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Abstract- A fuzzy logic based expert system has been 
developed that automatically allocates resources in real- 
time over many dissimilar platforms. n e  platforms can be 
very general, e.g., ships, planes, etc. Potential foes can 
also be general. The resource manager has been 
embedded in an electronic game environment. This co- 
evolutionary game fully automates the data mining 
problem allowing determination ofparameters essential to 
the resource inaiiager. The game allows the resource 
manager to learn from human experts or computerized 
enemies, The game does not determine the structure of 
fuzzy decision trees. A new data mining algorithm that 
uses a genetic program, an algorithm that evolves other 
computer programs, as a data mining function has been 
developed to solve this problem. It not only determines the 
fuzzy decision tree structure it also creates fuzzy rules 
while mining scenario data bases. Finally, experimental 
results are discussed related to both data mining 
algorithms. 
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1 Introduction 

Modern naval battleforces generally include many 
different platforms, e.g., ships, planes, helicopters, etc. 
Each platform has its own sensors, e.g., radar, electronic 
support measures (ESM), and communications. The 
sharing of information measured by local sensors via 
communication links across the battlegroup should allow 
for optimal or near optimal decisions. The survival of the 
battlegroup or members of the group depends on the 
automatic real-time allocation of various resources. 

A fuzzy logic algorithm has been developed that 
automatically allocates electronic attack (EA) resources in 
real-time. In this paper EA refers to the active use of 
electronic techniques to neutralize enemy equipment such 

as radar [l]. The particular approach to fuzzy logic that 
will be used is the fuzzy decision tree, a generalization of 
the standard artificial intelligence technique of decision 
trees [2 ] .  

The controller must be able to make decisions 
based on rules provided by experts. The fuzzy logic 
approach allows the direct codification of expertise 
forming a fuzzy linguistic description [3], i.e., a formal 
representation of the system in terms of fuzzy if-then rules. 
This will prove to be a flexible structure that can be 
extended or otherwise altered as doctrine sets, i.e., the 
expert rule sets change. 

The fuzzy linguistic description will build 
composite concepts from simple logical building blocks 
known as root concepts through various logical 
connectives: “or”, “and”, etc. Optimization has been 
conducted to determine the form of the membership 
functions for the fuzzy root concepts and fuzzy decision 
tree structure. 

The optimization procedures employed here are a 
type of data mining. Data mining is defined as the 
efficient discovery of valuable, non-obvious information 
embedded in a large collection of data [4]. The genetic 
optimization techniques used here are efficient, the 
relationship between quantities extracted and the fuzzy 
rules are certainly not a priori obvious, and the information 
obtained is valuable for decision-theoretic processes. 
Also, the genetic algorithm based procedure is designed so 
that when the scenario databases change as a function of 
time, then the algorithm can automatically re-optimize 
allowing it to discover new relationships in the data. 
Alternatively, the resource manager (RM) can be 
embedded in a computer game that EA experts can play. 
The software records the result of the RM and expert’s 
interaction, automatically assembling a database of 
scenarios. After the end of the game, the RM makes a 
determination of whether or not to re-optimize itself using 
the newly extended database. 

To be consistent with terminology used in 
artificial intelligence and complexity theory [SI, the term 
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“agent” will sometimes be used to mean platfonq also a 
group of allied platforms will be referred to as a ‘Ineta- 
agent.” Finally, the terms “blue” and “red” will refer to 
“agents” or ‘”eta-agents” on opposite sides of a conflict, 
i.e., the blue side and the red side. 

Section 2 briefly introduces the ideas of fuzzy set 
theory, fuzzy logic, fuzzy decision trees, and the five 
major components of the RM. Section 3 discusses 
optimization with a focus on genetic algorithms and data 
mining. Section 4 discusses co-evolutionary optimization 
and its effectiveness. Section 5 provides references to 
examples of the RM’s responses for multi-platform 
scenarios that provide validation of the RM and the 
information data mined. Section 6 introduces a different 
data mining algorithm that uses a genetic program to data 
mine a military data base. Section 7 describes the 
application of this algorithm to data mining fuzzy decision 
tree structure, i.e., how vertices and edges are connected 
and labeled in a fuzzy decision tree. This is equivalent to 
automatically generating fuzzy if-then rules. Section 7 
concludes with a discussion of experimental results. 
Finally, section 8 provides a summary. 

