evolving the 
rule-base and assume that the membership functions are 
specified a priori and are fixed. Given the function and 
terminal sets, a rule-base that could potentially evolve 
via G P  can be expressed as a parse tree with preordered 
branches. An example of a syntactically valid rule-base 
of two rules is depicted in Figure 1 along with its interpre- 
tation as a linguistic rule-base. The linguistic notation 
in the figure is interpreted as follows: N B  z "negative 
big", N S  3 "negative small", Z 5 "zero", P S  "posi- 
tive small", P B  E "positive big", and lowercase prefixes 
"p" and "of7 designate fuzzy membership functions for 
position error and orientation error respectively. Fuzzy 
sets for the steering angle are labeled without a prefix. 

During the G P  evolution process, each rule-base in 
the current population is evaluated via simulation to de- 
termine its fitness for tracking the desired path. Eight 
fitness cases (initial conditions) were used for this exam- 
ple. The fitness of a given rule-base was based on the 
Euclidian norms of the error state vector at  the end of 
each fitness case. Results from a simulation of a path- 
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Figure 1: Rule-base tree structure. 
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Figure 2: Path-tracking performance: (a) Ed-, 

& e -  -; (b) phase portrait. 

tracking behavior learned by GP is shown in Figure 2a. 
The figure illustrates the fuzzy-behavior performance in 
terms of pose errors with initial values of E d  = 0.8 m. 
and E O  = -0.9 rad. Improved results can be obtained by 
modifying the fitness function used to drive the evolution 
process. This was demonstrated in [4] where additional 
results and more detailed discussion can be found. Al- 
though the evolved behavior learned the control rules 
using only eight pre-selected fitness cases, it  was able to 
generalize when started from initial conditions through- 
out the error state space. This is shown in the phase 
portrait of Figure 2b which reveals that  the origin is a 
stable node of the system. 

3 GA-learning Fuzzy Control for Flexi- 
ble Robots 

Flexible robots are classified as distributed parameter 
systems (DPS) and are functions of space as well as time. 
Due to  the complexity of a mathematical representation 
for such systems, fuzzy logic is considered an attractive 
alternative to their control. One of the issues in de- 
velopment of fuzzy controllers is determining a faithful 
expert knowledge. An expert knowledge, however, is dif- 
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Figure 3: GA-Based Learning Hierarchical Control 
Architecture 

ficult to produce since there is often no human expert 
to be consulted and training a human expert may not 
be a feasible alternative due to cost and other practical 
considerations. Furthermore, human psychological issues 
may prohibit a faithful reproduction of rule-base from 
an expert. In addition, the unstructured operating envi- 
ronments such as in space and waste handling projects 
require the robot controller to also adapt to changing 
conditions. As an  alternative, good results have been 
achieved by employing genetic algorithms to  tune pa- 
rameters within a fuzzy controller's knowledge base [6].  
Genetic algorithms equip the Fuzzy controller with some 
evolutionary means by which it can improve its rule-base 
when faced with inadequate a-priori expert knowledge or 
varying circumstances in its operating environment. 

Figure 3 shows a possible GA-learning hierarchical 
fuzzy control architecture. Within the hierarchical con- 
trol architecture, the higher level module serves as a 
fuzzy classifier by determining spatial features of the a rm 
such as straight, Oscillatory, Curved. This information 
is supplied to the lower level of hierarchy where it is pro- 
cessed among other sensory information such as errors 
in position and velocity for the purpose of determining 
a desirable control input (torque). In [?I this control 
system is simulated using only a-priori expert knowl- 
edge. In the given structure, a genetic algorithm fine 
tunes either parameters of membership functions and/or 
rule set's antecendents and consequents. If the param- 
eter space includes both parameters from membership 
functions as well as rules, it can involve more degrees of 
freedom than is necessary to uniquely represent a given 
nonlinear mapping between inputs and outputs of the 
controller. Consequenly, in this paper, the GA genetic 
representation involves only membership parameters. 

I 

I 
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Figure 4: GA Simualtion (a) Comparison of Time 
Responses (b) Plot of Average Fitness 

3.1 Example 

To demonstrate the potential usage of genetic algo- 
rithms, GA is applied to  optimize parameters related to 
input membership functions of the higher level of hier- 
archy as is shown in Figure 3. Other parameters in the 
knowledge base are not allowed to vary. The following 
fitness function was used to evaluate various individuals 
within a population of potential solutions, 

where e represents the error in angular position and x 
represents overshoot. Consequently, a fitter individual is 
an indivual with a lower overshoot and a lower overall 
error (shorter rise time) in its time response. 

