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Abstract- This paper describes our current research 
with RAGA (Rule Acquisition with a Genetic 
Algorithm). RAGA is a genetic algorithm and genetic 
programming hybrid that is designed for the tasks of 
supervised and certain types of unsupervised data 
mining. Since its initial release we have improved its 
predictive accuracy and data coverage, as well as its 
ability to generate more scalable rule hierarchies. These 
enhancements and several experiments are described. 

1 Introduction 
Data mining is defined as extracting structured 

mformation, such as patterns and regularities, fi-om 
databases. Also known as KDD, or knowledge discovery in 
databases, the process is important because it provides 
means for understanding data, including the generation of 
predictive rules. 

RAGA [Cattral, Oppacher, Deugo 1999al was developed 
as a data mining system that uses a genetic algorithm (GA) 
based engine to extract knowledge in the form of predictive 
rules. The system was designed for the tasks of both 
supervised and certain types of unsupervised learning. 

1.1 Supervised versus Unsupervised Learning 

Supervised learning, also referred to as leaming by 
example, is a process where the system attempts to find 
concept descriptions for classes that are, together with pre- 
classified examples, supplied to it by a teacher. The usual 
characterization of unsupervised learning as learning without 
pre-classified examples conflates a variety of increasingly 
difficult learning tasks. These tasks range from detecting 
potentially useful regularities among the data couched in the 
provided description language to the discovery of concepts 
through conceptual clustering and constructive induction, 
and to the further discovery of empirical laws relating 
concepts constructed by the system. 
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The task of unsupervised learning is much more 
demanding because here the system is only directed to 
search the data for interesting associations, and attempts to 
group elements by postulating class descriptions for 
sufficiently many classes to cover all items in the database. 

The supervised learning experiments described in this 
paper are for the purpose of data classification, while the 
unsupervised tests perform the task of association rule 
discovery. 

1.2 Confidence and Support Factors 

To determine the quality of a rule there are a 
combination of statistical and subjective factors to consider. 
These include the rule accuracy, coverage, how useful and 
how interesting the rule is within the given domain. Because 
the latter two features are subjective in nature there is no 
widely accepted method available for determining them, and 
for'the same reason there is no common scale to rate or 
compare them. The measures for accuracy and coverage of 
rules are known in other areas of information theory as 
confidence and support factors [Berry, Linoff 19971. 

The confidence factor is a measure of the rule accuracy. 
It is defined to be the percentage of times that the 
consequent is true given that the antecedent is true. If the 
consequent is false while the antecedent is true, then the 
confidence fails for the given rule. If the antecedent is not 
matched by the given data item, then this item does not 
contribute to the determination of the confidence of the rule. 

The support factor is defined as the rule coverage, whch 
is how often the rule is correctly applied within the entire 
dataset. This measure is calculated by dividing the number 
of elements that are correctly answered using the rule by the 
total number of elements in the set. The basic information 
conveyed is how often the rule is actually used, whch is an 
important factor to consider when deciding its worth. 

767 



2 Representation of Data 
The way that RAGA represents data is the primary 

difference between it and other GA based systems. In a 
standard GA a fixed length binary string represents each 
individual. A decoding function converts this string into the 
appropriate form when required. This representation is too 
restrictive for the predictive rules that are generated by 
RAGA. 

3 Evolving a default hierarchy 
A default hierarchy is a collection of rules that are 

executed in a particular order. When testing a particular data 
item against a hierarchy of rules, the rule at the top of the list 
is tried first. If its antecedent correctly matches the 
conditions in the element being tested, this top rule is used. 
If a rule does not apply, then the element is matched against 
the rule at the next lower level of the hierarchy. This 
continues until the element matches a rule or the bottom of 
the hierarchy is reached. The first problem is that all rules would have an equal 

fvred length, which considerably limits their structure. 
Although it is possible to specify an upper bound that is 
sufficient to hold an entire rule, there are many different 
sizes of rules within any given set. Accommodating this 
within a fured length structure would require the use of NOP 
(no-operation) values, and will not be as efficient. 

The next problem concems the alphabet used by the GA. 
In a standard GA there are only two terminals used to 
represent the binary values of zero and one. Variations of 
GA systems, such as Genetic Programming (GP) [Koza 
19901, use a much larger alphabet that is dependent on the 
problem being solved. In a typical GP system there are 
numerous terminals that represent variables within the 
system. 