2 A brief introduction to fuzzy sets, 
fuzzy logic and the fuzzy RM 

The RM must be able to deal with linguistically 
imprecise information provided by an expert. Also, the 
RM must control a number of assets and be flexible 
enough to rapidly adapt to change. The above 
requirements suggest an approach based on fuzzy logic. 
Fuzzy logic is a mathematical formalism that attempts to 
imitate the way humans make decisions. Through the 
concept of the grade of membership, fuzzy set theory and 
fuzzy logic allow a simple mathematical expression of 
uncertainty [6]. The RM requires a mathematical 
representation of domain expertise. The decision tree of 
classical artificial intelligence provides a graphical 
representation of expertise that is easily adapted by adding 
or pruning limbs. The fuzzy decision tree, a fuzzy logic 
extension of this concept, allows easy incorporation of 
uncertainty as well as a graphical codification of expertise 
[2]. Finally, a detailed discussion of the particular 
approach to fuzzy logic and fuzzy decision trees used in 
the RM is given in the literature [7]. 

The resource manager is made up of five parts, 
the isolated platform model, the multi-platform model, the 
communication model, the fuzzy parameter selection tree 
and the fuzzy strategy tree. As previously discussed the 
isolated platform model provides a fuzzy decision tree that 
allows an individual platform to respond to a threat. The 
multi-platform model allows a group of platforms to 
respond to a threat in a collaborative fashion. The 
communication model describes the means of 
communication or interaction between the platforms. The 

fuzzy parameter selection tree is designed to make optimal 
or near optimal selections of root concept parameters from 
the parameter database assembled during previous 
optimization with the genetic algorithm. Finally, the 
strategy tree is a fuzzy tree that an agent uses to try to 
predict the behavior of an enemy. A more detailed 
discussion of the structure of the RM as well as explicit 
forms for fuzzy membership functions can be found in the 
literature [7]. 

3 Optimization of the root concept’s 
parameters using a genetic 
algorithm for data mining 

The parameters of the root concept membership 
function are obtained by optimizing the RM over a 
database of scenarios using a genetic algorithm [SI (CA). 
Once the root concept membership functions are known, 
those for the composite concepts [7] follow immediately. 
At this point the necessary fuzzy if-then rules for the RM 
have been fully determined. Detailed discussions of the 
CA used for data mining as well as the construction of the 
chromosomes and fitness functions are given in the 
literature [7]. 

The optimization procedures employed here are a 
component of a data mining operation. Data mining is 
defined as the efficient discovery of valuable, non-obvious 
information embedded in a large collection of data [4]. 
The genetic optimization techniques used here are 
efficient, the relationship between parameters extracted 
and the fuzzy rules are certainly not a priori obvious, and 
the information obtained is valuable for decision-theoretic 
processes. Also, the RM is designed so that when the 
scenario databases change as a function of time then the 
algorithm can automatically re-optimize allowing it to 
discover new relationships in the data. 

The application of the genetic algorithm is 
actually part of the second step in a three-step data mining 
process. The first step is the collection of data and its 
subsequent filtering by a domain expert, to produce a 
scenario database of good quality. The second step 
involves the use of various data mining functions such as 
clustering and association, etc. During this step, the 
genetic algorithm based optimization is used to mine 
parameters from the database. These parameters allow the 
fuzzy decision tree to form optimal conclusions about 
resource allocation. In the third and final step of the data 
mining operation, the RM’s decisions are analyzed by a 
domain expert to determine their validity. 

Data mining to re-optimize the RM and real-time 
operation of the RM may occur simultaneously on 
different computers. Since the RM is designed to operate 
on a collection of platforms, even during very active use of 
the RM, some computer resources may be available for 
additional optimization and other data mining related 
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activities. Thus, the multi-platform scheme allows 
frequent re-optimization of the RM, while the previously 
optimized version of the RM continues to function in real- 
time. 

Typically the database is constructed from data 
taken from sensors of different types. The data will be 
sparse intermittent and noisy. To assemble a 
representative database, the domain expert must eliminate 
unacceptable data followed by the use of various data 
mining functions such as clustering [9-121, association 

, [ 13-20], etc. Clustering can be used to organize the data, 
suppress outliers, etc. Association determines when data 
measured on different sensors corresponds to the same 
observable. 

