

Performance of Genetic Network Programming for
Learning Agents on Perceptual Aliasing Problem

Tadahiko Murata Takashi Nakamura Sho Nagamine

Department of Informatics, Kansai University
2-1-1, Ryozenji, Takatsuki, Osaka 569-1095, Japan

murata@res.kutc.kansai-u.ac.jp

Abstract – In this paper, we examine the performance of
genetic network programming (GNP) for learning agents
on perceptual aliasing problems. Perceptual aliasing
problems (PAP) are known as the problem where a
learning agent can not distinguish between differing states
of the world due to the limitation of its sensors. In order to
cope with this problem, a genetic programming approach
called Adaptive Genetic-Programming Automata (AGPA)
has been proposed. While it effectively tackled to PAP, too
many rules are generated that are not used to control the
agent due to its tree-based structure. Using GNP, we can
reduce the number of rules for PAP since it has network
architecture but tree architecture as used in adaptive GP
automata. We compare the performance of GNP and
AGPA on a maze problem in which a learning agent tries
to reach a goal. Simulation results clearly show that the
number of rules can be reduced by GNP.

Keywords: Perceptual aliasing problem, genetic network
programming, adaptive GP automata, maze problems.

1 Introduction
 When we try to tackle a learning agent problem, we
should consider a problem that is called perceptual aliasing
problem [1]. Perceptual aliasing problem is caused when
sensors of an agent is limited, and the agent can not
distinguish different states with the same inputs from its
sensor. In order to solve these problems, GP-Automata has
been proposed [2]. In GP-Automata, the agent can select its
action according to the difference of its internal states. The
number of internal states in an agent should be fixed in
advance. If the number of states is specified appropriately,
the agent can solve the problem. If the number is smaller
than the required number, however, the agent can not solve
the problem. On the other hand, if the number is larger than
the required number, the search efficiency declines. That is,
the performance of GP-Automata depends on the number
of the internal states prepared beforehand. In order to
design the number of internal states adaptively, Adaptive
GP-Automata (AGPA) has been proposed [3]. In AGPA,
the number of the internal states is optimized in
evolutionary process. This method does not need trial and
error for decision of the number of the internal states.
While AGPA are more effective for perceptual aliasing

problems in comparison with GP-Automata, many rules
generated in a tree architecture are not used to attain the
goal in the problem. In GP-Automata or AGPA, the
number of generated rules increases because they
employed decision tree representation to describe rules to
control an agent.

Instead of using decision tree representation, GNP [4]
employed network architecture. Using the network
architecture, it can directly represent the flow of decision
rules. We have already developed a variant of GNP, and
showed its effectiveness in comparison with GP in multi-
agent problems [5,6]. We found that GNP has more
flexible representation to describe action rules for multiple
agents with different roles. In this paper, we employ GNP
to find decision rules for a learning agent in a maze
problem with perceptual aliasing problem.

The remain of this paper is organized as follows: Section 2
explains the basic architecture of GNP [4-6]. In Section 3,
we briefly explain about Adaptive GP-Automata [3].
Section 4 describes a method to count the number of rules
generated by GNP in order to compare the readability of
generated rules. Then computational results on maze
problems are shown in Section 5. We conclude this paper
in Section 6.

2 Genetic Network Programming
2.1 Basic Architecture of GNP
 In this section, we describe the basic architecture of
GNP [4-6]. GNP uses a network architecture instead of
using a tree architecture. Fig. 1 shows the basic structure of
GNP. In GNP, we have three types of nodes: start node,
judgment node and processing node. In Fig. 1, the start
node, the judgment node and the processing node are
denoted by a square, a diamond and an open circle,
respectively. The start node is like a root node in GP. The
other two nodes, the judgment node and the processing
node, correspond to the function node and the terminal
node, respectively. Therefore we can employ the same
function node and the terminal node used in GP as the
judgment node and the processing node in GNP. Main
difference between GP and GNP lies in the terminal node

or the processing node. As shown in Fig. 2, the terminal
node of GP can not have a further connection. That is the
reason why it is called as “terminal” node. On the other
hand, the processing node in GNP can connect another
node.

