
Supervised and Unsupervised Data Mining with an Evolutionary Algorithm

Robert Cattral, Franz Oppacher, Dwight Deugo
Intelligent Systems Research Unit

School of Computer Science
Carleton University

Ottawa, On K1S 5B6
Canada

{ rcattral,oppacher,deugo} @scs.carleton.ca

Abstract- This paper describes our current research
with RAGA (Rule Acquisition with a Genetic
Algorithm). RAGA is a genetic algorithm and genetic
programming hybrid that is designed for the tasks of
supervised and certain types of unsupervised data
mining. Since its initial release we have improved its
predictive accuracy and data coverage, as well as its
ability to generate more scalable rule hierarchies. These
enhancements and several experiments are described.

1 Introduction
Data mining is defined as extracting structured

mformation, such as patterns and regularities, fi-om
databases. Also known as KDD, or knowledge discovery in
databases, the process is important because it provides
means for understanding data, including the generation of
predictive rules.

RAGA [Cattral, Oppacher, Deugo 1999al was developed
as a data mining system that uses a genetic algorithm (GA)
based engine to extract knowledge in the form of predictive
rules. The system was designed for the tasks of both
supervised and certain types of unsupervised learning.

1.1 Supervised versus Unsupervised Learning

Supervised learning, also referred to as leaming by
example, is a process where the system attempts to find
concept descriptions for classes that are, together with pre-
classified examples, supplied to it by a teacher. The usual
characterization of unsupervised learning as learning without
pre-classified examples conflates a variety of increasingly
difficult learning tasks. These tasks range from detecting
potentially useful regularities among the data couched in the
provided description language to the discovery of concepts
through conceptual clustering and constructive induction,
and to the further discovery of empirical laws relating
concepts constructed by the system.

0-7803-6657-3/01/$10.00 02001 IEEE

The task of unsupervised learning is much more
demanding because here the system is only directed to
search the data for interesting associations, and attempts to
group elements by postulating class descriptions for
sufficiently many classes to cover all items in the database.

The supervised learning experiments described in this
paper are for the purpose of data classification, while the
unsupervised tests perform the task of association rule
discovery.

1.2 Confidence and Support Factors

To determine the quality of a rule there are a
combination of statistical and subjective factors to consider.
These include the rule accuracy, coverage, how useful and
how interesting the rule is within the given domain. Because
the latter two features are subjective in nature there is no
widely accepted method available for determining them, and
for'the same reason there is no common scale to rate or
compare them. The measures for accuracy and coverage of
rules are known in other areas of information theory as
confidence and support factors [Berry, Linoff 19971.

The confidence factor is a measure of the rule accuracy.
It is defined to be the percentage of times that the
consequent is true given that the antecedent is true. If the
consequent is false while the antecedent is true, then the
confidence fails for the given rule. If the antecedent is not
matched by the given data item, then this item does not
contribute to the determination of the confidence of the rule.

The support factor is defined as the rule coverage, whch
is how often the rule is correctly applied within the entire
dataset. This measure is calculated by dividing the number
of elements that are correctly answered using the rule by the
total number of elements in the set. The basic information
conveyed is how often the rule is actually used, whch is an
important factor to consider when deciding its worth.

767

2 Representation of Data
The way that RAGA represents data is the primary

difference between it and other GA based systems. In a
standard GA a fixed length binary string represents each
individual. A decoding function converts this string into the
appropriate form when required. This representation is too
restrictive for the predictive rules that are generated by
RAGA.

3 Evolving a default hierarchy
A default hierarchy is a collection of rules that are

executed in a particular order. When testing a particular data
item against a hierarchy of rules, the rule at the top of the list
is tried first. If its antecedent correctly matches the
conditions in the element being tested, this top rule is used.
If a rule does not apply, then the element is matched against
the rule at the next lower level of the hierarchy. This
continues until the element matches a rule or the bottom of
the hierarchy is reached. The first problem is that all rules would have an equal

fvred length, which considerably limits their structure.
Although it is possible to specify an upper bound that is
sufficient to hold an entire rule, there are many different
sizes of rules within any given set. Accommodating this
within a fured length structure would require the use of NOP
(no-operation) values, and will not be as efficient.

The next problem concems the alphabet used by the GA.
In a standard GA there are only two terminals used to
represent the binary values of zero and one. Variations of
GA systems, such as Genetic Programming (GP) [Koza
19901, use a much larger alphabet that is dependent on the
problem being solved. In a typical GP system there are
numerous terminals that represent variables within the
system.

