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Abstract – In this paper, we examine the performance of 
genetic network programming (GNP) for learning agents 
on perceptual aliasing problems. Perceptual aliasing 
problems (PAP) are known as the problem where a 
learning agent can not distinguish between differing states 
of the world due to the limitation of its sensors. In order to 
cope with this problem, a genetic programming approach 
called Adaptive Genetic-Programming Automata (AGPA) 
has been proposed. While it effectively tackled to PAP, too 
many rules are generated that are not used to control the 
agent due to its tree-based structure. Using GNP, we can 
reduce the number of rules for PAP since it has network 
architecture but tree architecture as used in adaptive GP 
automata. We compare the performance of GNP and 
AGPA on a maze problem in which a learning agent tries 
to reach a goal. Simulation results clearly show that the 
number of rules can be reduced by GNP. 

Keywords: Perceptual aliasing problem, genetic network 
programming, adaptive GP automata, maze problems. 

1 Introduction 
 When we try to tackle a learning agent problem, we 
should consider a problem that is called perceptual aliasing 
problem [1]. Perceptual aliasing problem is caused when 
sensors of an agent is limited, and the agent can not 
distinguish different states with the same inputs from its 
sensor. In order to solve these problems, GP-Automata has 
been proposed [2]. In GP-Automata, the agent can select its 
action according to the difference of its internal states. The 
number of internal states in an agent should be fixed in 
advance. If the number of states is specified appropriately, 
the agent can solve the problem. If the number is smaller 
than the required number, however, the agent can not solve 
the problem. On the other hand, if the number is larger than 
the required number, the search efficiency declines. That is, 
the performance of GP-Automata depends on the number 
of the internal states prepared beforehand. In order to 
design the number of internal states adaptively, Adaptive 
GP-Automata (AGPA) has been proposed [3]. In AGPA, 
the number of the internal states is optimized in 
evolutionary process. This method does not need trial and 
error for decision of the number of the internal states. 
While AGPA are more effective for perceptual aliasing 

problems in comparison with GP-Automata, many rules 
generated in a tree architecture are not used to attain the 
goal in the problem. In GP-Automata or AGPA, the 
number of generated rules increases because they 
employed decision tree representation to describe rules to 
control an agent. 

Instead of using decision tree representation, GNP [4] 
employed network architecture. Using the network 
architecture, it can directly represent the flow of decision 
rules. We have already developed a variant of GNP, and 
showed its effectiveness in comparison with GP in multi-
agent problems [5,6]. We found that GNP has more 
flexible representation to describe action rules for multiple 
agents with different roles. In this paper, we employ GNP 
to find decision rules for a learning agent in a maze 
problem with perceptual aliasing problem. 

The remain of this paper is organized as follows: Section 2 
explains the basic architecture of GNP [4-6]. In Section 3, 
we briefly explain about Adaptive GP-Automata [3]. 
Section 4 describes a method to count the number of rules 
generated by GNP in order to compare the readability of 
generated rules. Then computational results on maze 
problems are shown in Section 5. We conclude this paper 
in Section 6. 

2 Genetic Network Programming 
2.1 Basic Architecture of GNP 
 In this section, we describe the basic architecture of 
GNP [4-6]. GNP uses a network architecture instead of 
using a tree architecture. Fig. 1 shows the basic structure of 
GNP. In GNP, we have three types of nodes: start node, 
judgment node and processing node. In Fig. 1, the start 
node, the judgment node and the processing node are 
denoted by a square, a diamond and an open circle, 
respectively. The start node is like a root node in GP. The 
other two nodes, the judgment node and the processing 
node, correspond to the function node and the terminal 
node, respectively. Therefore we can employ the same 
function node and the terminal node used in GP as the 
judgment node and the processing node in GNP. Main 
difference between GP and GNP lies in the terminal node 



 

or the processing node. As shown in Fig. 2, the terminal 
node of GP can not have a further connection. That is the 
reason why it is called as “terminal” node. On the other 
hand, the processing node in GNP can connect another 
node. 

The difference between GNP and GP lies only in their 
architectures, but it brings great difference between them. 
For example, because the action of an agent is determined 
only in the terminal node in GP, the agent should return to 
the root node to take a next action. On the other hand, an 
agent in GNP acts when it finds a processing node, and it 
does not have to return to the start node after making its 
decision. 

As for another disadvantage of GP, the performance of the 
tree may change greatly if the sub tree is exchanged by 
genetic operations at the node near to the root node in GP. 
On the other hand, the node exchange in GNP does not 
have such a great influence on the performance of the 
network. 