The difference between GNP and GP lies only in their
architectures, but it brings great difference between them.
For example, because the action of an agent is determined
only in the terminal node in GP, the agent should return to
the root node to take a next action. On the other hand, an
agent in GNP acts when it finds a processing node, and it
does not have to return to the start node after making its
decision.

As for another disadvantage of GP, the performance of the
tree may change greatly if the sub tree is exchanged by
genetic operations at the node near to the root node in GP.
On the other hand, the node exchange in GNP does not
have such a great influence on the performance of the
network.

2.2 Chromosome Representation
 In order to generate a network as an individual in
GNP, we assign 1+N nodes for one network randomly.
The representation of each node is shown in Fig. 3. Each
node has its ID number i (Ni ,...,2,1,0=). As shown in Fig.
3, each node consists of two parts: node gene and
connection gene. In the node gene, iNT shows the type of
the node i: “0” denotes the processing node and “1”
denotes the judgment node. iID indicates the function of
the node. If 0=iNT and there are P types of the processing
node, iID varies from 0 to 1−P . In the case of 1=iNT and
there are J types of the judgment node, iID varies from 0
to 1−J . According to the values of iNT and iID , the
function of the node i is defined. As for the start node, we
do not assign 0NT and 0ID in the node gene.

In the connection gene, ijC indicates the j-th connection
from the node i, and ark

in shows the number of connections
from the node i. If 0=iNT , 1=ark

in because the processing
node has only one connection. When 1=iNT , 2≥ark

in
because a judgment node has several connections
according to its condition. The value of the ijC indicates
the ID number of the node connected from the node i.

In the initial generation, we first generate the N nodes by
assigning iNT and iID for Ni ,...,1= . After that we copy
the set of generated N nodes for popN individuals. To the
N nodes in each individual, we randomly assign the
connection gene ijC for each individual to form a
population with the specified number of individuals.
Therefore, the node gene of each individual has the same

iNT and iID , but the connection gene has different
connections among N nodes.

start node

judgment node processing node
Figure 1. Basic Structure of GNP.

root node

 function node terminal node
Figure 2. Basic Structure of GP.

 Node Gene Connection Gene

inode iNT iID 1iC 2iC ---- ---- ark
iinC

Figure 3. Representation for the node.

2.3 Genetic Operations for GNP
 In order to create various connections among nodes,
GNP has the two types of genetic operations: crossover and
mutation. Fig. 4 shows a crossover operation in this paper.
The procedure of the crossover is as follows:

[Crossover in GNP]
Step 1: Using the tournament selection, select two

networks, and apply the crossover to them
according to the crossover probability cP .

Step 2: Select nodes randomly in one network.
Step 3: Exchange the selected nodes between two

networks.
Step 4: Repeat Step 1 through 4 until the prespecified

number of offspring is generated.
As shown in Fig. 4, the connections of the randomly
selected nodes are exchanged by this crossover.

Fig. 5 shows a mutation operation for connection gene. The
procedure of the mutation for the connection gene in every
individual is as follows:

[Mutation in GNP]
Step 1: According to the mutation probability mP , select a

connection.
Step 2: Turn the value of the selected connection to a

rondomly specified node ID.

 Parent 1

Offspring 2

Offspring 1

Parent 2

Figure 4. Crossover in GNP.

 Parent

Offspring

Figure 5. Mutation for connection gene in GNP.

 1 3 2

No. 1 Tree

No. 2 Tree

No. 3 Tree

Internal State

Figure 6. GP-Automata.

2.4 Algorithm of GNP
 Using the initialization process and the genetic
operations in Subsections 2.2 and 2.3, we form the
following algorithm for GNP.

 [GNP Algorithm]

Step 1 (Initialization)
Initialize the population with popN individuals.

Step 2 (Fitness evaluation)
Calculate the fitness value of each individual, and find an
elitist individual with the best fitness value in the
population.