The type of data being sought by RAGA is an $-Then rule, 
which is of the form: 

I ~ x ~ ~ x ~ " .  . .'x,, Then ~ 1 ~ ~ 2 ' .  . 

The symbols XI.. .X,, and Y ].. .Y, each represent terms 
within the rule, where a term is a function that either 
indicates the existence of an attribute, or performs an 
operation on two or more variables. In classification tasks 
the value for M is always 1, while the value for N is 
potentially unbound. 

Rules are represented within RAGA as dynamic 
structures that store the infomation required for both 
presentation and evaluation. RAGA is similar to GP in this 
respect because it has both a user-defined number of 
terminals, and the length of the rule is flexible. 

A flexible set of terminals is required in RAGA because 
different datasets have a different number of attributes, and 
without accommodation for each of them it is not possible to 
fully explore the data. Furthermore, it is sometimes 
necessary to make use of derived values that are not part of 
the original data, but rather a function of one or more 
attributes. 

Rules that are incorrect by themselves can be protected 
by rules preceding them in the default hierarchy, and play a 
useful coverage-extending role, as in the following example: 

If (num-sides = 4) A (length = width:) then class = square 
If (num-sides = 3) then class = triangle 
If (num-sides > 2) A (num-sides < 5:) then class = rectangle 

If the last rule were used out of order, many instances 
would be improperly classified. In the current position it 
covers the remaining data items accurately. 

The effects of the hierarchy, particularly with respect to 
an increased data coverage and decreased penalty for 
overfitting, are described in [Cattral, Oppacher, Deugo 
1999bl. 

4 Enhanced Genetic Engine 
The genetic engine used by M.GA is a hybrid of GA 

and GP, with several modifications and additions to the 
standard models. This section describes the details of the 
evolutionary functions, and highlights differences between 
RAGA and each of the standard approaches. 

4.1 Plug-in Style Fitness Function 

In order for a GA-based system to effectively search for 
solutions, an appropriate fitness function must be 
implemented. In a data mining system, the ultimate fitness 
function would act as a measure for how close the rule is to 
what is being sought. Because this measure is subjective, 
particularly in undirected mining tasks, there is no 
straightforward way to implement such a measure. 

With only a limited amount of information available for 
each candidate rule, an effective fitness function has to 
combine as much of this data as possible. In RAGA, the raw 
fitness is determined by using the viilues for confidence and 
support. 

RawFitness := 100 - sqrt[ (confidence - confidence target)' 
+ (support - supportTarget)* * sfAdjustment] 



This equation converts the values for confidence and 
support into a single numerical value that increases as each 
factor approaches the respective target. Basically, the closer 
the values are to the user specification, the higher the raw 
fitness is for the rule. 

Depending on the dataset and the type of search being 
performed there are several fitness plug-in type modifiers 
that can be used. These act to increase or decrease the raw 
fitness and help to determine the actual fitness. 

The first optional adjustment is obvious in the equation, 
and can be applied to change the importance of the support 
factor with respect to the rule confidence. This extension is 
the last term in the equation, and is called the SF- 
Adjustment (support factor adjustment). 

By default the SF-Adjustment is 1.0, which means that 
both confidence and support factors are weighed equally 
when calculating the raw fitness. Depending on the dataset 
and the domain it might be important that a higher 
confidence is preferred to a higher support. In these cases 
entering a decimal value greater than zero but less than one 
will lower the impact of the support factor. Conversely it is 
possible to raise the impact of the support factor by entering 
a multiplier values that is greater than one. 

The next fitness plug-in is Encourage wider rule 
coverage, which awards a bonus to rules that are first in the 
hierarchy to successfully answer a particular data item. The 
goal is to reward rules based on the number of elements they 
correctly answer within the dataset, excluding those 
answered by other rules. Effectively, this is identical to 
creating niches for rules that address certain classes, and is 
advantageous for classification tasks because it maximizes 
data coverage. 

The next plug-in option is Limit expansion to good rules, 
which is used to control the expansion of rules during the 
evolutionary process. When this option is not used, rules 
can grow in size without restriction using either crossover or 
mutation operations. Growth can occur in either the 
antecedent or the consequent, and is limited only by the 
maximum length as specified for each in the configuration 
options. ' 

The problem with allowing rules to expand in sue  
without restriction is that useless rules, which are labeled as 
such if they contribute nothing positive to the results, are 
also allowed to expand and become more complex. Even in 
the case of rules that have no confidence it is still possible 
that new terms will be added. This has the potential to 
impair the search in two ways, specifically an increased 
processing time as well as an increased number of bad rules. 

