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ABSTRACT 

Data mining has become an important research topic. The 
increasing use of computer results in an explosion of 
information. These data can be best used if the knowledge 
hidden can be uncovered. Thus there is a need for a way to 
automatically discover knowledge from data. In this paper, new 
approaches for knowledge discovery from two medical 
databases are investigated. Two different kinds of knowledge, 
namely rules and causal structures, are learned. Rules capture 
interesting patterns and regularities in the databases. Causal 
structures represented by Bayesian networks capture the 
causality relationships among the attributes. We employ 
advanced evolutionary algorithms for these discovery tasks. In 
particular, Generic Genetic Programming is employed as rule 
learning algorithm. Our approach for discovering causality 
relationships is based on Evolutionary Programming which 
learns Bayesian network structures. 

1. Introduction 

Data mining has become an important research topic [2]. The 
research in this area can be useful for a lot of real world 
problems. For instance, medical domain is a major area for 
applying data mining. With the computerization in hospitals, a 
huge amount of data has been collected. It is beneficial if these 
data can be analyzed automatically. 

In this paper, we will introduce our approaches for 
discovering knowledge from two medical databases. Two 
different kinds of knowledge, namely rules and causal 
structures, are learned. Rules capture interesting patterns and 
regularities in the database. Causal structures represented by 
Bayesian networks capture the causality relationships among 
the attributes. We employ advanced Evolutionary Algorithms 
[6] [7] [3] for these discovery tasks. In particular, Generic 
Genetic Programming is employed as rule learning algorithm. 
Our approach for discovering causality relationships is based 
on Evolutionary Programming which learns Bayesian network 
structures. To handle continuous attributes, we employ Genetic 
Algorithm to find a good discretization policy. 

This paper is organized as follows. Section 2 introduces 
the two medical databases we have analyzed. The tasks of 
learning rules and Bayesian networks are also introduced in 
this section. Section 3 describes our approach for rule learning. 
Sections 4 and 5 describe our approach for Bayesian network 
learning which is composed of two layers. Section 4 details the 
inner layer that learns Bayesian network structures from 
discrete variables, and Section 5 details the outer layer that 
discretizes continuous variables while learning network 
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structures. The learning results are presented in Section 6. 
Finally Section 7 is the conclusion. 

2. The Learning Tasks 

2.1. Medical Databases 

Our learning targets are two medical databases from the 
Orthopaedic Department of the Prince of Wales Hospital of 
Hong Kong. The first database, the fracture database, consists 
of records of children with limb fractures admitted to the 
hospital in the period 1984-1996. This data can provide 
information for the analysis of children fracture patterns. This 
database has 6500 records and 8 attributes which are listed in 
Table 1. 

Name I Type I Explanation 
Sex I Nominal I Sex 1 

Table 1 : Attributes in the fracture database 

The second database contains clinical records of Scoliosis 
patients. Scoliosis refers to the spinal deformation. A Scoliosis 
patient has one or several curves in his spine. Among them, the 
curves with severe deformations are identified as major curves. 
The database stores measurements on the patients, such as the 
number of curves, the curve locations, degrees and directions. 
It also records the maturity of the patient, the class of Scoliosis 
and the treatment. The database has about 500 records and the 
attributes are shown in Table 2. 

2.2. Rule Learning 

We investigate the task of discovering rules from these two 
databases. We make use of a rule representation which is easily 
understandable rule is a sentence of the form 
"if antecedents, then consequent". The antecedents are 
specifying certain characteristics of attributes. In general, the 
antecedent part is a conjunction of descriptions about 
attributes, while the consequent is a descriptor for a single 
attribute. Rule learning is the process of inducing rules from a 
set of training examples. 
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The accuracy or the confidence of a rule is the probability 
that the consequent occurs under the condition that the 
antecedents occur. If the accuracy is loo%, the rule is an exact 
rule. If the accuracy is near loo%, the rule is a strong rule. If 
the accuracy is not high but is already much larger than the 
average probability of the consequent, then the rule is a weak 
rule. A data mining approach should not only discover exact or 
strong rules. Because weak rules may also provide precious 
knowledge to analysts. 

Mens 
TSI 
TSIDir 
RI 

The parameters of Ni are conditional probability distributions in 
the form of P ( N , ~ ~ N J ,  with one distribution for each possible 
instance of n ~ , .  Figure 1 is an example Bayesian network 
structure showing the causality relationships among the 
attributes in a medical domain concerned with "blue" baby 
diagnosis. 