The type of data being sought by RAGA is an $-Then rule,
which is of the form:

I ~ x ~ ~ x ~ " . . .'x,, Then ~ 1 ~ ~ 2 ' . .

The symbols XI.. .X,, and Y].. .Y, each represent terms
within the rule, where a term is a function that either
indicates the existence of an attribute, or performs an
operation on two or more variables. In classification tasks
the value for M is always 1, while the value for N is
potentially unbound.

Rules are represented within RAGA as dynamic
structures that store the infomation required for both
presentation and evaluation. RAGA is similar to GP in this
respect because it has both a user-defined number of
terminals, and the length of the rule is flexible.

A flexible set of terminals is required in RAGA because
different datasets have a different number of attributes, and
without accommodation for each of them it is not possible to
fully explore the data. Furthermore, it is sometimes
necessary to make use of derived values that are not part of
the original data, but rather a function of one or more
attributes.

Rules that are incorrect by themselves can be protected
by rules preceding them in the default hierarchy, and play a
useful coverage-extending role, as in the following example:

If (num-sides = 4) A (length = width:) then class = square
If (num-sides = 3) then class = triangle
If (num-sides > 2) A (num-sides < 5:) then class = rectangle

If the last rule were used out of order, many instances
would be improperly classified. In the current position it
covers the remaining data items accurately.

The effects of the hierarchy, particularly with respect to
an increased data coverage and decreased penalty for
overfitting, are described in [Cattral, Oppacher, Deugo
1999bl.

4 Enhanced Genetic Engine
The genetic engine used by M.GA is a hybrid of GA

and GP, with several modifications and additions to the
standard models. This section describes the details of the
evolutionary functions, and highlights differences between
RAGA and each of the standard approaches.

4.1 Plug-in Style Fitness Function

In order for a GA-based system to effectively search for
solutions, an appropriate fitness function must be
implemented. In a data mining system, the ultimate fitness
function would act as a measure for how close the rule is to
what is being sought. Because this measure is subjective,
particularly in undirected mining tasks, there is no
straightforward way to implement such a measure.

With only a limited amount of information available for
each candidate rule, an effective fitness function has to
combine as much of this data as possible. In RAGA, the raw
fitness is determined by using the viilues for confidence and
support.

RawFitness := 100 - sqrt[(confidence - confidence target)'
+ (support - supportTarget)* * sfAdjustment]

This equation converts the values for confidence and
support into a single numerical value that increases as each
factor approaches the respective target. Basically, the closer
the values are to the user specification, the higher the raw
fitness is for the rule.

Depending on the dataset and the type of search being
performed there are several fitness plug-in type modifiers
that can be used. These act to increase or decrease the raw
fitness and help to determine the actual fitness.

The first optional adjustment is obvious in the equation,
and can be applied to change the importance of the support
factor with respect to the rule confidence. This extension is
the last term in the equation, and is called the SF-
Adjustment (support factor adjustment).

By default the SF-Adjustment is 1.0, which means that
both confidence and support factors are weighed equally
when calculating the raw fitness. Depending on the dataset
and the domain it might be important that a higher
confidence is preferred to a higher support. In these cases
entering a decimal value greater than zero but less than one
will lower the impact of the support factor. Conversely it is
possible to raise the impact of the support factor by entering
a multiplier values that is greater than one.

The next fitness plug-in is Encourage wider rule
coverage, which awards a bonus to rules that are first in the
hierarchy to successfully answer a particular data item. The
goal is to reward rules based on the number of elements they
correctly answer within the dataset, excluding those
answered by other rules. Effectively, this is identical to
creating niches for rules that address certain classes, and is
advantageous for classification tasks because it maximizes
data coverage.

The next plug-in option is Limit expansion to good rules,
which is used to control the expansion of rules during the
evolutionary process. When this option is not used, rules
can grow in size without restriction using either crossover or
mutation operations. Growth can occur in either the
antecedent or the consequent, and is limited only by the
maximum length as specified for each in the configuration
options. '

The problem with allowing rules to expand in sue
without restriction is that useless rules, which are labeled as
such if they contribute nothing positive to the results, are
also allowed to expand and become more complex. Even in
the case of rules that have no confidence it is still possible
that new terms will be added. This has the potential to
impair the search in two ways, specifically an increased
processing time as well as an increased number of bad rules.