When in use, this option guarantees that each rule must not 
expand unless it already has a positive confidence. 

The goal of t h s  fitness modifier is to encourage sound 
basic components within each rule. Because large rules will 
not exist unless they are built from valid components, 
processing time is not wasted on their evaluation. Also, 
because each rule has a solid base with potential for 
refinement, the system will produce smaller and more useful 
rules, which leads to a better hierarchy overall. 

The final fitness adjustment plug-ins is Reward shorter 
rules. This can apply a bonus that is based solely on the total 
number of terms present in the antecedent and consequent. 

The motivation behind using this option is to bias the 
system towards slightly shorter rules. Because of increased 
readability and ease of understanding, thls is common in 
Data Mining applications. This is similar to a reward used 
by GP systems, where shorter programs are allotted credit 
for being parsimonious. Basically, the two rules or programs 
perform exactly the same within the current dataset, however 
the smaller one is presumed to be better. 

The amount of bonus awarded is dependent on the actual 
length, as well as the Reward constant, which is an option 
associated with this plug-in. The reward constant is an 
additive value that is applied to the raw fitness in proportion 
to the desired length. 

The reasons to bias the system towards smaller rules is 
the expectation that they will be easier to understand, as well 
as more efficient to process. This is often true because larger 
rules are more llkely to contain redundant or unimportant 
information, and this can obscure the basic components that 
make the rule successful. 

Complex rules are not only more difficult to read and 
analyze, but more importantly they can be unnecessarily 
specialized. For example, if a rule is simply a superset of 
terms as compared to another shorter rule, but the two rules 
answer exactly the same elements within the dataset, then 
the additional term(s) are not contributing useful 
information. Although it may not be significant with the 
current data (training set) it is possible that the rule is not 
general enough to handle future cases (testing set). 

It is impoitant to recognize that if the additional terms 
were useful in even a small way, there would be a change in 
the results and a shift in the fitness. Because this is not 
expressed there is little chance that additional specialization 
will be more effective in new cases. Without having any 
additional knowledge to help differentiate the two rules it is 
advisable to keep the more general (shorter) one. 
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4.2 Fitness Proportional Selection 4.4 Mutation 

For selection of rules that are copied from one generation 
into the next, RAGA uses fitness proportional selection, 
where the best rules are given a selection advantage. The 
dilemma with fitness proportion selection is that because the 
more fit individuals are constantly being selected, they are 
usually copied several times within a single generation. 
When this happens over several generations, a single 
individual with a high fitness tends to get preferred, and 
eventually dominates the entire population. This does not 
occur in RAGA because unllke standard GA, duplicate rules 
are not allowed to co-exist within the population. 

After a single member has been selected for the next 
generation, there will be a probability that crossover will 
occur. 

4.3 Crossover 

RAGA performs a single-point crossover that splits and 
recombines rules, and also guarantees that the results are 
still valid. This is done by first choosing a random splitting 
point between terms for each of two distinct rules. After the 
splice point for the first rule is determined, the second is 
more restricted because it is forced to be on the same side of 
the equation. (ie: if the first rule is splitting within the 
antecedent, then the second rule must split within the 
antecedent). After the rules are broken, the halves are 
recombined with the other rule. The result of this operation 
is the creation of two new rules. 

In RAGA, this group of four rules (two parents plus two 
children) is called a rulefamily. Exactly two of these rules, 
chosen according to the highest fitness, will be selected for 
the next generation. This differs from some GA 
implementations where crossover will indiscriminately 
select the child-rules and discard the parent-rules. In our 
experiments this was found to be quite beneficial because it 
protects the population during periods where the rates for 
crossover or mutation are increased. 

One of the reasons for this difference is that standard GA 
systems do not consider the possibility that the child-rules 
are invalid. Because crossover operates at the term level, 
with the ability to change both size and structure of rules, it 
is capable of creating rules that are not allowed by the 
restrictions set by the user during the configuration stage. 
When an invalid rule is detected after a crossover operation, 
it is removed from the family immediately. 

After the two family members are selected for the next 
generation, each will be copied pending the possibility of 
mutation. 