Period of Menstruation 
Trunk Shift (in cm) 
Trunk Shift Direction (null, left or right) 
Risser Sign (integer between 0 and 5), 

I K-IV, K-V, TL or L) 

Treatment 

which measures the maturity of the 
patient 
Treatment (observation, surgery or 
bracing) 

2.3. Bayesian Network Learning 

A Bayesian network [5] is a different model to represent 
probabilistic knowledge of data. It is a formal knowledge 
representation supported by the well-developed Bayesian 
probability theory. It captures the conditional probabilities 
between variables (i.e. attributes in the database), and focuses 
on the causality relationships between variables. In many real- 
life situation, the data cannot be described completely by a few 
rules. Building a complete model for such a database is difficult 
and usually results in a complicated model. A Bayesian 
network can be a complement to rules. Due to the graphical 
representation, a Bayesian network is easily understandable. It 
has a well-developed mathematical model and can be used to 
perform reasoning under uncertainty. 

Formally, a Bayesian network is a directed acyclic graph. 
Each node represents an attribute and each edge represents a 
dependency between two nodes. An edge from node A to node 
B can represent a causality conveying the fact that the value of 
B depends on the value of A .  The value of each variable should 
be discrete. Each node is associated with a set of parameters. 
Let NI denote a node and rb" denote the set of parents of NI.  

Figure 1: A Bayesian network structure in a "blue" baby 
domain 

The main task of learning a Bayesian network is to 
automatically find directed edges between the nodes, such that 
the network can best describe the causalities. Once the network 
structure is constructed, the conditional probabilities are 
calculated based on the data. 

3. Rule Learning using Generic Genetic 
Programming 

We employ an advanced evolutionary algorithm called Generic 
Genetic Programming (GGP) to discover rules from a database. 
GGP [13] is an extension to Genetic Programming which uses 
a grammar to control the structures being searched. A grammar 
is provided by the user as a template for rules. A set of rules is 
derived by using this grammar and forms the initial population. 
Then, the main loop of GGP is entered. In each generation, 
individuals are selected stochastically to evolve offspring by 
the three genetic operators: crossover, mutation and dropping 
condition. In each generation, the number of new individuals 
evolved equals to the population size. Thus the total number of 
individuals in the population is doubled. All individuals 
participate in the token competition and the replacement step, 
so as to eliminate similar rules and increase the diversity. One 
half of the individuals with the higher fitness scores after token 
competition are retained and passed to the next generation. The 
whole process iterates until the maximum number of 
generations has been reached. 

3.1. Grammar 

The initial set of rules are created based on a grammar. The 
grammar of GGP governs the structures to be evolved. It serves 
as a template for the rules. The initial population is created by 
randomly 'filling' in this template. GGP will then search for the 
best set of rules without violating the grammar. 

The grammar specifies that a rule is of the form "if 
antecedents then consequent". It specifies which attributes can 
appear in the antecedent part and which attributes can appear in 
the consequent part. It also specifies the descriptors used to 
describe each attribute. The rule formats in various problems 
can be different. Thus for each problem, a specific grammar is 
written so that the format of the rules can best fit the domain. 
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The use of grammar provides a powerful knowledge 
representation and allows a great flexibility on the rule format. 
Rules with the user desired structure can be learned because the 
user can specify the required rule format using the grammar. 

3.2. Genetic Operators 

In rule learning using GGP, the search space is explored by 
generating new rules using three genetic operators. The genetic 
operators change the attribute descriptors in order to search for 
better rules. 

Crossover produces one child from two parents. One 
parent is designated as the primary parent and the other one as 
the secondary parent. A part of the primary parent is selected 
and replaced by another compatible part from the secondary 
parent. The offspring produced must be valid according to the 
grammar. 

Mutation is an asexual operation. A part in the parental 
rule is selected and replaced by a randomly generated part. The 
offspring has to be valid according to the grammar, thus a 
selected part can only mutate to another part with a compatible 
structure. 

Dropping condition is an genetic operator for rule 
learning, to avoid subsumed rules. The rules evolved in GGP 
may be too restrictive and include redundant constraints. 
Dropping condition [lo] is used to generalize rules. A rule can 
be generalized if one descriptor in the antecedent part is 
dropped. Dropping condition selects randomly one attribute 
descriptor, and then turns it into 'any'. That particular attribute 
is then no longer considered in the rule. 