When in use, this option guarantees that each rule must not
expand unless it already has a positive confidence.

The goal of t h s fitness modifier is to encourage sound
basic components within each rule. Because large rules will
not exist unless they are built from valid components,
processing time is not wasted on their evaluation. Also,
because each rule has a solid base with potential for
refinement, the system will produce smaller and more useful
rules, which leads to a better hierarchy overall.

The final fitness adjustment plug-ins is Reward shorter
rules. This can apply a bonus that is based solely on the total
number of terms present in the antecedent and consequent.

The motivation behind using this option is to bias the
system towards slightly shorter rules. Because of increased
readability and ease of understanding, thls is common in
Data Mining applications. This is similar to a reward used
by GP systems, where shorter programs are allotted credit
for being parsimonious. Basically, the two rules or programs
perform exactly the same within the current dataset, however
the smaller one is presumed to be better.

The amount of bonus awarded is dependent on the actual
length, as well as the Reward constant, which is an option
associated with this plug-in. The reward constant is an
additive value that is applied to the raw fitness in proportion
to the desired length.

The reasons to bias the system towards smaller rules is
the expectation that they will be easier to understand, as well
as more efficient to process. This is often true because larger
rules are more llkely to contain redundant or unimportant
information, and this can obscure the basic components that
make the rule successful.

Complex rules are not only more difficult to read and
analyze, but more importantly they can be unnecessarily
specialized. For example, if a rule is simply a superset of
terms as compared to another shorter rule, but the two rules
answer exactly the same elements within the dataset, then
the additional term(s) are not contributing useful
information. Although it may not be significant with the
current data (training set) it is possible that the rule is not
general enough to handle future cases (testing set).

It is impoitant to recognize that if the additional terms
were useful in even a small way, there would be a change in
the results and a shift in the fitness. Because this is not
expressed there is little chance that additional specialization
will be more effective in new cases. Without having any
additional knowledge to help differentiate the two rules it is
advisable to keep the more general (shorter) one.

769

4.2 Fitness Proportional Selection 4.4 Mutation

For selection of rules that are copied from one generation
into the next, RAGA uses fitness proportional selection,
where the best rules are given a selection advantage. The
dilemma with fitness proportion selection is that because the
more fit individuals are constantly being selected, they are
usually copied several times within a single generation.
When this happens over several generations, a single
individual with a high fitness tends to get preferred, and
eventually dominates the entire population. This does not
occur in RAGA because unllke standard GA, duplicate rules
are not allowed to co-exist within the population.

After a single member has been selected for the next
generation, there will be a probability that crossover will
occur.

4.3 Crossover

RAGA performs a single-point crossover that splits and
recombines rules, and also guarantees that the results are
still valid. This is done by first choosing a random splitting
point between terms for each of two distinct rules. After the
splice point for the first rule is determined, the second is
more restricted because it is forced to be on the same side of
the equation. (ie: if the first rule is splitting within the
antecedent, then the second rule must split within the
antecedent). After the rules are broken, the halves are
recombined with the other rule. The result of this operation
is the creation of two new rules.

In RAGA, this group of four rules (two parents plus two
children) is called a rulefamily. Exactly two of these rules,
chosen according to the highest fitness, will be selected for
the next generation. This differs from some GA
implementations where crossover will indiscriminately
select the child-rules and discard the parent-rules. In our
experiments this was found to be quite beneficial because it
protects the population during periods where the rates for
crossover or mutation are increased.

One of the reasons for this difference is that standard GA
systems do not consider the possibility that the child-rules
are invalid. Because crossover operates at the term level,
with the ability to change both size and structure of rules, it
is capable of creating rules that are not allowed by the
restrictions set by the user during the configuration stage.
When an invalid rule is detected after a crossover operation,
it is removed from the family immediately.

After the two family members are selected for the next
generation, each will be copied pending the possibility of
mutation.

In RAGA there are two types of mutation, referred to as
micro-mutation and macro-mutation. Micro-mutation is a
single point change that occurs within the terms of terms of
each rule. Macro-mutation does not affect the specifics of an
individual term, but rather is used IO add or remove terms
from either side of the rule.

The goal of micro-mutation is to modify the terms in an
attempt tci add variation to the hierarchy. This type of
mutation is capable of changing the term variables,
constants, or the type of operation. This operation does not
consider terms or rules themselves, and does not anticipate
the effect of the change. If the result of the mutation is an
invalid term or rule, then the entire rule is discarded
immediately.