In RAGA there are two types of mutation, referred to as 
micro-mutation and macro-mutation. Micro-mutation is a 
single point change that occurs within the terms of terms of 
each rule. Macro-mutation does not affect the specifics of an 
individual term, but rather is used IO add or remove terms 
from either side of the rule. 

The goal of micro-mutation is to modify the terms in an 
attempt tci add variation to the hierarchy. This type of 
mutation is capable of changing the term variables, 
constants, or the type of operation. This operation does not 
consider terms or rules themselves, and does not anticipate 
the effect of the change. If the result of the mutation is an 
invalid term or rule, then the entire rule is discarded 
immediately. 

Macro-mutation is similar in that population members are 
modified and either moved into the next generation or 
discarded, however the goal is ti3 experiment with the 
specialization and generalization of existing rules. 

To specialize a rule is to restrict its application by 
specifying additional constraints. The purpose is to increase 
the accuracy by lowering the coverage. If it works correctly, 
then the coverage will be reduced only by elements that 
were being misclassified beforehand. 

When a rule is generalized, constraints are removed in an 
attempt to increase coverage. If this works correctly, then 
the constraints are relaxed enough to answer more elements 
without the penalty of a reduced accuracy. 

Both mutation types are use'd together during the 
evolutionary process, and can be controlled using varying 
probabilities. 

Due to the fact that the genetic operations behave 
somewhat randomly it is often the case that rules are 
modified such that they become inefficient or invalid 
afterwards. RAGA handles these cases with a process named 
Intergenerational Processing, which uses a non- 
evolutionary approach to modify and replace rules. 

4.5 Intergenerational Processing 

Mechanisms of this type are not typically used in GA, 
however the idea is similar in some respects to a GP variant 
known as Typed-GP [Montaria, 19951. Typed-GP 
guarantees that evolved programs will not contain critical 
errors, thus saving processing time by eliminating worthless 
members from the population. 

770 



A popular argument against using this type of mechanism 
is that it is amounts to cheating by allowing forces other 
than natural selection to influence the members. The first 
reason for taking this position is that in theory the selection 
pressure will eliminate worthless members without 
interference. Secondly, by eliminating individuals that are 
not selected against naturally, there is a risk that useful 
genetic material is being lost as a consequence. Regardless 
of these points, RAGA allows the user to specify one or 
more options that override the natural selection process. 

The genetic engine in RAGA makes the use of this 
screening available because of the results from many tests 
that were performed during the software development stage. 
It was determined that by allowing the system to remove 
certain types of rules, not only was there an improvement in 
the time required to complete the search, but the rule sets 
were more efficient and performed better on average. 

In order to prevent the loss of diversity expected with the 
non-evolutionary removal of rules, each deleted member is 
immediately replaced. This replacement is done through the 
use of rule modification or regeneration. 

When a rule is deemed invalid the first step is to modify 
it such that it becomes valid. The technique used for this is 
the systematic deletion of terms from antecedent, 
consequent, or both. If this is not possible because of the 
rule structure or an excess of similar members in the 
population, a complete substitution will be made. If after 
replacing or modifying the rule the result is still invalid, or is 
a duplicate with another rule in the set, this technique is 
continually applied until all conditions are satisfied. 

5 Problems with Classification Systems 
The problem with many classification systems is that they 

operate using only 1-place predicates, which allows for the 
comparison of an attribute to a constant value. Depending on 
the problem domain, solutions of thls type may not be 
scaleable. 

A good example of this limitation is shown later during 
the description of results found during classification of the 
polygon dataset. Of the systems used for experimenting on 
this data, only RAGA was capable of recognizing 
relationships between variables when the data was in its raw 
form. It is still possible for other algorithms to consider 
these relationships, but this requires that the data first be 
tailored in a pre-processing stage. 

Customizing the data to handle inter-attribute 
relationships requires adding derived values that express the 
result of a known operation. For example, in order to 
compare the length of an object to its width, the addition of 

a new attribute is required. One possible solution is to create 
a value for length divided by width. This new variable can 
be examined by any classification system, and predictions 
can be made based upon it. One trivial observation is that a 
value of 1 .O would mean that length equals width. 