2.2 Chromosome Representation 
 In order to generate a network as an individual in 
GNP, we assign 1+N  nodes for one network randomly. 
The representation of each node is shown in Fig. 3. Each 
node has its ID number i ( Ni ,...,2,1,0= ). As shown in Fig. 
3, each node consists of two parts: node gene and 
connection gene. In the node gene, iNT  shows the type of 
the node i: “0” denotes the processing node and “1” 
denotes the judgment node. iID  indicates the function of 
the node. If 0=iNT  and there are P types of the processing 
node, iID  varies from 0 to 1−P . In the case of 1=iNT  and 
there are J types of the judgment node, iID  varies from 0 
to 1−J . According to the values of iNT  and iID , the 
function of the node i is defined. As for the start node, we 
do not assign 0NT  and 0ID  in the node gene. 

In the connection gene, ijC  indicates the j-th connection 
from the node i, and ark

in  shows the number of connections 
from the node i. If 0=iNT , 1=ark

in  because the processing 
node has only one connection. When 1=iNT , 2≥ark

in  
because a judgment node has several connections 
according to its condition. The value of the ijC  indicates 
the ID number of the node connected from the node i. 

In the initial generation, we first generate the N  nodes by 
assigning iNT  and iID  for Ni ,...,1= . After that we copy 
the set of generated N  nodes for popN  individuals. To the 
N  nodes in each individual, we randomly assign the 
connection gene ijC  for each individual to form a 
population with the specified number of individuals. 
Therefore, the node gene of each individual has the same 

iNT  and iID , but the connection gene has different 
connections among N  nodes. 

 

 

 

 

 

start node 

judgment node  processing node   
Figure 1.  Basic Structure of GNP. 
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Figure 2. Basic Structure of GP. 
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Figure 3. Representation for the node. 

 
2.3 Genetic Operations for GNP 
 In order to create various connections among nodes, 
GNP has the two types of genetic operations: crossover and 
mutation. Fig. 4 shows a crossover operation in this paper. 
The procedure of the crossover is as follows: 

[Crossover in GNP] 
Step 1: Using the tournament selection, select two 

networks, and apply the crossover to them 
according to the crossover probability cP . 

Step 2: Select nodes randomly in one network. 
Step 3: Exchange the selected nodes between two 

networks. 
Step 4: Repeat Step 1 through 4 until the prespecified 

number of offspring is generated. 
As shown in Fig. 4, the connections of the randomly 
selected nodes are exchanged by this crossover. 

Fig. 5 shows a mutation operation for connection gene. The 
procedure of the mutation for the connection gene in every 
individual is as follows: 

[Mutation in GNP]  
Step 1: According to the mutation probability mP , select a 

connection. 
Step 2: Turn the value of the selected connection to a 

rondomly specified node ID. 
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Figure 4. Crossover in GNP. 
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Figure 5. Mutation for connection gene in GNP. 
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Figure 6. GP-Automata. 

 

2.4 Algorithm of GNP 
 Using the initialization process and the genetic 
operations in Subsections 2.2 and 2.3, we form the 
following algorithm for GNP.  

 [GNP Algorithm] 

Step 1 (Initialization) 
Initialize the population with popN  individuals. 

Step 2 (Fitness evaluation) 
Calculate the fitness value of each individual, and find an 
elitist individual with the best fitness value in the 
population. 

 

Step 3 (Genetic operations) 
Step 3-1 (Selection): Select parents for crossover by 

the tournament selection. 
Step 3-2 (Crossover): Apply the crossover operator to 

the selected parents. 
Step 3-3 (Mutation):  Apply the mutation operator to 

the connection genes. 
Step 3-4 (Elite strategy): Preserve the elitist individual 

found in Step 2 or Step 5. 
Step 4 (Replacement) 

Replace the newly generated population with the 
previous population. 

Step 5 (Fitness evaluation) 
Calculate the fitness value of each individual, and find an 
elitist individual with the best fitness value in the 
population. 

Step 6 (Termination Condition) 
Terminate the algorithm if the specified condition is 
satisfied. Otherwise return to Step 3. 

3 Adaptive GP-Automata 
 When we apply a GP for learning agent to some 
perceptual aliasing problem, an agent should select 
appropriate action even if its sensor receives the same 
signal. In order to do that, the agent should have internal 
state to distinguish the same signal from the sensor as 
different states. However, if it should face a complicated 
problem, it becomes difficult to specify appropriate 
decision trees corresponding to internal states in advance. 
Ashlock [2] proposed his GP-Automata to cope with this 
problem. Fig. 6 shows a basic structure of GP-Automata. 
The finite number of internal states is prepared in advance, 
then a decision tree is developed by genetic operations for 
each internal states. The agent takes its action according to 
its internal state number and the corresponding decision 
tree. For example, If the current state is 2, the agent selects 
No. 2 decision tree, and follow the function node according 
to the signal from its sensor. It takes the corresponding 
action of a terminal node. Terminal nodes should include 
actions which transit its internal states. 

