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Abstract 
A variety of evolutionary algorithms, operating according 
to Darwinian concepts, have been proposed to 
approximately solve problems of c o w n  engineering 
applications. Increasingly common applications involve 
automatic learning of nonlinear mappings that govern the 
behavior of control systems. In m y  cases where robot 
control is of primary concern, the systems used to 
demonstrate the effectiveness of evolutionary algorithms 
often do not represent practical robotic systems. In this 
paper, genetic programming (GP) is the evolutionary 
strategy of interest. It is applied to learn fuzzy control 
rules for a practical autonomous vehicle steering control 
problem, namely, path tracking. GP handles the 
simultaneous evolution of membership functions and rule 
bases for the fuzzy path tracker. As a matter of 
practicality, robustness of the genetically evolved f izzy 
controller is demonstrated by examining the efJects of 
sensor measurement noise and an increase in the robot’s 
nominal forward velocity. 

1. Introduction 

In recent years, increased efforts have been centered on 
developing intelligent control systems that can perform 
effectively in real-time. These include the development 
of non-analytical methods of soft computing such as 
evolutionary computation and fuzzy logic. These 
methods have proven to be effective in designing 
intelligent control systems and handling real-time 
uncertainty, respectively [l, 21. In this paper, our efforts 
are focused on combining these paradigms to develop 
path tracking controllers for autonomous vehicles such as 
mobile robots and automated guided vehicles (AGVs). 
Specifically, we employ genetic programming (GP) for 
off-line learning of path tracking rules to be implemented 
in a fuzzy logic controller. 

Genetic programming [3] has recently been 
demonstrated to be a viable approach to learning fuzzy 
logic rules for mobile robot control and navigation [4,5]. 
Herein, we address the simultaneous design of fuzzy logic 
controllers (FLCs) using GP, i.e. evolution of both the 
input membership functions and the rule base. In 
addition, we extend the evolutionary influence of GP by 
incorporating t4e random selection of fuzzy logic 
connectives (t-norms) into the learning process. Finally, 
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we examine the robusmess of the evolved controllers by 
corrupting sensory data used by the path following robot, 
and by increasing the nominal forward velocity of the 
vehicle. This provides an indication of how well GP can 
evolve practical solutions that also retain the tolerance of 
imprecision and uncertainty characteristic of FLCs. 

2. Overviews of Fuzzy Control and GP 

A FL€ is an intelligent control system that smoothly 
interpolates between rules, i.e. rules fire to continuous 
degrees and the multiple resultant actions are combmed 
into an interpolated result. A fuzzy set may be 
represented by a mathematical formulation known as a 
membership function. That is, associated with a given 
linguistic variable (e.g. speed) are linguistic values or 
fuzzy subsets (e.g. slow, fast, etc.) expressed as 
membership functions which represent uncertainty, 
vagueness, or imprecision in values of the linguistic 
variable. These functions assign a numerical degree of 
membership to a crisp (precise) number. More precisely, 
over a given universe of discourse (relevant numerical 
range) X, the membership function of a fuzzy set, denoted 
by cl(x), maps elements x E X into a numerical value in 
the closed unit interval, i.e. Mx): X 

Implementation of a fuzzy controller requires assigning 
membership functions for inputs and outputs. Inputs to a 
fuzzy controller are usually measured variables, 
associated with the state of the controlled plant, that are 
fuzzified (assigned membership values) before being 
processed by an inference engine. The heart of the 
controller inference engine is a set of if-then rules whose 
antecedents and consequences are made up of linguistic 
variables and associated fuzzy membership functions. 
Consequences from fired rules are numerically aggregated 
by fuzzy set union and then collapsed (defuzzified) to 
yield a single crisp output as the control signal for the 
plant. For detailed introductions to fuzzy control, fuzzy 
set operations, and concepts of fuzzification, inference, 
aggregation, and defuzzification see one of [2,6]. 

In the GP paradigm, a population is comprised of 
computer programs or procedures (individuals) that are 
candidate solutions to a particular problem. These 
individuals participate in a simulated evolution process 
wherein the population evolves over time in response to 
selective pressure induced by the relative fitness of 
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individuals in the problem domain. In our approach, each 
program executes condition-action statements, which 
collectively serve as a rule base to be embedded in a 
fuzzy controller. To preserve diversity among populations 
and vital genetic information among individuals, genetic 
operators are applied to create new individuals for 
succeeding generations. When the algorithm finally 
converges or satisfies its termination criteria, it is 
anticipated that the best (most fit) individual will be 
representative of an optimum or near optimum solution. 