An alternate approach to constructing a database 
for re-optimization involves embedding the RM in a 
computer game. The game is designed so human EA 
experts can play it, in real-time against the RM. The game 
also allows the RM to be matched against computerized 
opponents running under their own autonomous logic. The 
game software records the events of the game for both 
cases, i.e., when the RM's opponent is a human expert or a 
computerized agent. This record contributes to a database 
for re-optimization. Such a database is purer than one born 
of sensor data since environmental noise, sensor defects, 
etc., are not contaminating the data. This offers the 
advantage that the filtering stage of the data mining 
operation is simplified. The obvious disadvantage is that 
the database will be less representative of events in the real 
world, than one born of real sensor data taken during 
battle. 

4 CO-evolutionary data mining 

In nature a system never evolves separately from 
the environment that contains it. Both biological system 
and environment simultaneously evolve. This is referred 
to as co-evolution [21]. In a similar manner the fuzzy 
resource manager should not evolve separately from its 
environment, i.e., enemy tactics should be allowed to 
simultaneously evolve. Certainly, in real world situations 
if the enemy sees the resource manager employ a certain 
range of techniques, they will evolve a collection of 
counter techniques to compete more effectively with the 
resource manager. 

4.1 Real-time eo-evolutionary data mining 

The approach to co-evolution is as follows. For 
each root concept membership function on the red strategy 
tree define a threshold, such that if the membership 
function exceeds this threshold and if red's strategy tree is 
a good representation of bluets decision tree, then redk 
intention is signaled to blue resulting in an action by blue. 
The membership function is typically a function of some 

physically measurable quantity 0 and its first derivative in 
time, dO/dt. The two dimensional space resulting from 
plotting dO/dt vs. 0 is a phase space. The inequality 
between the root concept membership function and its 
threshold, upon inversion will give inequalities linear in 0 
and dO/dt, typically. The resulting system of inequalities 
defines a region of phase space referred to as the 
admissible region where red can engage in activities 
without signaling its intent to blue. The membership 
function parameters that are found through data mining 
determine the boundaries of the admissible region of phase 
space. The admissible region can not in general be 
brought to zero area otherwise blue will carry out an action 
against everything it detects, resulting in fratricide and 
wasting valuable resources essential to its survival. 

4.2 Tools for visualization of data mined 
information 

To facilitate data mining, co-evolution and 
validation of the RM, a software tool known as the 
scenario generator (SG) has been created. It automatically 
creates simulated blue and red platforms with user defined 
assets. It also creates a map or battlespace and 
automatically places the red and blue platforms in this 
space where they can interact. Each blue platform is 
controlled by its own copy of the fuzzy RM. 

The SG has two modes of operation. In the 
computer vs. computer (CVC) mode each red platform is 
controlled by its own controller distinct from the fuzzy RM 
used by the blue platforms. In the second mode, the 
human vs. computer (HVC) mode, a human player 
controls a red platform through an interactive graphical 
user interface (GUI). There can be multiple red platforms. 
At each time step, the human player can control any of the 
red platforms, but only one of them per time step. Those 
red platforms not under human control run under their own 
logic as in the CVC mode. 

From the SG software three different GUl's can 
be easily accessed. These GUI's are the "scenario builder", 
the "map builder," and the "human control player 
interface" (HCPI). 

The scenario builder GUI allows the construction 
of blue and red agents with general characteristics. 
Through this GUI both blue and red agents can be given 
various assets such as different types of radars, ESM, EA 
systems, etc. 

4.3 Effectiveness of eo-evolutionary 
optimization 

One simple class of experiments that has been 
conducted consists of one blue agent versus one red agent. 
It was typically found that all three parameters in blue's 
version of "close" showed little change for the last 33% of 
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the co-evolutionary generations. The human opponent 
operating the red agent tended to fixate on the same 
strategies. This suggested that in HVC optimization the 
human player quickly reached the limits of his or her 
expertise resulting in the RM’s parameters reaching a 
constant value. Thus the optimization of blue converged 
rapidly . 

In a simple experiment with one blue agent versus 
one red agent operating in CVC mode convergence was 
not nearly as fast as in HVC mode. The computer 
controlled red agent is typically capable of exhibiting 
many more strategies than the human controlled red agent 
in HVC mode. Thus the co-evolutionary process ends up 
exploring the combined red-blue parameter space longer, 
resulting in a greater likelihood of a global maximum 
being found for the fitness function, resulting in a RM that 
is more robust than in the HVC case. 