Macro-mutation is similar in that population members are
modified and either moved into the next generation or
discarded, however the goal is ti3 experiment with the
specialization and generalization of existing rules.

To specialize a rule is to restrict its application by
specifying additional constraints. The purpose is to increase
the accuracy by lowering the coverage. If it works correctly,
then the coverage will be reduced only by elements that
were being misclassified beforehand.

When a rule is generalized, constraints are removed in an
attempt to increase coverage. If this works correctly, then
the constraints are relaxed enough to answer more elements
without the penalty of a reduced accuracy.

Both mutation types are use'd together during the
evolutionary process, and can be controlled using varying
probabilities.

Due to the fact that the genetic operations behave
somewhat randomly it is often the case that rules are
modified such that they become inefficient or invalid
afterwards. RAGA handles these cases with a process named
Intergenerational Processing, which uses a non-
evolutionary approach to modify and replace rules.

4.5 Intergenerational Processing

Mechanisms of this type are not typically used in GA,
however the idea is similar in some respects to a GP variant
known as Typed-GP [Montaria, 19951. Typed-GP
guarantees that evolved programs will not contain critical
errors, thus saving processing time by eliminating worthless
members from the population.

770

A popular argument against using this type of mechanism
is that it is amounts to cheating by allowing forces other
than natural selection to influence the members. The first
reason for taking this position is that in theory the selection
pressure will eliminate worthless members without
interference. Secondly, by eliminating individuals that are
not selected against naturally, there is a risk that useful
genetic material is being lost as a consequence. Regardless
of these points, RAGA allows the user to specify one or
more options that override the natural selection process.

The genetic engine in RAGA makes the use of this
screening available because of the results from many tests
that were performed during the software development stage.
It was determined that by allowing the system to remove
certain types of rules, not only was there an improvement in
the time required to complete the search, but the rule sets
were more efficient and performed better on average.

In order to prevent the loss of diversity expected with the
non-evolutionary removal of rules, each deleted member is
immediately replaced. This replacement is done through the
use of rule modification or regeneration.

When a rule is deemed invalid the first step is to modify
it such that it becomes valid. The technique used for this is
the systematic deletion of terms from antecedent,
consequent, or both. If this is not possible because of the
rule structure or an excess of similar members in the
population, a complete substitution will be made. If after
replacing or modifying the rule the result is still invalid, or is
a duplicate with another rule in the set, this technique is
continually applied until all conditions are satisfied.

5 Problems with Classification Systems
The problem with many classification systems is that they

operate using only 1-place predicates, which allows for the
comparison of an attribute to a constant value. Depending on
the problem domain, solutions of thls type may not be
scaleable.

A good example of this limitation is shown later during
the description of results found during classification of the
polygon dataset. Of the systems used for experimenting on
this data, only RAGA was capable of recognizing
relationships between variables when the data was in its raw
form. It is still possible for other algorithms to consider
these relationships, but this requires that the data first be
tailored in a pre-processing stage.

Customizing the data to handle inter-attribute
relationships requires adding derived values that express the
result of a known operation. For example, in order to
compare the length of an object to its width, the addition of

a new attribute is required. One possible solution is to create
a value for length divided by width. This new variable can
be examined by any classification system, and predictions
can be made based upon it. One trivial observation is that a
value of 1 .O would mean that length equals width.

There are a number of disadvantages to creating new
attributes during the pre-processing stage, including a trade-
off between an increase in the search space and increased
input by the human expert. The trade-off is necessary
because the types of relationships as well as the applicable
attributes must be determined in advance. For cases where
human bias is acceptable, the expert can try to determine
beforehand which attributes should be compared, and how.
Unfortunately, given the fact that data mining techniques are
in place to discover information, this is not always possible
because the expert does not understand the data well enough
to decide.

In cases where the expert is not able to isolate key
attributes or determine what possible relationships should be
tested, then a new column must be generated for each pair of
attributes using each of the available operations. This
increases the size of the search space dramatically, making
the process much longer and less llkely to succeed.
Furthermore, in cases where more than two attributes can be
related, the increase in search space is exponential. Many of
these cases result in a search that cannot be completed in a
reasonable period of time.

To summarize, adding relationship attributes during the
pre-processing stage is a poor choice because the human
expert must decide upon both variables and the operations.
This itself is a task in data mining, and although
classification systems can take advantage of them, they are
still unable to discover them.