In the next section, we introduce the autonomous 
vehicle control problem, followed by discussion of FLC 
design issues to be considered when employing GP. 

3. Mobile Robot Path Tracking Problem 

The control problem examined in this paper is a path 
tracking problem, which was formulated by Hemami et al 
[7, 81 for a class of low speed (less than 2 m/s) tricycle- 
model vehicles. Essentially, the control objective is to 
successfully navigate a mobile robot or AGV along a 
desired path in a two-dimensional environment. We wish 
to automatically design a fuzzy controller that will 
achieve this objective. The inputs consist of a measurable 
position error, a, and a measurable orientation error, &a 
associated with path following in the plane (see Figure 1). 
Thc output is the steering angle, 4 which is the corrective 
control action that would cause the errors to approach 
zero and, thus, force the robot to follow the desired path. 

The position error is taken as the deviation of the center 
of gravity, C, or any other desired point of the robot from 
the nearest point on the path. The orientation error is the 
angular deviation of the robot from the tangent of the 
desired path. Hemami- et al derived a state-space 
kinematic model for this robot where the state vector was 
comprised of the pose errors described. The reader is 
referred to either of [7] or 181 for details of the model 
derivation, which culminates in the following 

where Vu is forward linear velocity of the robot, and qd 
and qa are rates of change of the effects of path 
curvature. In [8] it is concluded (based on dynamic 
analysis of the same vehicle) that for small steering angle, 
S (tan S a, Equation (1) approximates the slow 
dynamics of the vehicle when its forward velocity is low. 
For simulations presented later, we have simplified the 
robot kinematic model by taking this small steering angle 
approximation into account. Furthermore, we apply the 

Controller to straight-line path following and, therefore, 
neglect the model effects of path curvature. Such a 
simplification does not preclude autonomous tracking of 
reasonably complicated paths since multi-segment paths 
can be defined to be piecewise linear. 
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Figure 1. Tracking control and error variables. 

For our application, we assume that the robot has dead- 
reckoning/odometry sensors that provide access to the 
error states at all times, or permit calculations thereof. 
This sensory input data is then mapped to control outputs 
a m d i n g  to the desired control policy. In path following 
simulations the state vector of the kinematic model is 
updated using the well-known fourth-order Runge-Kutta 
numerical integration method. 

4. GP Design of Fuzzy Controllers 

The path tracker to be learned by GP is a two-input, 
singleoutput fuzzy controller that will map the error 
states into a proper steering angle at each time step. A 
population of candidate solutions is created from which a 
solution will emerge.' The allowance for rule bases of 
various sizes enhances the diversity of the population. 
That is, the GP system creates individuals in the initial 
population that each have possibly different numbers of 
rules within a range (15-30) specified before a run. In the 
process of learning fuzzy control rules and membership 
functions, GP manipulates the linguistic variables directly 
associated with the controller. Given a desired motion 
behavior, the search space is contained in the set of all 
possible rule bases that can be composed recursively &om 
a set of functions and a set of terminals. The function set 
consists of membership function definitions (describing 
controller inputs), components of the generic fuzzy if-then 
rule, and common fuzzy logic connectives. More 
specifically, these include functions for fuzzy sets, rule 
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antecedents and consequents, fuzzy set intersection and 
union, and fuzzy inference. The terminal set is made up 
of the input and output linguistic variables and the 
corresponding membership functions associated with the 
problem. 

Selection of appropriate t-norms is automated, thereby, 
giving the GP system greater control of the evolutionary 
design. That is, the influence of GP is extended to 
include selection of the type of t-norm employed to 
compute the conjunction of fuzzy propositions in the 
antecedent of a rule. The two most commonly used t- 
norms for fuzzy control are Mamdani's men and Larsen's 
product [6]. T-norms for each conjunctive rule are 
selected at random by GP for rule bases in the initial 
population, and are carried along based on fitness in 
successive generations. 

To achieve the goal of evolving FLCs, the GP system 
must conform to strong syntactic constraints when 
breeding individuals. Special rules of construction were 
introduced in [4]. In order to accommodate evolution of 
input membership functions, in addition to the rule base, 
the allowable syntax was extended in [9] and 
implemented using a representation proposed in [l]. We 
refer the reader to [4] and [9] for more detail on the 
syntactic constraints and other GP implementation issues 
related to fuzzy controller design. 