The more robust RM obtained through use of the 
CVC optimization can be understood intuitively as 
follows. If red can exhibit more strategies by using CVC 
mode than in HVC mode then the blue RM is forced to be 
more adaptive to compete. 

There is a risk during co-evolution that with both 
red and blue co-evolving, they will become very 
specialized in dealing with each other. For example 
without taking proper precautions blue agents of the 1000th 
co-evolutionary generation might be effective against red 
agents of that generation, but ineffective against agents of 
generations 100 through 999. Fortunately, the structure of 
the symbolically recursive fitness function prevents this, 
because its form retains the past history of the agents, 
forcing the blue agents of the 100dh generation to be 
effective against red agents of the preceding or current 
generation. 

5 Validation of the RM and 
information data mined 

The third step of the data mining problem 
involves validation, i.e., determination of the value of the 
information data mined. This is intrinsically coupled to 
the validation of the resource manager itself. Both the data 
mined information and the RM have been subjected to 
significant evaluations using the scenario generator [22- 
281. Through this process the data mined information has 
been shown to be extremely valuable and the decisions 
made by the RM of the highest quality. Currently, 
additional validation efforts are underway that involve the 
use of a hardware simulator with real sensors as opposed 
to the digitally simulated sensors created by the scenario 
generator. The results of this hardware validation effort 
will be the subject of a future publication. 

6 Data mining for fuzzy decision tree 
structure using a genetic program 

In section 4 a GA was used as a data mining 
function to determine parameters for fuzzy membership 
functions. This section introduces a different data mining 
function, a genetic program [29] (GP). The GP data mines 
fuzzy decision tree structure, i.e., how vertices and edges 
are connected and labeled in a fuzzy decision tree. 
Whereas the GA based data mining procedures determine 
the parameters of and hence the form of fuzzy membership 
functions, the GP based procedure actually data mines 
fuzzy if-then rules. 

6.1 Structure of the genetic program 

A genetic program is a problem independent 
method for automatically creating computer programs. 
Like a genetic algorithm, it evolves a solution using 
Darwin’s principle of survival of the fittest. Unlike the 
genetic algorithm, of which it can be considered an 
extension: its initial, intermediate, and final populations 
are computer programs. 

Like a genetic algorithm the fittest individuals in 
the population are copied and subject to two operations, 
crossover and mutation. Crossover corresponds to sexual 
recombination, a kind of mating between parent computer 
programs. The crossover operation is constrained to 
produce structurally valid offspring. Finally, the mutation 
operation is a random change in a computer program that 
is part of the evolving population. 

major steps before it can be used. The first step involves 
specifying a set of terminals. The terminals are the actual 
variables of the problem. These can include a variable like 
“x” used as a symbol in building a polynomial and also 
real constants. In the case the computer programs to be 
built are actually fuzzy decision trees, the terminal set 
might consist of root concepts that label the leaves of the 
tree. This is discussed in more detail in section 7. 

of functions. The functions can consist of operations like 
addition, multiplication, etc., in the case the computer 
programs to be assembled are polynomials. If the 
computer programs to be created are fuzzy decision trees 
then the functions might consists of logical operations like 
“and” and “or” and logical modifiers like “not”. 

The third step consists of specifying the fitness 
function. The fitness function for a genetic program has 
essentially the same role as that for a genetic algorithm and 
may be assembled through a similar process of intuition or 
derivation. 

parameters. These can include the probabilities of 

A genetic program requires the completion of five 

The second step involves the specification of a set 

The fourth step consists of specifying control 

75 



mutation and crossover as well as parameters that relate to 
the fifth major step. 

The fifth and final step consists of determining 
the termination criteria. This is frequently a maximum 
number of generations or that the fitness has not changed 
by a certain amount in a certain number of generations. 

program. It starts with an initial population that is 
randomly generated or user supplied. Once the initial 
population is created, the fitness of each individual is 
determined. At this point a loop is entered in which the 
population is subject to crossover, mutation, and fitness re- 
evaluation. This loop is repeated until one of the 
termination criteria is met. 