6 Supervised learning experiments

6.1 Polygon Dataset

The polygon dataset describes a group of geometric
shapes, and was designed to demonstrate the limitations in
using classifiers with 1 -place predicates.

The dataset consists of 190 differently sized shapes
including triangles and rectangles. Each of these polygons is
defined by only four attributes (Ll-L4), which correspond
to the lengths of up to four different sides. The L1 attribute
indicates the length of bottom side, while L2-L4 define the
remaining sides in clockwise order from the bottom.

One additional attribute, the type, is non-predictive and
is used to train classifiers. This type can be one of five

771

values as follows: equilateral triangle, isosceles triangle,
other triangle, square, and rectangle.

The dataset does not contain noise or errors, and all of
the polygons obey the following rules:

Equilateral triangle: Three equal sides, one zero length.
Isosceles triangle: Two sides equal, one of different length,
and one of zero length.
Other triangle: Three non-zero and non-equal sides, one
side of zero length.
Square: All four sides equal.
Rectangle: Two pairs of opposite sides equal.

All triangles follow the geometric rule: BC < AC+AB,
which guarantees that they are valid.

Several classification systems were used to generate
classifiers for the polygon dataset. The most impressive
results were found using C5.0 (successor of C4.5 [Quinlan
1993]), and RAGA. Common training and testing sets were
used for all of the applications in two different tests. In the
first test, the training set consists of 190 elements and the
same data is used for testing. The second test uses an
addiiional set of 100000 randomly generated legal
polygons, where no additional training is performed. By
evaluating this data with the rules discovered in the first
test, it provides some measure of scalability when
addressing unseen data from the same source.

6.1.1 Classification using C5.0

When C5.0 was used to generate a decision tree, several
of the software-specific options were tested. These options
include the creation of rulesets, and several variations of
boosting, however the results were not as good as the
standard configuration and are therefore not shown.

The predictive accuracy of the data when testing against
the full training set is 84.2%, using a decision tree of 46
leaves.

At several points within the tree, comparisons are made
between different attributes and the constant zero. This is
important because it determines the non-existence of
particular side, and is general enough to handle unseen data.
The problem is that this knowledge alone is not sufficient to
accurately classify all of the data, and thus is not a general
solution.

The result of classifying the 100000 randomly generated
legal polygons is 39.37% correct, and 60.63% misclassified.

6.1.2 Classification using RAGA

The options used within RAGA are the defaults, as
specified in the configuration for classification tasks.

A total of 19 rules (show below) were generated in order
to achieve 100% predictive accuracy over all of the
elements. A default class was not used, however the
individual rules address enough subsets within the data to
account for 100% coverage.

If (L2 = L3)"(L4 = LI) then (Class = 4)
If (L3 > LI)"(L2 < L4)"(L4 = L3) then (Class = 2)
If (L3 >= Ll)"(L4 = L2)"(L2 < L1) then (Class = 5)
If (L3 = LI)"(L2 > L3) then (Class = 5)
If (L4 < L2)"(L2 = LI)"(LI > L3) then class = 2)
If(L3 < L1)"(L2 < LI)"(L4 < Ll) then i(C1ass = 3)
If (L4 > L3)"(L2 < L4)"(L4 > L 1) then i(Class = 3)
If (L1 < L2)"(L4 < L2)"(L2 > L3) then (Class = 3)
If (L3 > Ll)"(L3 > L2)"(L4 < L3) then ((Class = 3)
If (L3 > LI)"(L2 = L3)"(L4 < L2) then i[Class = 2)
If(L2 = L3)"(L4 > LI)"(L4 = L3) then {[Class = 1)
If (L2 < L4)"(LA = Ll)"(LI <= L3) then (Class = 1)
If (LA < L2)"(L2 <= LI)"(L2 = L3) then (Class = 1)
If (L1 >= L4)"(L4 > L3)"(L3 < LI)"(L4. = L2) then (Class = 1)
If (L2 < L4)"(L4 = Ll)"(L4 > L3)"(L3 .= LI) then (Class = 2)
If (L2 < L4)"(Ll = L3)"(L4 < L1)"(1,2 <= LI)"(L2 < L3) then
(Class = 2)
If (L1 < L3)"(L4 >= L3)"(L3 < L2)"(L4 = L2) then (Class = 2)
If (LA < L2)"(L2 <= LI)"(Ll = L3)"(Lil< L3) then (Class = 2)
If (L3 < Ll)"(LI < L4)"(L2 = L4) then (Class = 2)

As expected, RAGA evolved a s,et of rules that considers
the relationships between attributes., rather than their values.
In early stages of the evolution, RAGA developed and
tested rules such as:

If (L2 > 1248) Then (class = 2)

Due to the brittleness of these iules, they were not able
to achieve 100% accuracy and were discarded by RAGA.
At the conclusion of the search, only the more general rules
remained.