3.3. Evaluation of Rules 

An evaluation function based on the support-confidence 
framework [l]  is developed as the fitness function in our rule 
learning approach. Support measures the coverage of a rule. 
Confidence factor ( c j  is the confidence of the consequent to 
be true under the condition that the antecedents are also true. 
For a rule 'if A then B' and with a training set of N cases, 
support is p&BIIN and confidence factor is p&BIIpI. 

When evaluating the confidence of a rule, we need to 
consider the average probability of consequent @rob). The 
valueprob is equal to IBIIN. We defined c f s a r t  as 

cf- purt = cf x (-) cf 
Prog 

The log function measures the order of magnitude of the ratio 
cflprob. A high value of c fpar t  requires simultaneously a high 
value on cf and a high value on the ratio cflprob. 

Support is another measure to be considered. If support is 
below a user-defined minimum threshold ("in-support), the 
confidence factor of the rule is based on a small number of 
training examples, and we just ignore the 
confidence factor. 

Our fitness function is defined to be: 
support, if support < min-support 
w, x support + w2 x cf -part ,  otherwise 

raw- fitness = 

where the weights w, and w2 are user-defined weights used to 
control the balance between the confidence and the support in 
learning. These two values have been set to 1 and 8 
respectively. 

3.4. Token Competition 

The token competition [9] technique is employed in our rule 
learning approach to search for a set of rules instead of just one 
rule, ,The concept is as follows: In the natural environment, 
once an individual has found a good place for living, it will try 
to exploit this niche and prevent other newcomers to share the 
resources, unless the newcomer is stronger than it is. The other 
individuals are hence forced to explore and find their own 
niches. In this way, the diversity of the population is increased, 
so that good individuals in different niches are maintained. 

Based on this mechanism, we assume each record in the 
training set can provide a resource called token. If a rule can 
match a record, it set a flag to indicate the token is seized. 
Other weaker rules then cannot get the token. The priority of 
receiving tokens is determined by the strength of the rules. A 
rule with a high score on rawfitness can exploit the niche by 
seizing as many tokens as it can. The other rules entering the 
same niche will have their strength decreased because they 
cannot compete with the stronger rule. The fitness score of each 
individual is modified based on the token it can seize. The 
modified fitness is defined as : 

where rawfitness is the fitness score obtained from the 
evaluation hnction, count is the number of tokens that the rule 
actually seized, ideal is the total number of tokens that it can 
seize, which is equal to the number of records that the rule 
matches. 

modij iedj tness  = rmy- fitness x count I ideal 

4. Learning Bayesian Networks from Databases 

Besides from learning rules from data, we have developed an 
approach to learn Bayesian network structures from discrete 
variables. The approach is based on Evolutionary Programming 
(EP) and the Minimum Description Length (MDL) principle. 
The MDL principle has been applied on Bayesian network 
learning in our previous work [8]. The principle [l 11 states that 
the best model of a collection of data is the one that minimizes 
the sum of the encoding lengths of the data and the model 
itself. The MDL metric is defined in [8] to measure the total 
description Zength DL of a network structure G. The total 
description length of a network is the sum of description 
lengths of each node. This length of each node is defined based 
on two components, the network description length and the 
data description length. The first part is the description length 
for encoding the network structure, which measure the 
simplicity of the network. The second part is the description 
length for encoding the data, which measure the accuracy of the 
network. 

To search for a good network structure, we develop an 
approach called MDLEP [ 121 which uses Evolutionary 
Programming to optimize the MDL metric, so as to learn the 
best Bayesian network structure. A Bayesian network is a 
directed acyclic graph (DAG). A set of DAGs is randomly 
created to make up the initial population. Each DAG is 
evaluated by the MDL metric. Then each DAG produces a 
child by performing a number of mutations. The child is also 
evaluated by using the MDL metric. The next generation of 
population is selected among the parents and children by 
tournaments. One half of DAGs with the highest tournament 
scores are retained for the next generation. The process is 
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repeated until the maximum number of generations is reached. 
The network with the lowest MDL score is output as the result. 