While GP-Automata is effective to perceptual aliasing 
problems, the number of internal states should be 
appropriately specified in advance. If the number is smaller 
than the required number, the agent can not solve the 
problem. On the other hand, if the number is larger than the 
required number, the search efficiency declines. That is, the 
performance of GP-Automata depends on the number of 
the internal states prepared beforehand. For an adaptive 
design of the number of internal states, Adaptive GP-
Automata (AGPA) has been proposed [3]. In AGPA, the 
number of the internal states is optimized in evolutionary 
process as well as decision trees. This method adaptively 
specify the number of the internal states. 
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Figure 7. Rules in a tree. 
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Figure 8. Rules in a network. 

 

4 Number of Rules in GP & GNP 
In this paper, an agent takes its action according to a 

network generated by GNP or trees with an internal state 
coded by AGPA. A processing node in GNP or a terminal 
node in AGPA can be regarded as a concluding part of 
each decision rule. For example, as shown in Fig. 7, if a 
tree consists of four function nodes (i.e., Nodes 1 through 
4), and five terminal nodes (i.e., Nodes A through E), the 
tree has the following five rules: 

If “1” & “2” & “4” are true      then take Action “A”. 
If “1” & “2” are true & “4” is false  then take Action “B”. 
If “1” is true & “2” is false      then take Action “C”. 
If “1” is false & “3” is true     then take Action “D”. 
If “1” is false & “3” is false     then take Action “E”.  

Though it is easy to take rules from a tree structure, we 
should define to take rules from a network structure for 
GNP. When we have one start node, four judgment nodes 
and four processing nodes as shown in Fig. 8, we divide a 
network to several rules from the start node as follows: 

Step 0: Start from the start node. 
Step 1:  Follow the network until a processing node is 

found. Repeat until all processing nodes from the 
start node are found. 

Step 2: Start from the processing nodes found in Step 1, 
follow the network until an unfound processing 
node is obtained. Repeat until all processing nodes 
are found. 

Step 3: Terminate the procedure. 

Using this procedure, we find 15 rules from the network in 
Fig. 8. In this procedure, we regard a processing node as a 
condition. For example, to take Action “D”, there are  5 
routes (or rules) as follows: 
 
If “1” & “2” & “3” & “4” are true  
           then take Action “D”. 
If Action “A” is taken       
           then take Action “D”. 
If Action “B” is taken       
           then take Action “D”. 
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Figure 9. Maze A. 
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Figure 10. Maze B. 

 
 
If “C” is taken & “3” & “4” are true 
           then take Action “D”. 
If “D” is taken & “1” & “2” & “3” & “4” are true  
           then take Action “D”. 
 
We count the number of rules in a network using this 
procedure. 
 
5 Simulations on Maze Problems 

We apply our GNP and the AGPA to maze problems 
with perceptual aliasing problems. Using GNP or AGPA, 
we develop decision rules for an agent to reach a goal in a 
maze. We apply them to two maze problems shown in Figs. 
9 and 10. Maze A is a 77×  grid world. An agent is set at a 
start cell denoted by “S”. It can move one cell in the grid 
world at each step. The goal in the grid is shown by “G” in 
these figures. Circles in a cell shows that an agent can not 
distinguish the difference of the current state. That is, in 
that cell, the agent receives a signal that there are no walls 
in the north, the south, the east, and the west of it. However, 
the agent should move to the east when it is in the cell just 
above the start cell (Cell A). On the other hand, it should 
move to the south in Cell B, and should move to the west 



 

in Cell C. The agent should distinguish the current state not 
only its sensor but also the internal state or the sequence of 
the decisions. While AGPA utilizes the information on 
internal states, GNP utilize the information on the sequence 
of the decisions. We show computer simulation results of 
these algorithms in the next section. 

In Fig. 9, the agent should take the following actions from 
“S” to reach “G”: Move North, Move East, Move East, 
Move South, Move South, and Move West. Each numeral 
depicted in the right figure in Fig. 9 indicates a reward 
obtained in the corresponding cell. If an agent can take the 
optimal actions in Maze A, it receive the following 
rewards: 287654321 =++++++ . In this paper, we 
allow an agent to find the goal 9 steps. Therefore the agent 
continues to receive reward after reaching the goal until 9 
steps are past. If the agent reach the goal in sixth step, it 
receive 21 rewards more at the goal. Thus the optimal 
rewards becomes 49 in this maze problem. We employ this 
reward as a fitness function in GNP and AGPA. 