Figure 1 provides a flow chart of a typical genetic 

I Mutation 

fimess 

Figure 1 : Flow chart for a typical genetic program 

6.2 Initializing the population with a grow 
function 

A population is constructed using two sets of 
objects, the terminal and the function sets, denoted as T 
and F, respectively. To make the initial population, we use 
a recursive function referred to as a grow function. First a 
random element of either set is selected to be the root. If 
the selected element is a terminal, the grow function stops. 
If it is a function, it produces random elements for 
arguments. Usually, the depth of the tree the function can 
grow is limited. 

6.3 Crossover 

In crossover a random node in each parent is 
selected to be the root of the subtree to exchange. The 
parental node is selected using a crossover probability. 
Parents can be selected through roulette wheel selection 
[29]. The entire subtree down from the crossover points 
are exchanged while ensuring the syntactic structure is 
preserved. 

6.4 Mutation 

In mutation a random node of the program is 
selected based on probability of mutation. That node and 
its subtree are deleted and replaced by a new function, 
created by the grow function in the same way the 
population is originally made. Even if the old subtree was 
simply a terminal, the new subtree can have multiple 
terminals and functions. 

7 Building the fuzzy kinematic-ID 
subtree 

This section discusses the automatic generation of 
a subtree of the RM's isolated platform decision tree 
(IPDT) using a GP to data mine a data base of military 
scenarios. The IPDT of the fuzzy RM has been 
extensively discussed [7,28]. The IPDT uses sensor data 
to make decisions about the threat status of an incoming 
platfprm. A platform may be an airplane, helicopter, ship, 
etc. Previous versions of the IPDT were constructed by 
hand based on human expertise. 

7.1 Data base construction 

As in any data mining operation the first step is 
the construction of the data base that will be mined. The 
data base used for automatic construction of subtrees of the 
IPDT consists of sensor output for the various platforms 
involved in the engagement. Each record contains the 
range, bearing, elevation, ID information for the emitting 
platforms involved, etc. It also contains a number 
between zero and one, which represents an expert's 
opinion as to whether or not the emitter is attacking. 

7.2 Terminal and function sets 

To use the genetic program it is necessary to 
construct terminal and function sets relevant to the 
problem. The terminal sets used for construction of 
subtrees of the IPDT typically consist of one or more fuzzy 
root concepts [7]. A typical terminal set might be 

T={close, headingin, ranging, banking, friend, lethal}. (1) 
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The root concept ''close" is explained in reference 
[28]. The root concept of "headingin" is similar to 
"close", but with range replaced by the emitter's heading in 
the root concept's membership function. "Ranging" and 
"banking" have fuzzy membership functions that are 
functions of the second time derivative of range and 
heading, respectively. The fuzzy membership function for 
"friend" gives the degree of membership of the detected 
platform in the concept "friend", i.e., how much 
confidence does blue have that the emitter is a friend. 
Finally, the membership function for the root concept 
"lethal" is found by summing the membership functions 
for all the foe classes. These concepts are explained in 
greater detail in the literature [28]. 

The parsimony pressure, a I (i), appearing on 
the right-hand-side of (3) provides a penalty that reduces 
the im population element's fitness if it is longer than 
needed. Thus given two trees that are both effective, the 
smaller tree will have the higher fitness. This provides a 
computational implementation of Occam's razor [30]. 

7.4 The termination criteria 

The genetic program terminates after one of the 
following occurs: the number of generations reaches a 
preset maximum, the fitness has not changed by a preset 
amount in a certain number of generations or the fitness is 
within an acceptable tolerance of the maximum value. 

The function set, F, consist of the logical operations of 
"AND" and " O R  as well as the logical modifier "NOT", 

7.5 Genetic program generated IPDT subtrees 

Figure 2 depicts the IPDT subtree considered for i.e., 
construction using GP based data mining. This subtree 
was originally drawn based on experts' intuition. A line on 
a vertex denotes the logical connective "AND", a vertex 
without a line indicates the logical connective "OR", and a 
circle on an edge denotes the logical modifier "NOT". The 
tree is read as "if close and not a friend or headingin and 
not a friend then attacking." The root concepts are "close", 
"headingjn" and "fiend". The composite concept is 

(2) F={ AND, OR, NOT}. 