When developing the hierarchical controller, some ini- 
tial knowledge is expected to  be supplied through expert 
knowledge for feature extraction and the lower level con- 
trol. The initial population is made up  of parameters 
chosen randomly with the same mean as the a-priori pa- 
rameters. Figure 4.a shows the time response of the 
GA-optimized controller when compared to previously 
obtained results through the non-GA fuzzy controller. 
The rise time is improved by 0.34 seconds (an 11% im- 
provement), and the overshoot is reduced by .07 radians 
( a 54% improvement). Figure 4.b shows the average fit- 
ness of each generation. A total of 10 generations were 
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Figure 5: Schematic of Neuro-Fuzzy Controller 

simulated. Mutation rate for this simulation was set at 
0.1. Probability of cross over was set to  0.6. 

4 Self-organizing Neuro-Fuzzy 
Controller 

The learning capability of the neural network can be 
made use of in designing the fuzzy controller. The SeZf- 
organizing f u z z y  control ler  is one such combination of 
a neural network and a fuzzy controller [8]. Figure 5 
shows a schematic diagram of the system forming the 
self-organizing fuzzy controller. The aim of this system 
is to  automatically form the fuzzy controller. I t  uses two 
neural networks of the back propagat ion learning t ype ,  
N N 1  and "2. NN1 acts as a classifier of the dynamic 
responses of the system being controlled (robot system). 
"2, set in judgment mechanism 2, has knowledge of the 
dynamic characteristics of the object system. Judgment 
mechanism 2 has a self tuning mechanism to automat- 
ically determine the normalizing values of the member- 
ship functions to  control the object system adequately. 

In this particular case NN1 classifies the error in the 
joint angle positions of a robot system to several typical 
patterns such as a similar pattern to  the desired response 
or a n  oscillating and diverging pattern or an oscillating 
and slowly converging pattern or any other pattern. The 
result of the classification is sent to  judgment mechanism 
1. NN2 is made to  learn the dynamic characteristics 
of the object system through pairs of input and system 
response. "2 can then be used to  simulate the object 
system in cases where i t  is too risky to control the object 
system with an incomplete fuzzy controller. 

4.1 Example 

Auto tuning neuro-fuzzy controller is applied to  control 
a model of two link robotic manipulator [9]. In this case, 
since the model of the object system is known, "2 is 
not utilized. 

A step change of one radian is applied as the desired 
input to  the two joints of a robotic manipulator. The 
temporal values of the joint angle is feed to a neural net- 
work (multi-layered perceptron). This neural network 

Auto Tunins 0 1  Robotis Manipulator R-.pa*- U-lng Adaptlve Nsuro-Fu- Controller 
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Figure 6: Auto Tuning of Robotic Manipulator Re- 
sponse: (a) Joint One (b) Joint Two 

consisting of 20 input nodes, 10 nodes in the hidden layer 
and 3 output nodes is initially trained t o  recognize three 
different patterns of responses. They are oscillatory but 
converging, exponentially converging and diverging re- 
sponses. The output of the NN ranges from 0 through 1, 
depending on the degree of these responses, for example 
if the oscillation persists for a long time then the output 
may be closer to  1. 

Figure 6 shows the response of the system. Initially 
the fuzzy P D  controller is not tuned. The  solid lines 
indicates an oscillatory but converging response. The 
NN output as shown in Figure 7 shows the degree of the 
oscillatory response shown with solid lines. The adap- 
tation mechanism acts by changing the scaling factor of 
the derivative portion of the fuzzy P D  controller. In the 
subsequent responses shown by the dashed lines shows 
less oscillations. Finally after 10 iterations the oscilla- 
tions die down (dotted lines). The controller is tuned 
to  perform in a desired manner. The desired response 
here is exponentially coverging. Figure 7 shows the de- 
gree oscillations is reducing as the degree of exponentially 
converging response increases (dashed line). 