4.1. Controller Fitness Evaluation 

Each rule base in the current population is evaluated to 
determine its fitness value for steering the robot from 
initial locations near the desired path to final locations on 
tlic path such that steady state and final pose errors are 
in i iiimized. This evaluation involves frequent simulation 
of the robot's motion from each of a finite number of 
initial conditions until either the goal state is achieved or 
the allotted time expires. The initial conditions are 
referred to as fitness cases in the GP community. For this 
problem we use eight different initial conditions, which is 
a logical choice given the pair-wise symmetry of the 
possible error categories illustrated in Figure 2. Consider 
error category (d), which represents a case where the 
robot is located on the left of the desired path with a 
negative heading orientation. There also exists a 
symmetric case where the robot is lmted on the right of 
the desired path with a positive heading orientation. 
Thcse symmetric cases are each represented by error 
category (d). The same holds for category (a), (b) and (c) 
illustrated in the figure, yielding a total of eight fitness 
cases that fully describe the possible combmations of 
errors with respect to the path. 

The fitness function is a measure of performance used 
to rank each individual relative to others in the 
population. We compute path tracking performance by 

summing the Euclidean norms (nonnalizeb) of the final 
error states plus the average control effort ( B over a~ 
eight fitness cases. Thus, the following fitness function 
drives the evolution process 

Raw Fitness = 8 ,/- (2) 
i=l 

where E, and E, are the position error and orientation 
error existing at the end of each fitness case simulation. 
The objective of this fimess function is to minimize final 
path tracking errors as well as the control effort expended. 
As such, a perfect fitness score is zero and, in general, 
Iower fitness values are associated with better controllers. 
Simulations thus far showed that including 8 as part of 
the path tracking metric signmcantly reduces undesired 
steering oscillations. Fitness functions based solely on 
final error states sometimes yielded impractical 
controllers that exhibited rapid oscillations in the steering 
control signal, which would cause damage to the steering 
mechanism of a real mobile robot. 

The path tracking success of an individual in the 
population is also based on iQ ability to minimize 
tracking errors to within the following specified 
tolerances, I Ed 1~0.15m and I Eo I <0.26 rad., for each 
fitness case. A fitness case simulation in which these 
tolerances are satisfied is considered a hit, or successful 
trial. Thus, each individual has the potential of receiving 
a total of eight hits during fitness evaluation. 

5. 

In 

Figure 2. Error categories for control problem. 

Path Tracking Results 

this section, we present representative results of 
simulated path t r a k g  performance for an evolved 
controller. The simulated robot is based on Hemami's 
kinematic model with dimensions taken from the Hero-l 
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mobile robot. The  her^-1 has a tricycle wheel 
configuration in which the front wheel is driven by a JX 
motor and steered by a stepper motor. Its two rear wheels 
are passive. Dimensions employed are 0.3m for the 
wlicelbase, and 0.2m for the offset €tom the rear axle to 
the front wheel. These dimensions correspond to the 
constant lengths 2d and MP of Figure 1, respectively. AU 
simulations were conducted assuming a controller 
sampling rate of 20 Hz and run for a rnaximum of ten 
seconds. In each case, the robot travels at a constant 
nominal forward speed of 1.5 m/s unless otherwise stated. 

The GP system was implemented in the C 
programming language on a 260 MHz MIPS DECstation. 
Five consecutive runs (initialized using different random 
number generator seeds) were executed on a population of 
200 individuals for a maximum of 50 generations. About 
oiic hour of computation time is required for a run of this 
magnitude. A rule base of 25 rules emerged as the fittest 
among all five runs. This rule base used five conjunctive 
rulcs, threc employing the Mamdani t-norm and two 
eniploying the Larsen t-norm. The evolved input 
membership functions associated with the best rule base 
arc shown in Figure 3 and the rules are listed in Table 1. 
TIC notations NB, NS, Z, PS, and PB represent fuzzy 
liiiguistic terns of “negative big”, “negative small”, 
“zcro”, “positive small”, and “positive big”, respectively. 
Terms describing the inputs, and €6 are preceded with 
the prefix “p” and “0” respectively. The fixed output 
mcmbership fuiictions are shown in Figure 4, where the 
liiiguistic terms are labeled without prefixes. 