In Maze B, we allow an agent to find the goal in 17 steps. 
In that case, the optimal total reward becomes 165. 

After preliminary experiments to define the value of 
parameters in GNP and AGPA, we specified the 
parameters as follows: 

Common Parameters in Maze A & Maze B: 
The number of terminate generation: 150, 
Crossover Probability: 0.7 
Crossover Operation: 

 Uniform crossover in GNP, 
 One point crossover in AGPA, 

Mutation Probability: 0.01, 
The number of elite solutions: 10, 
The number of trials: 100 

 
Maze A: 

The number of individuals in a population: 200 
Tournament size: 5. 

 
Maze B: 

The number of individuals in a population: 400, 
Tournament size: 10. 

6 Simulations Results 
We apply GNP and AGPA using the above parameter 

specifications to Maze A and Maze B. Figs. 11 and 12 
show the average fitness (i.e., rewards) of 100 trials over 
150 generations. From Fig. 11, we can see that both 
algorithms, GNP and AGPA, could find decision rules that 
enable an agent to obtain the maximum fitness (i.e., 49) 
among all the 100 trials. From Fig. 12, we can see that 
GNP could obtain the better average fitness than AGPA in 

Maze B. These figures show that GNP can search the better 
results faster than AGPA. 

Table 1 shows the statistics obtained in the simulations on 
Maze A. The first row indicates the number of trials in 
which the optimal solution is found. In Maze A, both the 
algorithms could obtain the maximum fitness among all the 
100 trials as we can see in Fig. 11 and Table 1. The second 
row shows the average generation to obtain the optimal 
solution. From these statistics, we can see that GNP could 
obtain the optimal solution faster than AGPA. 

From Table 2, we can see that the optimal solution could 
not be obtained in all the trials. But GNP could mark the 
better number of trials in which the optimal solution is 
obtained than AGPA. We average the number of 
generations in which the optimal solution is found. From 
this result, we can see that GNP can find the optimal 
solution faster than AGPA. 
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Figure 11. Average Fitness in Maze A. 
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Figure 12. Average Fitness in Maze B. 

 
 
 
 



 

 
Table 1. Statisitcs in Maze A. 

 
 GNP AGPA 
The number of trials in which 
the optimal solution is obtained 

100 100 

The average generation to 
obtain the optimal solution 

12.3 28.6 

 
Table 2. Statisitcs in Maze B. 

 
 GNP AGPA 
The number of trials in which 
the optimal solution is obtained 

95 56 

The average generation to 
obtain the optimal solution 

24.5 62.5 

 
Table 3. The number of rules obtained and used 

(Maze A). 
 

 GNP AGPA 
# of rules in the best individual 12.8 32.0 

Used rules 8.0 8.1 

 
Table 4. The number of rules obtained and used 

(Maze B). 
 

 GNP AGPA 
# of rules in the best individual 39.6 56.3 

Used rules 15.9 15.7 
 

Tables 3 and 4 show the average number of rules in the 
best solution generated by GNP and AGPA in Maze A and 
Maze B, respectively. The first row shows the number of 
rules obtained. We count the number of rules in the 
network obtained by GNP using the method described in 
Section 4. The second row shows the number of rules used 
by an agent to reach the goal. 

From Table 3, we can see that while the average number of 
used rules is almost the same in GNP and AGPA, the 
number of rules in the network or the decision trees is 
different. AGPA produced more rules than GNP since it 
develops several trees to cope with the perceptual aliasing 
problem. The same observation can be done in Table 4. In 
AGPA, function nodes may produce unnecessary rules in 
order to generate necessary rules. On the other hand, GNP 
can concatenate processing nodes (i.e., action nodes), it can 
reduce the number of rules to enable an agent to reach the 
goal. 

7 Conclusion 
In this paper, we examine the effectiveness of GNP 

by applying it to perceptual aliasing problems. By 
comparing GNP with Adaptive GP-Automata, we can find 
that GNP can produce a small number of rules that can 
attain the goal. We pointed out the weakness of AGPA that 
it has the tendency to generate more rules than necessity. In 
order to cope with this problem, we can employ a function 
node like “prog N” that can concatenate N terminate nodes. 
Using such function node, the number of generated rules 
may be reduced in AGPA. We should try to improve the 
architecture of AGPA to compare it with GNP. 
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