Step 3 (Genetic operations)
Step 3-1 (Selection): Select parents for crossover by

the tournament selection.
Step 3-2 (Crossover): Apply the crossover operator to

the selected parents.
Step 3-3 (Mutation): Apply the mutation operator to

the connection genes.
Step 3-4 (Elite strategy): Preserve the elitist individual

found in Step 2 or Step 5.
Step 4 (Replacement)

Replace the newly generated population with the
previous population.

Step 5 (Fitness evaluation)
Calculate the fitness value of each individual, and find an
elitist individual with the best fitness value in the
population.

Step 6 (Termination Condition)
Terminate the algorithm if the specified condition is
satisfied. Otherwise return to Step 3.

3 Adaptive GP-Automata
 When we apply a GP for learning agent to some
perceptual aliasing problem, an agent should select
appropriate action even if its sensor receives the same
signal. In order to do that, the agent should have internal
state to distinguish the same signal from the sensor as
different states. However, if it should face a complicated
problem, it becomes difficult to specify appropriate
decision trees corresponding to internal states in advance.
Ashlock [2] proposed his GP-Automata to cope with this
problem. Fig. 6 shows a basic structure of GP-Automata.
The finite number of internal states is prepared in advance,
then a decision tree is developed by genetic operations for
each internal states. The agent takes its action according to
its internal state number and the corresponding decision
tree. For example, If the current state is 2, the agent selects
No. 2 decision tree, and follow the function node according
to the signal from its sensor. It takes the corresponding
action of a terminal node. Terminal nodes should include
actions which transit its internal states.

While GP-Automata is effective to perceptual aliasing
problems, the number of internal states should be
appropriately specified in advance. If the number is smaller
than the required number, the agent can not solve the
problem. On the other hand, if the number is larger than the
required number, the search efficiency declines. That is, the
performance of GP-Automata depends on the number of
the internal states prepared beforehand. For an adaptive
design of the number of internal states, Adaptive GP-
Automata (AGPA) has been proposed [3]. In AGPA, the
number of the internal states is optimized in evolutionary
process as well as decision trees. This method adaptively
specify the number of the internal states.

3 2

B A

E D C

root node

 function node terminal node

4

1

A

1

2

4

B

1

2

4 C

1

2

D

1

3

E

1

3

Figure 7. Rules in a tree.

4

A

C

3

D

0

2

B

start node

judgment node processing node

1

0

A

1

0

B

1

2

0

C

1

2

3

0

C

1

2

3

4

A

D

0

D

1

2

3

4

B

D

C

C

3

C

C

3

4

C

D

3

4

n y

A

1

B

1

2

C

1

2

3

C

1

2

3

4

D

1

2

3

4

DDDDD

Figure 8. Rules in a network.

4 Number of Rules in GP & GNP
In this paper, an agent takes its action according to a

network generated by GNP or trees with an internal state
coded by AGPA. A processing node in GNP or a terminal
node in AGPA can be regarded as a concluding part of
each decision rule. For example, as shown in Fig. 7, if a
tree consists of four function nodes (i.e., Nodes 1 through
4), and five terminal nodes (i.e., Nodes A through E), the
tree has the following five rules:

If “1” & “2” & “4” are true then take Action “A”.
If “1” & “2” are true & “4” is false then take Action “B”.
If “1” is true & “2” is false then take Action “C”.
If “1” is false & “3” is true then take Action “D”.
If “1” is false & “3” is false then take Action “E”.

Though it is easy to take rules from a tree structure, we
should define to take rules from a network structure for
GNP. When we have one start node, four judgment nodes
and four processing nodes as shown in Fig. 8, we divide a
network to several rules from the start node as follows:

Step 0: Start from the start node.
Step 1: Follow the network until a processing node is

found. Repeat until all processing nodes from the
start node are found.

Step 2: Start from the processing nodes found in Step 1,
follow the network until an unfound processing
node is obtained. Repeat until all processing nodes
are found.

Step 3: Terminate the procedure.