Offspring in EP are produced by using a number of 
mutations. The probabilities of using 1, 2, 3, 4, 5 or 6 
mutations are set to 0.2, 0.2, 0.2, 0.2, 0.1 and 0.1 respectively. 
The mutation operators modify the edges of a DAG. If a cyclic 
graph is formed after the mutation, edges in the cycles are 
removed to keep it acyclic. The approach uses four mutation 
operators, with the same probabilities of being used: 

Simple mutation randomly adds an edge between two 
nodes or randomly deletes an existing edge from the 
parent. 
Reversion mutation randomly selects an existing edge 
and reverses its direction. 
Move mutation randomly selects an existing edge. It 
moves the parent of the edge to another node, or moves 
the child of the edge to another node. 

4. Knowledge-Guided mutation is similar to simple 
mutation, but the MDL scores of the edges guide the 
selection of the edge to be added or removed. The MDL 
metric of all possible edges in the network is computed 
before the learning algorithm starts. This mutation 
operator stochastically adds an edge with a small MDL 
metric to the parental network or deletes an existing 
edge with a large MDL metric. 

1. 

2. 

3. 

5. Discretizing Continuous Variables while Learning 
Bayesian Networks 

Bayesian network can only represent discrete variables. One 
approach to handle the databases with continuous variables is 
to discretize them first. The continuous variables are usually 
discretized by thresholds specified by human. However, 
different discretization policy will produce different network 
structure. The causality will be lost if the discretization is not 
suitable. Thus it is desirable to search for the best discretization 
policy before Bayesian networks are induced. 

A discretization sequence h defines a function that maps a 
continuous variable to a discrete variable. Each discretization 
sequence contains a list of threshold values. The variable will 
be discretized according to the range specified by the 
thresholds. A discretization policy, A = { hizi is continuous}, is 
a collection of discretization sequences for each continuous 
variable. The policy defines a new set of variables u*={X,',. . . , 
X,*} where &*=fQ(&) if X, is continuous and XI'= X, otherwise. 

5.1. MDL for discretization policy 

Friedman and Goldszmidt extend the MDL score to evaluate 
the discretization policy while learning Bayesian network 
structures [4]. They have also described a greedy approach for 
learning the discretization policy and Bayesian networks [4]. 
The approach learns the discretization policy and network 
structures alternatively. It starts with an initial discretization 
policy and learns Bayesian networks from the discretized data 
set by using the MDL metric. Based on the learned structure, a 
discretization policy is learned by using the MDL metric. In 
learning the discretization policy, only one variable is re- 
discretized at a time. The discretization sequence of this 
variable is reset to empty (i.e. no threshold values) first. The 
greedy approach searches for the 'split' that gives the largest 

decrease in the MDL metric. The process is repeated until there 
is no improvement. 

However, the greedy search algorithm can be easily 
trapped in a local optima. This approach also greatly depends 
on the initial settings. If the initial guess of discretization policy 
or network structure is not good, the result can be poor. 

5.2. Learning Discretization Policy using Genetic 
Algorithms 

A Genetic Algorithm (GA) is applied to optimize the new MDL 
metric, and thus the best network structure as well as the best 
discretization policy can be learned. It is less likely that the 
algorithm will be trapped in a local optima, because there is a 
population of individuals to explore the search space in 
parallel. 

Our approach starts with an initial discretization policy. 
MDLEP is then used to learn the best network structure. Based 
on this structure, GA is used to learn the best discretization 
policy. The process is iterated until the maximum number of 
iterations is reached. 

The genetic algorithm starts with an initial randomly 
generated population. Each individual in the population is 
evaluated by the new MDL score defined in [4]. The good 
individuals are selected to produce offspring using the genetic 
operators. The offspring in turn produces the next generation 
until the maximum number of generations is reached. 

6. Learning Results 

6.1. Fracture Database 

6.1.1. Results of Bayesian Network Learning 

The relationships among the attributes are analyzed by learning 
a Bayesian network. We have used a population size of 50 for 
both MDLEP and GA. The discovered network structure is 
drawn in Figure 2. Day, Month, Weekday and Year refer to 
different parts of the admission date. The age is discretized into 
0-4, 5-9, 10-12 and 13-16. The day and month are discretized 
into just one range, which means that they are not involved in 
any relationship in the Bayesian network. Year is divided into 3 
ranges. Stay is divided into 3 ranges. 