There are a number of disadvantages to creating new 
attributes during the pre-processing stage, including a trade- 
off between an increase in the search space and increased 
input by the human expert. The trade-off is necessary 
because the types of relationships as well as the applicable 
attributes must be determined in advance. For cases where 
human bias is acceptable, the expert can try to determine 
beforehand which attributes should be compared, and how. 
Unfortunately, given the fact that data mining techniques are 
in place to discover information, this is not always possible 
because the expert does not understand the data well enough 
to decide. 

In cases where the expert is not able to isolate key 
attributes or determine what possible relationships should be 
tested, then a new column must be generated for each pair of 
attributes using each of the available operations. This 
increases the size of the search space dramatically, making 
the process much longer and less llkely to succeed. 
Furthermore, in cases where more than two attributes can be 
related, the increase in search space is exponential. Many of 
these cases result in a search that cannot be completed in a 
reasonable period of time. 

To summarize, adding relationship attributes during the 
pre-processing stage is a poor choice because the human 
expert must decide upon both variables and the operations. 
This itself is a task in data mining, and although 
classification systems can take advantage of them, they are 
still unable to discover them. 

6 Supervised learning experiments 

6.1 Polygon Dataset 

The polygon dataset describes a group of geometric 
shapes, and was designed to demonstrate the limitations in 
using classifiers with 1 -place predicates. 

The dataset consists of 190 differently sized shapes 
including triangles and rectangles. Each of these polygons is 
defined by only four attributes (Ll-L4), which correspond 
to the lengths of up to four different sides. The L1 attribute 
indicates the length of bottom side, while L2-L4 define the 
remaining sides in clockwise order from the bottom. 

One additional attribute, the type, is non-predictive and 
is used to train classifiers. This type can be one of five 
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values as follows: equilateral triangle, isosceles triangle, 
other triangle, square, and rectangle. 

The dataset does not contain noise or errors, and all of 
the polygons obey the following rules: 

Equilateral triangle: Three equal sides, one zero length. 
Isosceles triangle: Two sides equal, one of different length, 
and one of zero length. 
Other triangle: Three non-zero and non-equal sides, one 
side of zero length. 
Square: All four sides equal. 
Rectangle: Two pairs of opposite sides equal. 

All triangles follow the geometric rule: BC < AC+AB, 
which guarantees that they are valid. 

Several classification systems were used to generate 
classifiers for the polygon dataset. The most impressive 
results were found using C5.0 (successor of C4.5 [Quinlan 
1993]), and RAGA. Common training and testing sets were 
used for all of the applications in two different tests. In the 
first test, the training set consists of 190 elements and the 
same data is used for testing. The second test uses an 
addiiional set of 100000 randomly generated legal 
polygons, where no additional training is performed. By 
evaluating this data with the rules discovered in the first 
test, it provides some measure of scalability when 
addressing unseen data from the same source. 

6.1.1 Classification using C5.0 

When C5.0 was used to generate a decision tree, several 
of the software-specific options were tested. These options 
include the creation of rulesets, and several variations of 
boosting, however the results were not as good as the 
standard configuration and are therefore not shown. 

The predictive accuracy of the data when testing against 
the full training set is 84.2%, using a decision tree of 46 
leaves. 

At several points within the tree, comparisons are made 
between different attributes and the constant zero. This is 
important because it determines the non-existence of 
particular side, and is general enough to handle unseen data. 
The problem is that this knowledge alone is not sufficient to 
accurately classify all of the data, and thus is not a general 
solution. 

The result of classifying the 100000 randomly generated 
legal polygons is 39.37% correct, and 60.63% misclassified. 

6.1.2 Classification using RAGA 

The options used within RAGA are the defaults, as 
specified in the configuration for classification tasks. 

A total of 19 rules (show below) were generated in order 
to achieve 100% predictive accuracy over all of the 
elements. A default class was not used, however the 
individual rules address enough subsets within the data to 
account for 100% coverage. 