5 Conclusions 

This paper shows applications of three softcomputing 
paradigms for knowledge enhancement of fuzzy logic con- 
trollers. In the context of mobile robot control, a fuzzy 
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Figure 7: Degree of Oscil la t ions and Exponential 
Convergence:  (a) Joint O n e  (b) Joint Two 

logic-based system has the advantage that it allows the 
intuitive nature of sensor-based navigation to  be easily 
modeled using linguistic terminology. Moreover, precise 
sensing and detailed maps of the environment are not 
absolutely necessary. The hierarchy of distributed fuzzy 
behaviors provides an  efficient approach for controlling 
mobile robots, or other complex systems, that have many 
rules. The practical utility of the control scheme lies in 
its decomposition of the totality of rules into subsets of 
rules that are consulted only when applicable. When the 
state of the world satisfies the conditions for activation of 
a single behavior, or several, there is no need to process 
rules from behaviors that  do not apply (as in the con- 
ventional FLC architecture). Processing rules from irrel- 
evant behaviors would result in unnecessary consumption 
of computational resources and possible introduction of 
“noise” into the decision-making process. The hierarchi- 
cal decomposition of behavior leads to a suitable frame- 
work for situated adaptation and is amenable to  design 
by evolutionary methods. 

Second issue in this paper is the GA-learning fuzzy 
controller. The controller offers a hybrid fuzzy approach 
to  control of flexible arms. The second level hierarchy 
determines the fuzzy features of Straight, Oscillatory, 
and Gent ly  Curved. At this point, only input mem- 
bership functions for the higher level hierarchy were al- 
lowed to  adapt. Even with this limited adaptation, re- 
sponse has shown significant improvement in both de- 
creased rise time and reduced overshoot. Greater im- 

provements are expected if all membership functions are 
allowed to  adapt. However, too many adaptation pa- 
rameters can cause extra degrees of redundany which 
complicate the search space and increase computational 
requirements. Hence, rule adaptation will be considered 
separately from membership function adaptation in the 
next stage of this research. 

In the third focus of the paper an adaptive self- 
organizing fuzzy controller is proposed which can auto- 
matically tune the fuzzy rule base and also create new 
fuzzy rules by the help of neural networks. The pro- 
posed scheme has now a learning mechanism by which it 
can adapt to  changing conditions. The neuro-fuzzy con- 
troller is applied to  a two-link robotic manipulator. The 
simulation results show the fuzzy controller is properly 
tuned to  perform towards the desired specifications. 

References 

E. H. Mamdani, “Twenty Years of Fuzzy Control: 
Experiences Gained and Lessons Learnt”, IEEE 
Intl. Conf. on Fuzzy Systems, pp. 339-344, 1993. 

J. R. Koza, Genetic Programming: On the program- 
ming of Computers b y  means of natural selection, 
MIT Press, Cambridge, MA, 1992. 

D. E. Goldberg, “Genetic Algorithms in Search, 
Optimization and Machine Learning,” Addison- 
Wesley, MA, NY, 1939. 

E. Tunstel and M. Jamshidi, “On Genetic Program- 
ming of Fuzzy Rule-based Systems for Intelligent 
Control”, Intl. Jrnl. of Intelligent Automation 6 
Soft Computing, Vol. 2 No. 2, 1996, in press. 

A. Hemami ”Steering Control Problem Formula- 
tion of Low Speed Tricycle-model Vehicles”, Inter- 
national Journal of Control, Vol. 61, No. 4, pp. 783- 
790, 1995. 

M. A. Lee and H. Takagi, “Integrating Design Stages 
of Fuzzy Systems Using Genetic Algorithms,” Pro- 
ceedings of  the IEEE International Conference on 
Fuzzy Systems, San Francisco, CA, pp. 612-617. 

M.-R. Akbaaadeh-T., M. Jamshidi, and N. Vadiee, 
“A Hierarchical Fuzzy Controller Using Line- 
Curvature Feature Extraction For A Single Flexible 
Arm,”Proc. of the I994 IEEE Conference on Fuzzy 
Systems, FUZZ’94, pp 524-529, Orlando, F1, 1994. 

K. Kumbla M. Akabarzadeh and M. Jamshidi, 
“TMS3.20 DSP Chip Based Neuro-Fuzzy Controller” 
IEEE Conference on Man, System and Cybernetics, 
Vancouver, pp 4015-4020, October 1995. 

K. Kumbla and M. Jamshidi, “Control of Robotic 
Manipulator Using Fuzzy Logic”, IEEE Intl. Conf. 
on Fuzzy Systems, pp 518-523, Orlando, FL, 1994. 

359 