Using this procedure, we find 15 rules from the network in
Fig. 8. In this procedure, we regard a processing node as a
condition. For example, to take Action “D”, there are 5
routes (or rules) as follows:

If “1” & “2” & “3” & “4” are true
 then take Action “D”.
If Action “A” is taken
 then take Action “D”.
If Action “B” is taken
 then take Action “D”.

S
G

1

1 2

1
3

3

4 3

5

7 5 6

6

A B

C

Figure 9. Maze A.

1 3

1 2 3 4 3

13 1 5

13 14 15 5 6 5

13 9 7

11 12 11 10 ９ 8 7

11 9 7

S

G

Figure 10. Maze B.

If “C” is taken & “3” & “4” are true
 then take Action “D”.
If “D” is taken & “1” & “2” & “3” & “4” are true
 then take Action “D”.

We count the number of rules in a network using this
procedure.

5 Simulations on Maze Problems

We apply our GNP and the AGPA to maze problems
with perceptual aliasing problems. Using GNP or AGPA,
we develop decision rules for an agent to reach a goal in a
maze. We apply them to two maze problems shown in Figs.
9 and 10. Maze A is a 77× grid world. An agent is set at a
start cell denoted by “S”. It can move one cell in the grid
world at each step. The goal in the grid is shown by “G” in
these figures. Circles in a cell shows that an agent can not
distinguish the difference of the current state. That is, in
that cell, the agent receives a signal that there are no walls
in the north, the south, the east, and the west of it. However,
the agent should move to the east when it is in the cell just
above the start cell (Cell A). On the other hand, it should
move to the south in Cell B, and should move to the west

in Cell C. The agent should distinguish the current state not
only its sensor but also the internal state or the sequence of
the decisions. While AGPA utilizes the information on
internal states, GNP utilize the information on the sequence
of the decisions. We show computer simulation results of
these algorithms in the next section.

In Fig. 9, the agent should take the following actions from
“S” to reach “G”: Move North, Move East, Move East,
Move South, Move South, and Move West. Each numeral
depicted in the right figure in Fig. 9 indicates a reward
obtained in the corresponding cell. If an agent can take the
optimal actions in Maze A, it receive the following
rewards: 287654321 =++++++ . In this paper, we
allow an agent to find the goal 9 steps. Therefore the agent
continues to receive reward after reaching the goal until 9
steps are past. If the agent reach the goal in sixth step, it
receive 21 rewards more at the goal. Thus the optimal
rewards becomes 49 in this maze problem. We employ this
reward as a fitness function in GNP and AGPA.

In Maze B, we allow an agent to find the goal in 17 steps.
In that case, the optimal total reward becomes 165.

After preliminary experiments to define the value of
parameters in GNP and AGPA, we specified the
parameters as follows:

Common Parameters in Maze A & Maze B:
The number of terminate generation: 150,
Crossover Probability: 0.7
Crossover Operation:

 Uniform crossover in GNP,
 One point crossover in AGPA,

Mutation Probability: 0.01,
The number of elite solutions: 10,
The number of trials: 100

Maze A:

The number of individuals in a population: 200
Tournament size: 5.

Maze B:

The number of individuals in a population: 400,
Tournament size: 10.

6 Simulations Results
We apply GNP and AGPA using the above parameter

specifications to Maze A and Maze B. Figs. 11 and 12
show the average fitness (i.e., rewards) of 100 trials over
150 generations. From Fig. 11, we can see that both
algorithms, GNP and AGPA, could find decision rules that
enable an agent to obtain the maximum fitness (i.e., 49)
among all the 100 trials. From Fig. 12, we can see that
GNP could obtain the better average fitness than AGPA in

Maze B. These figures show that GNP can search the better
results faster than AGPA.

Table 1 shows the statistics obtained in the simulations on
Maze A. The first row indicates the number of trials in
which the optimal solution is found. In Maze A, both the
algorithms could obtain the maximum fitness among all the
100 trials as we can see in Fig. 11 and Table 1. The second
row shows the average generation to obtain the optimal
solution. From these statistics, we can see that GNP could
obtain the optimal solution faster than AGPA.