If (L2 = L3)"(L4 = LI) then (Class = 4) 
If (L3 > LI)"(L2 < L4)"(L4 = L3) then (Class = 2) 
If (L3 >= Ll)"(L4 = L2)"(L2 < L1) then (Class = 5) 
If (L3 = LI)"(L2 > L3) then (Class = 5) 
If (L4 < L2)"(L2 = LI)"(LI > L3) then  class = 2) 
If(L3 < L1)"(L2 < LI)"(L4 < Ll)  then i(C1ass = 3) 
If (L4 > L3)"( L2 < L4)"( L4 > L 1 ) then i(Class = 3) 
If (L1 < L2)"(L4 < L2)"(L2 > L3) then (Class = 3) 
If (L3 > Ll)"(L3 > L2)"(L4 < L3) then ((Class = 3) 
If (L3 > LI)"(L2 = L3)"(L4 < L2) then i[Class = 2) 
If(L2 = L3)"(L4 > LI)"(L4 = L3) then {[Class = 1) 
If (L2 < L4)"(LA = Ll)"(LI <= L3) then (Class = 1) 
If (LA < L2)"(L2 <= LI)"(L2 = L3) then (Class = 1) 
If (L1 >= L4)"(L4 > L3)"(L3 < LI)"(L4. = L2) then (Class = 1) 
If (L2 < L4)"(L4 = Ll)"(L4 > L3)"(L3 .= LI) then (Class = 2) 
If (L2 < L4)"(Ll = L3)"(L4 < L1)"(1,2 <= LI)"(L2 < L3) then 
(Class = 2) 
If (L1 < L3)"(L4 >= L3)"(L3 < L2)"(L4 = L2) then (Class = 2) 
If (LA < L2)"(L2 <= LI)"(Ll = L3)"(Lil< L3) then (Class = 2) 
If (L3 < Ll)"(LI < L4)"(L2 = L4) then (Class = 2) 

As expected, RAGA evolved a s,et of rules that considers 
the relationships between attributes., rather than their values. 
In early stages of the evolution, RAGA developed and 
tested rules such as: 

If (L2 > 1248) Then (class = 2) 

Due to the brittleness of these iules, they were not able 
to achieve 100% accuracy and were discarded by RAGA. 
At the conclusion of the search, only the more general rules 
remained. 

The result of running the 100000 randomly generated 
legal polygons is 93.09% correct, and 6.91% misclassified. 

For this dataset, RAGA did not take advantage of the 
default hierarchy. Additionally, the test for the constant zero 
was not explicit, but rather a comparison to other variables. 
This may not be as efficient, however it is equally accurate 
in both testing and training sets. 

6.1.3 Manually Preprocessing Data for- C5.0 

Although C5.0 is incapable of determining what inter- 
attribute relationships would be usehl, an experiment was 
done to see how well the classification would perform if the 
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functionality did exist. To achieve this, six derived variables 
were added to the list of useable attributes, as follows: 

R-LlL2 := L1/ L2. 
R-LlL3 := L1/ L3. 
R-LlL4 := L1 /U. 
R-L2L3 := L2 / L3. 
R-L2U := L2 / U. 
R-L3L4 := L3 / LA. 

Relationship between 1 & 2 
Relationship between 1 & 3 
Relationship between 1 & 4 
Relationship between 2 & 3 
Relationship between 2 & 4 
Relationship between 3 & 4 

The value of these derived fields will be a real number 
that indicates the relationship between the two specified 
sides, in terms of length. The general rule is: 

Value = 1 .O: The two sides are the same length 
Value < 1 .O: The first side is shorter than the second. 
Value > 1 .O: The first side is longer than the second. 

A predictive accuracy of 95.3% was achieved using a 
total of 25 leaves in the decision tree. This tree is smaller 
and more accurate than the last one created using the same 
application, which lacked the derived relationship variables. 

Also unlike the first experiment, this decision tree is 
more scalable because it considers relationships rather than 
constant values. If the program were capable of determining 
and working with these relationships automatically, then it 
would have achieved this improved accuracy during the first 
experiment. 

The result of running the 100000 randomly generated 
legal polygons is 78.5% correct, and 21.5% misclassified. 
The reason for the high error rate is that C5.0 was unable to 
recognize the importance of a relationship that is exactly 
1 .O, and grouped together those with similar values. 

7 Unsupervised Learning Experiments 
Although several undirected data mining tasks were 

performed using RAGA, verifying the results is a non-trivial 
task in itself. Particularly for non-experts in the domain 
being examined, it is difficult to judge the value of any given 
rule, and may require the opinions of several knowledgeable 
individuals.. Because of this additional effort, it is often 
difficult to test undirected data mining algorithms on real 
datasets. 

7.1 Generating Synthetic Datasets 

One way to address the problem of evaluating results 
fiom an unsupervised learner is to generate a set of random 
data that conforms to a pre-specified set of known rules. The 
data can optionally contain noise, incorrect and missing 
values. as well as non-essential attributes. 