‘l’he evolved controller received a raw fitness of 0.1091 
with 8 hits. 111 [43, an FLC designed manually, through a 
lcngby process of trial-and-error, was presented which 
also used 25 rules. Hours of iterative refinement of 
mcmbership functions and rules were invested before 
arriving at a suitable design. In comparison, the hand- 
derived FLC rcceived a comparable raw fitness (0.08 with 
8 hits) for the identical tracking problem. Figure 5 shows 
thc temporal responses of position error, orientation error, 
aid control effort for $e evolved controller and for the 
hnnd-derived controller. This result corresponds to error 
calcgory (d) of Figure 2, with initial conditions of E, = 

0.8 m and E,, = -0.9 rad. In [8] it was shown that this 
crror categoiy is the most general for studying path 
tracking by tricycle-type vehicles. It is most general in 
the sense that in the process of correcting vehicle steering 
from initial statcs in all other error categories, the vehicle 
eiror status ultimately reduces the category (d) of Figure 2 
or its counter-pair. In all fitness cases, the evolved 
coiiuoller achieved comparable response characteristics to 
those of the hand-derived controller using an equivalent 
number of rules. 

w -1.0 -0.54-0.3-0.27 (metem) 0 0.27 0.360.6 1.0 

-1.04-0.92-0.55 -0.13 0 0.17 0.52 0.88 1.04 
Q3 (rad) 

Figure 3. CO-evolved input membership functions. 

Pi5 

4 4  4 6  4 1 2  0 W12 W6 W4 
6 (rad) 

Figure 4. Output membership functions. 
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6. Robustness Characteristics 

Given the capability to evolve FLCs that can effectively 
follow paths, an important next step is to examine their 
robustness to practical perturbations. To test the noise 
robustness of the evolved controller, simulations were 
performed with the imposition of a noise signal upon the 
sensor measurement related to heading (orientation). We 
assume that the error states are derived from sensor 
measurements which, due to their imperfect nature, 
introduce an additive sinusoidal noise signature of small 
amplitude and low frequency (relative to the controller 
sampling frequency) that corrupts the orientation error. 
For this investigation we impose the sensor noise signal, 
n(t) = 0.15cos(3t) with t = kT, where k=1,2,3 ,... is the 
sampling instant, and Tis the sampling period. Thus, the 
noise amplitude is bounded by 0.15 radians (10 degrees), 
and at any sampling instant the corrupted orientation error 
signal lies in the range of ( EB k 0.15) radians. 

Tn addition to the additive noise, we also increased the 
constant nominal forward speed of the robot by 20%, 
which resulted in a simulated speed of 1.8ds. A typical 
rcsult is shown in Figure 6, which illustrates the 
pcrformance of both the evolved controller and the hand- 
derived controller when induced with noise and an 
increased vehicle speed. While the oscillatory effects of 
thc added noise are clearly evident in the steady state 
response, the controller successfully navigates the robot 
o m  the path and maintains the steady state errors within 
thc tolerances specified earlier. Thus, this evolved fuzzy 
coiiuoller exhibits path tracking robustness to the 
iiii posed perturbations. This result is representative of 
twiporal responses for each of the remaining fitness 
cases. In simulations completed thus far, the most robust 
h z y  controllers were those evolved when GP was 
allowed to randomly select t-norms. 

The performance assessment of the evolved controller 
with regard to robustness is based upon the assumption 
Uinl low frequency oscillations within the control signal of 
amplitude less than 0.026 radians (1.5 degrees) are 
practical. In light of this assumption, the results indicate 
t11i11 the evolved FLC was able to navigate the iobot along 
thc desired path with the imposed perturbation of sensor 
noise and the increase in the robot’s nominal speed: 

’7. Summary and Conclusions 

This paper has demonstrated an approach to path tracking 
controller design based on soft computing methods. GP 
W:IS successfully applied to discover fuzzy controllers 
capable o€ navigating a mobile robot to track straight-line 
p II’IS in the plane. The performance of the best-evolved 

FLC was comparable to that of a manually derived FLC, 
which required a considerably longer design cycle. GP 
shultaneously evolved membership functions and rules 
for an FLC that demonstrated satisfactory responsiveness 
to various hitial conditions while utilizing minimal 
human interface. The speed of evolution alone serves as a 
strong basis for practical application of GP in the 
controller design process. The approach enables 
expeditious design of FL€s that can be directly applied to 
a physical system. Alternatively, human experts can use 
the rapidly evolved FLcs as design starting points for 
further manual refinement. Finally, the evolved FLC was 
shown to be robust to perturbations of sensor noise and an 
increase in nominal robot speed. This supports the notion 
that genetically evolved FLCs can have practical utility. 
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Figure 5. Evolved FLC path tracking performance. 
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