From Table 2, we can see that the optimal solution could
not be obtained in all the trials. But GNP could mark the
better number of trials in which the optimal solution is
obtained than AGPA. We average the number of
generations in which the optimal solution is found. From
this result, we can see that GNP can find the optimal
solution faster than AGPA.

0

10

20

30

40

50

0 20 40 60 80 100 120 140
Generation

Fitness

AGPA
GNP

Figure 11. Average Fitness in Maze A.

25
45
65
85

105
125
145
165

0 20 40 60 80 100 120 140
Generation

Fitness

GNP
AGPA

Figure 12. Average Fitness in Maze B.

Table 1. Statisitcs in Maze A.

 GNP AGPA
The number of trials in which
the optimal solution is obtained

100 100

The average generation to
obtain the optimal solution

12.3 28.6

Table 2. Statisitcs in Maze B.

 GNP AGPA
The number of trials in which
the optimal solution is obtained

95 56

The average generation to
obtain the optimal solution

24.5 62.5

Table 3. The number of rules obtained and used

(Maze A).

 GNP AGPA
of rules in the best individual 12.8 32.0

Used rules 8.0 8.1

Table 4. The number of rules obtained and used

(Maze B).

 GNP AGPA
of rules in the best individual 39.6 56.3

Used rules 15.9 15.7

Tables 3 and 4 show the average number of rules in the
best solution generated by GNP and AGPA in Maze A and
Maze B, respectively. The first row shows the number of
rules obtained. We count the number of rules in the
network obtained by GNP using the method described in
Section 4. The second row shows the number of rules used
by an agent to reach the goal.

From Table 3, we can see that while the average number of
used rules is almost the same in GNP and AGPA, the
number of rules in the network or the decision trees is
different. AGPA produced more rules than GNP since it
develops several trees to cope with the perceptual aliasing
problem. The same observation can be done in Table 4. In
AGPA, function nodes may produce unnecessary rules in
order to generate necessary rules. On the other hand, GNP
can concatenate processing nodes (i.e., action nodes), it can
reduce the number of rules to enable an agent to reach the
goal.

7 Conclusion
In this paper, we examine the effectiveness of GNP

by applying it to perceptual aliasing problems. By
comparing GNP with Adaptive GP-Automata, we can find
that GNP can produce a small number of rules that can
attain the goal. We pointed out the weakness of AGPA that
it has the tendency to generate more rules than necessity. In
order to cope with this problem, we can employ a function
node like “prog N” that can concatenate N terminate nodes.
Using such function node, the number of generated rules
may be reduced in AGPA. We should try to improve the
architecture of AGPA to compare it with GNP.

Acknowledgement
 This research is supported by “Collaboration with
Local Communities” Project for Private Universities:
Matching fund subsidy from MEXT (Ministry of
Education, Culture, Sports, Science and Technology),
2005-2009.

References
[1] S. D. Whitehead and D. H. Ballard, “Learning to
perceive and act,” Technical report of Computer Science
Department, University of Rochester, 1990.

[2] D ． Ashlock, “GP-Automata for Dividing the
Dollar,” Proc. of Genetic Programming 1997, pp. 18-26,
1997.

[3] H. Kataoka, A. Hara, and T. Nagao, “Action Control
of an Agent Using Adaptive GP-Automata,” Information
Processing Society Journal, Vol. 44, No. 9, pp. 2390-2400,
Sep. 2003.

[4] H. Katagiri, K. Hirasawa, J. Hu, and J. Murata,
“Network structure oriented evolutionary model -Genetic
Network Programming- and its comparison with Genetic
Programming,” Proc. of 2001 GECCO, p. 219, 2001.

[5] T. Murata and T. Nakamura, “Developing
Cooperation of Multiple Agents Using Genetic Network
Programming with Automatically Defined Groups,” Proc.
of Late Breaking Papers in GECCO 2004, 12 pages in CD-
ROM, 2004.

[6] T. Murata and T. Nakamura, “Genetic Network
Programming with Automatically Defined Groups for
Assigning Proper Roles to Multiple Agents,” Proc. of 2005
GECCO, pp. 1705-1712, 2005.