x 

Figure 2: The discovered network structure for the fracture 
database 

From the network structure constructed, the following 
interesting relationships are observed: 

v -939 



The value of Diagnosis affects the values of 
Operation and Stay. Different fractures are treated 
with different operations, and require different time for 
recovery. 
The value of Diagnosis affects the value of Age. Some 
fractures are more frequently occurred in particular age 
groups. 
The value of Age affects the value of Sex. It is observed 
that the young patients are more likely to be female, and 
elder patients are more likely to be male. 
The value of Operation and Stay affects the value of 
Year. It is observed from the database that the length of 
stay in hospital is longer in the year 1985, 1986 and 
1994, and open-reduction occurs more frequently for 
earlier years. 

About 

6.1.2. Results of Rule Learning 

Rules prof 
mean 1 max I min I mean I max I min I mean 

Based on the learned Bayesian network, we observe a causality 
model between diagnosis, operation and stay. We wish to learn 
knowledge about these attributes. Firstly, sex, age and 
admission date are the possible causes of diagnosis. Secondly, 
these three attributes and diagnosis are the possible causes of 
operation and surgeon. Thirdly, length of stay has all other 
attributes as the possible causes. A grammar is written as a 
template for these three kinds of rules. We have used a 
population size of 300 to run for 50 generations in the rule 
leaming step. The results are listed in Table 3. 

I No,of I cf I suuvorl I c f /  I 

nosis I I I I I I I I 
Opera I 8 1 4 2 . 6 %  I 74.0% I 28.0% I 5.4% I 16.2% I 3.2% 1 2.0 
-tion I I I I I I I I 
Stay I 7 I 7 1 1 %  I 8 1 1 %  I 4 7 0 %  I 45% 1 8 7 %  I 3 1 %  I 2 5  

Table 3: Summary of the rules for the fracture database 

The learning process can uncover knowledge about the 
age effect on fracture, the relationship between diagnoses and 
operations, and the effect of diagnoses and operations on 
lengths of staying in the hospital. 

The results have been evaluated by the medical experts. 
Previous analysis on fracture patterns only gave an overall 
injury pattern. Our system automatically uncovered 
relationships between different attribute values. The learned 
rules provide interesting patterns that were not known before. 
The rules revealed some interesting treatment patterns and 
rules. It can provide a good monitor of change of pattern if the 
data mining process is continued longitudinally over the years. 
It also provides the information for setting up a knowledge- 
based instruction system to help young doctors in training. 

6.2. Scoliosis Database 

6.2.1. Results of Bayesian Network Learning 

The learning of network structures and discretization policies 
are alternated for 20 iterations. For the learning of network 
structures using MDLEP, we have used a population of 50 to 
run for 100 generations. In each iteration of the learning of 
discretization policies using GA, the population size is 50 and 
the number of generations is 10. The discovered Bayesian 

network structure learned from this data set is shown in Figure 
3. The age is divided into 0-12 (child), 13-16 (adolescence:), 
17-21 and over 22. The degrees and Mens are divided into 
different ranges. 

Figure 3: The discovered network structure 
database 

for the Scoliosis 

The discovered Bayesian network shows some physical 
relationships among attributes. For example, the network shows 
that lstMCDeg and 2ndMCDeg are related with Deg2. The two 
major curves are defined as the curves with the largest degrees 
among the four curves, and most likely Deg2 are involved. 
Degl and Deg2 can imply Deg4 and Deg3 because if the degree 
of first or second curves are small, the degree of the remaining 
curves are either zero or small. The network also reveals some 
patterns; Age affects Mens and R I  (the maturity), and the value 
Of Mens affects Sex. In addition, the following relationships are 
observed: 

The value of Operation affects the value of 
IstMCDeg. If Operation equals to observation, the 
value lstMCDeg is smaller. If Operation equals to 
surgery, the value of lstMCDeg is large. 
The value of Deg3 affects the value of lstCurveT1. If 
Deg3 is large, the spine has three or more curve, and 
most likely the first curve starts at the first vertebra T1. 
The value of Deg3 affects the value Of TSIDir. If Deg3 
is small, most of the time the direction of trunk shift is 
null. 
The value of Treatment affects the value of 
IstMCDeg. If treatment is bracing, most likely the 
degree of the first major curve is small. In contrast, if 
operation is needed, the degree of the first major curve 
is usually large. 