Example synthetic rule set 
If (A > 5) A (B < 20) Then (C > 8) A (C < 12) 
If (C < 4) Then (B > 15) 
If (C > 10) Then (A > 4) 

Based on these rules a large number of elements can be 
generated, and this set can be used to test undirected data 
mining algorithms. 

The ultimate goal for an undirected search algorithm is to 
find the exact set of rules as shown above, however this is 
only one of many possible outcomes. Assuming that several 
rules are generated with reasonable accuracy they do not 
necessarily have to match those used to define the set. 
Several factors that can influence the search results are 
erroneous or inaccurate values, .an uneven distribution with 
respect to the defining rules, and the number of elements 
generated. This last factor is quite important because too 
little data often means less coverage of the rule space is 
considered. Results from this type of search often include 
rules that are too specific and do not have the proper level of 
support when applied to a superset of the data. 

7.2 Results 

Preliminary results indicated that experimentation with 
undirected data mining was not as straightforward as it was 
for simple classification. In most experiments there were 
several rules being sought, however only one was usually 
found by the conclusion of the search. Further analysis of 
this revealed the source of this problem, as well as one 
potential solution. 

The reason for the single-rule solution is that the 
dominant rule is preferred at an early point in the process. 
This occurs because it has a high fitness value with respect 
to the others being considered. Unlike classification tasks, 
rules are not rewarded for uniquely addressing data 
elements, and therefore a very similar rule will often have a 
very similar fitness. As the generation evolves, variations of 
the good rule are created in an attempt improve it, however 
the original copies and unwanted variations are not 
automatically discarded. Because these rules are similar in 
content the fitness is similar, and as with the primary rule the 
fitness is higher than other rules being considered. The result 
is a single rule that essentially dominates the entire 
population with variations of itself, and does not allow for 
the exploration of other niches. 

To control this problem, a new fitness plug-in was 
created to penalize rules based on similarity. The goal is to 
force rules apart for being syntactically similar, without 
considering the elements they cover. This allows for the co- 
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existence of rule niches that answer overlapping subsets of 
elements. 

Preliminary testing of this new fitness modifier has shown 
some success in unsupervised mining tasks. For example, a 
dataset was generated using the following five rules: 

If (B <= 14) ‘(D >= 35) ’ (D <= 36) Then E=l 
If (B <= 13) ’ (D >= 33) ’ (D <= 34) Then E=2 
If (A >= 6.734049) ‘(B >= 18) Then E=3 
If (A <= 4.562865) ’ (D >= 38) ‘(D <= 39) Then E=4 
If (A <= 2.871963) ’ (D >= 31) ’ (D <= 32) Then E=5 

During testing, RAGA was able to quickly generate several 
sets of rules that were semantically equivalent to those 
above. For example, after a one experiment the following 
rules were members of the rule hierarchy: 

If (b < 14) ’ (d = 34) then (e = 2) 
If (d < 39) ’ (b > 18) ’ (a > 6.8179) then (e = 3) 

‘If (a <= 5.5046) ’ (d >= 38) then (e = 4) 
If (a < 3.6621) A (d <= 32) then (e = 5) 

It is obvious that the set is not complete, however 100% data 
coverage was not a goal during these experiments. Rather 
than trying to classify the data, RAGA was simply searching 
for interesting associations. Considering this, the incomplete 
coverage is not an issue, but the quality of the rules 
generated must be closely examined. 

The main difference between the discovered rules and the 
actual rules is that the attribute D is only bounded on one 
side. (ie: an upper or lower bound is indicated, but not both). 
After analyzing the results and the dataset it was discovered 
that (in all of the cases addressed) the second bound was 
simply not required once the second attribute in the equation 
was isolated. With this understood it appears that RAGA has 
in fact simplified some of the original rules, although only 
for a subset of the data. 

8 Conclusion 
We have described our current research with RAGA, 

including the recent enhancements and modifications. As 
shown by several experiments, RAGA is capable of handling 
both supervised and unsupervised learning tasks, and in 
some cases has distinct advantages as compared to other 
systems. 

problem domain, the success of RAGA does not depend on 
this feature alone. 

In unsupervised data mining tasks the results are not 
compared to those of other algorithms, however the 
preliminary testing generated rules that semantically match 
or closely approximate the actual underlying rules of 
synthetic datasets. 
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