The result of running the 100000 randomly generated
legal polygons is 93.09% correct, and 6.91% misclassified.

For this dataset, RAGA did not take advantage of the
default hierarchy. Additionally, the test for the constant zero
was not explicit, but rather a comparison to other variables.
This may not be as efficient, however it is equally accurate
in both testing and training sets.

6.1.3 Manually Preprocessing Data for- C5.0

Although C5.0 is incapable of determining what inter-
attribute relationships would be usehl, an experiment was
done to see how well the classification would perform if the

772

functionality did exist. To achieve this, six derived variables
were added to the list of useable attributes, as follows:

R-LlL2 := L1/ L2.
R-LlL3 := L1/ L3.
R-LlL4 := L1 /U.
R-L2L3 := L2 / L3.
R-L2U := L2 / U.
R-L3L4 := L3 / LA.

Relationship between 1 & 2
Relationship between 1 & 3
Relationship between 1 & 4
Relationship between 2 & 3
Relationship between 2 & 4
Relationship between 3 & 4

The value of these derived fields will be a real number
that indicates the relationship between the two specified
sides, in terms of length. The general rule is:

Value = 1 .O: The two sides are the same length
Value < 1 .O: The first side is shorter than the second.
Value > 1 .O: The first side is longer than the second.

A predictive accuracy of 95.3% was achieved using a
total of 25 leaves in the decision tree. This tree is smaller
and more accurate than the last one created using the same
application, which lacked the derived relationship variables.

Also unlike the first experiment, this decision tree is
more scalable because it considers relationships rather than
constant values. If the program were capable of determining
and working with these relationships automatically, then it
would have achieved this improved accuracy during the first
experiment.

The result of running the 100000 randomly generated
legal polygons is 78.5% correct, and 21.5% misclassified.
The reason for the high error rate is that C5.0 was unable to
recognize the importance of a relationship that is exactly
1 .O, and grouped together those with similar values.

7 Unsupervised Learning Experiments
Although several undirected data mining tasks were

performed using RAGA, verifying the results is a non-trivial
task in itself. Particularly for non-experts in the domain
being examined, it is difficult to judge the value of any given
rule, and may require the opinions of several knowledgeable
individuals.. Because of this additional effort, it is often
difficult to test undirected data mining algorithms on real
datasets.

7.1 Generating Synthetic Datasets

One way to address the problem of evaluating results
fiom an unsupervised learner is to generate a set of random
data that conforms to a pre-specified set of known rules. The
data can optionally contain noise, incorrect and missing
values. as well as non-essential attributes.

Example synthetic rule set
If (A > 5) A (B < 20) Then (C > 8) A (C < 12)
If (C < 4) Then (B > 15)
If (C > 10) Then (A > 4)

Based on these rules a large number of elements can be
generated, and this set can be used to test undirected data
mining algorithms.

The ultimate goal for an undirected search algorithm is to
find the exact set of rules as shown above, however this is
only one of many possible outcomes. Assuming that several
rules are generated with reasonable accuracy they do not
necessarily have to match those used to define the set.
Several factors that can influence the search results are
erroneous or inaccurate values, .an uneven distribution with
respect to the defining rules, and the number of elements
generated. This last factor is quite important because too
little data often means less coverage of the rule space is
considered. Results from this type of search often include
rules that are too specific and do not have the proper level of
support when applied to a superset of the data.

7.2 Results

Preliminary results indicated that experimentation with
undirected data mining was not as straightforward as it was
for simple classification. In most experiments there were
several rules being sought, however only one was usually
found by the conclusion of the search. Further analysis of
this revealed the source of this problem, as well as one
potential solution.