6.2.2. Results of Rule Learning 

The medical experts are interested in inducing knowledge 
about classification of Scoliosis. Scoliosis can be classified as 
Kings, Thoracolumbar(TL) and Lumbar(L), while Kings can be 
further subdivided into K-I, 11, 111, IV and V. This domain 
knowledge has been incorporated in the design of the rule 
grammar. 

The population size used in the rule learning step is 100 
and the maximum number of generations is 50. For each class 
of Scoliosis, a number of rules are obtained. The results are 
summarized in Table 4. 

The rules discovered are generally consistent with the 
knowledge of medical experts. However there is an unexpected 
rule for the classification of King-11. Under the conditions 
specified in the antecedents, our system found a rule with a 
confidence factor of 52% that the classification is King-11. 
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However, the domain expert suggests the class should be King- 
V! After an analysis on the database, we revealed that serious 
data errors existed in the current database and that some 
records contained an incorrect Scoliosis classification. The 
rules for TL and L also show something different in 
comparison with the rules suggested by the clinicians. 
According to our rules, the classification always depends on the 
location of thefirst major curve, while according to the domain 
expert, the classification always depends on the larger major 
curve. After discussion with the domain expert, it is agreed that 
the existing rules are not defined clearly enough, and our rules 
are more accurate than theirs. Thus, our rules provide hints to 
the clinicians to re-formulate their concepts. 

Class 
King-1 
K i n g 4  
K m -  

No of cf support prof 
Rules mean max min mean max min mean 

5 94.84% 100% 90.48% 5.67% 10.73% 0.86% 28.33% 
5 80.93% 100% 52.17% 6.61% 14.38% 107% 35.41% 
4 23.58% 25 87% 16.90% 1.56% 2.58% 086% 794% 

111 
King- 

I I I I I I I I I 3 124.38% I 29.41% I 19.35% I 118% I 1.29% I 1.07% I 2.79% 
111 

King- 
1v 

King-V 
TL 
L 

Table 4: Results of the rules for Scoliosis classification 

3 24.38% 29.41% 19.35% I 18% 1.29% 1.07% 2.79% 

5 54.13% 61.50% 45.45% 097% 1.07% 0.86% 6.44% 
1 41.18% 41.18% 41.18% 1.50% 1.50% 1.50% 2.15% 
3 54.04% 62.50% 45.45% 2.Wh 2.7% 1.07% 4.51% 

The biggest impact on the clinicians from the data mining 
analysis of the Scoliosis database is the fact that many rules set 
out in the clinical practice are not clearly defined. The usual 
clinical interpretation depends on the subjective experience. 
Our data mining effort revealed quite a number of mismatches 
in the classification on the type of Kings curves. After a careful 
review by the senior surgeon, it appears that the database 
entries by junior surgeons may not be accurate and that the data 
mining rules discovered are in fact more accurate! The 
classification rules must therefore be quantified. The rules 
discovered can therefore help in the training of younger doctors 
and act as an intelligent means to validate and evaluate the 
accuracy of the clinical database. 

1v 
King-V 
TL 
L 

7. Conclusion 

I 

3 54.04% 62.50% 45.45% I 2.Wh 2.7% 1.07% 4.51% 

5 54.13% 61.50% 45.45% I 097% 1.07% 0.86% 6.44% 
1 41.18% 41.18% 41.18% 1 1.50% 1.50% 1.50% 2.15% 

We have presented our approaches for knowledge discovery 
from two medical databases. Firstly, rules are learned to 
represent the interesting patterns of the data. Secondly, 
Bayesian networks are induced to act as causality relationship 
models among the attributes. The Bayesian network learning 
process is divided into two phases. In the first phase, a 
discretization policy is learned to discretize the continuous 
variables, and then Bayesian network structures are induced in 
the second phase. We employ advanced evolutionary 
algorithms such as Generic Genetic Programming,, 
Evolutionary Programming, and Genetic Algorithm to conduct 
the learning tasks. 

From the fracture database, we have discovered 
knowledge about the patterns of children fracture. From the 
Scoliosis database, we have discovered knowledge about the 
classification of Scoliosis. We also. have found unexpected 
rules that led to discovery of errors in the database. These 
results demonstrate that the knowledge discovery process can 
find interesting knowledge about the data, which can provide 
novel clinical knowledge as well as suggest refinements of the 
existing knowledge. 
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