The reason for the single-rule solution is that the
dominant rule is preferred at an early point in the process.
This occurs because it has a high fitness value with respect
to the others being considered. Unlike classification tasks,
rules are not rewarded for uniquely addressing data
elements, and therefore a very similar rule will often have a
very similar fitness. As the generation evolves, variations of
the good rule are created in an attempt improve it, however
the original copies and unwanted variations are not
automatically discarded. Because these rules are similar in
content the fitness is similar, and as with the primary rule the
fitness is higher than other rules being considered. The result
is a single rule that essentially dominates the entire
population with variations of itself, and does not allow for
the exploration of other niches.

To control this problem, a new fitness plug-in was
created to penalize rules based on similarity. The goal is to
force rules apart for being syntactically similar, without
considering the elements they cover. This allows for the co-

773

existence of rule niches that answer overlapping subsets of
elements.

Preliminary testing of this new fitness modifier has shown
some success in unsupervised mining tasks. For example, a
dataset was generated using the following five rules:

If (B <= 14) ‘(D >= 35) ’ (D <= 36) Then E=l
If (B <= 13) ’ (D >= 33) ’ (D <= 34) Then E=2
If (A >= 6.734049) ‘(B >= 18) Then E=3
If (A <= 4.562865) ’ (D >= 38) ‘(D <= 39) Then E=4
If (A <= 2.871963) ’ (D >= 31) ’ (D <= 32) Then E=5

During testing, RAGA was able to quickly generate several
sets of rules that were semantically equivalent to those
above. For example, after a one experiment the following
rules were members of the rule hierarchy:

If (b < 14) ’ (d = 34) then (e = 2)
If (d < 39) ’ (b > 18) ’ (a > 6.8179) then (e = 3)

‘If (a <= 5.5046) ’ (d >= 38) then (e = 4)
If (a < 3.6621) A (d <= 32) then (e = 5)

It is obvious that the set is not complete, however 100% data
coverage was not a goal during these experiments. Rather
than trying to classify the data, RAGA was simply searching
for interesting associations. Considering this, the incomplete
coverage is not an issue, but the quality of the rules
generated must be closely examined.

The main difference between the discovered rules and the
actual rules is that the attribute D is only bounded on one
side. (ie: an upper or lower bound is indicated, but not both).
After analyzing the results and the dataset it was discovered
that (in all of the cases addressed) the second bound was
simply not required once the second attribute in the equation
was isolated. With this understood it appears that RAGA has
in fact simplified some of the original rules, although only
for a subset of the data.

8 Conclusion
We have described our current research with RAGA,

including the recent enhancements and modifications. As
shown by several experiments, RAGA is capable of handling
both supervised and unsupervised learning tasks, and in
some cases has distinct advantages as compared to other
systems.

problem domain, the success of RAGA does not depend on
this feature alone.

In unsupervised data mining tasks the results are not
compared to those of other algorithms, however the
preliminary testing generated rules that semantically match
or closely approximate the actual underlying rules of
synthetic datasets.

Bibliography

Cattral, R., Oppacher, F., Deugo, D. (1999a). “Rule
Acquisition with a Genetic Algorithm”. Proceedings of the
1999 Congress on Evolutionary Computation, p. 125-129.

Cattral, R., Oppacher, F., Deugo, D. (1999b). “Using
Genetic Algorithms to Evolve a Rule Hierarchy”. Lecture
notes in Computer Science, Vol. 1704, p. 289-294. 125-129.

[Berry, Linoff, 19971 Michael J.A. Berry, Gordon Linoff,
1997. Data Mining Techniques: Fo:r Marketing, Sales, and
Customer Support. Wiley computer publishing.

John R. Koza, (1992). “Genetic Programming: On the
programming of computers by means of natural selection”.
MIT Press, Cambridge, Mass.

David J. Montana, (1995). “Strongly typed genetic
programming”. Evolutionary computation 3(2).

R.J. Quinlan, (1993). C4.5 is a licensed product that can be
acquired from Morgan Kaufmann Publishers, Ann Arbor,
Michigan.

I. W. Flockhart, N. J. Radcliffc, (1996). “A Genetic
Algorithm-Based Approach to Data Mining”. Proceedings
of the Second International Conference on Knowledge
Discovery and Data Mining.

John H. Holland, (1975). “Adaptation in Natural and
Artificial Systems”. University of‘ Michigan Press (Ann
Arbor).

In supervised data mining tasks, RAGA demonstrates the
ability to generate a scalable rule hierarchy that is
unattainable by algorithms that are limited to 1-place
predicates. Although this advantage may depend on the

774