7.3 The fitness function 

The fitness function for data mining the IPDT 
subtree is 

Jtness(i) = g( i ,ndb ,  ntinze,7) - a. I(i) (3) "attacking". 
I 

ntime ' ndb 

where 

where ej is the jh  element of the data base; tk is the Ph time 
step; n a  is the number of elements in the data base; ntime 

is the number of time steps; T is the tolerance; ,qp(i,tkeJ is 
the output of the fuzzy decision tree created by the GP for 
the i" element of the population for time step tk and data 
base element ej; k m , ( t k e j )  is an expert's estimate as to 
what the fuzzy decision tree should yield as output for time 
step tk and data base element ej; a is the parsimony 
coefficient; l(i) is the length of the th element of the 
population, i.e., the number of nodes in the fuzzy decision 
tree corresponding to the j h  element; Ht) is the Heaviside 
step function which is unity for t 2f-I and zero otherwise. 

Observe, that (4) reflects that the expert's 
estimate, hF(tbej)  is uncertain, and need only be 
reproduced within a tolerance, 2. Also, to increase the 
robustness of the GP created tree, the fitness of the fuzzy 
decision tree used by the GP is found by averaging over 
time and the database. 

I Attacking I 

r 5 7 7  Friend 

FI T I  Headingin 

Figure 2: The IPDTsubtree constructed by the GP 

This subtree of the IPDT has been rediscovered 
by data mining a data base of military scenarios using a 
GP. Other more sophisticated trees have been discovered 
by GP based data mining, but this simple tree is considered 
here to illustrate the process. The fact that concepts like 
"ranging" and "banking" do not appear on the tree is 
related to the database used for the data mining procedure. 
There were no scenarios in the database that would make 
use of the "ranging" and "banking" concepts. The GP in 
many different runs was successful in constructing this 
subtree as expected, however, it did not always construct 
the same tree. Also, using different random seeds for each 
run, the number of generations required for the GP to stop 
varied. The GP's ability to construct the same subtree as 
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that written down based on experts’ rules provides a form 
of support for the subtree since it can be found in multiple 
ways. Finally, the GP’s ability to construct other trees 
points up the potential non-uniqueness of the subtree. 

of generations required to generate the tree in Figure 2 was 
three and the maximum 30. The maximum number of 
generations the GP could have run was 100. The GP, in 
one case, generated a tree different from the anticipated 
result in Figure 2. This tree is under current examination 
and may prove to be superior to the subtree in Figure 2. 

The GP‘s ability to find different fuzzy decision 
trees for the same problem most likely relates to the 
military data base that is being data mined, the fitness 
function and the parameters characterizing convergence. 
These are subjects of current research. 

In one class of experiments the smallest number 

8 Summary 

A fuzzy logic based resource manager (RM) for 
optimal allocation and scheduling of electronic attack 
resources distributed over many platforms is under 
development. Five components of the RM are discussed. 
Genetic algorithm based co-evolutionary data mining is 
examined. Co-evolution refers to a process where both 
friend and foe agents and meta-agents simultaneously 
evolve in a complex simulated environment perceived by 
various sensors. Construction of the database, which is 
used for data mining and optimization was summarized. 
Two methods of co-evolutionary optimization, computer 
versus computer (CVC) and human versus computer 
(HVC) optimization were discussed. CVC optimization 
involves evolution with a computer-controlled 
opponent(s); HVC optimization, with a human-controlled 
opponent or both human and computer controlled 
opponents. Experimental results for each form of co- 
evolutionary optimization were discussed and a 
comparison of both methods was outlined. It was found in 
HVC optimization that the human‘ player quickly reached 
the limits of his or her expertise resulting in the RM’s 
parameters reaching a constant value. In CVC 
optimization, the RM’s computerized opponent proved 
more resilient than a human player resulting in blue and 
red parameters, which change rapidly in time, unlike in 
HVC mode. The more resilient computerized opponent in 
CVC mode exposed the RM to more types of strategies 
with the potential for a more adaptive and robust RM. 
Examples of the resource manager’s multi-platform 
response are referenced to illustrate the RMs excellent 
performance and as a method of determining the value of 
the information data mined. A method for data mining 
fuzzy decision tree structure, and hence fuzzy if-then rules 
from military databases is introduced. This method uses a 
genetic program, an algorithm that automatically creates 
other computer programs, as a data mining function. The 

genetic program’s structure is discussed as well as the 
terminal set, function set, the fitness function, termination 
criteria, population initialization, the operations of cross- 
over and mutation, and the construction of the data base 
used for data mining. The use of parsimony pressure to 
limit the length of the fuzzy decision tree while 
maintaining the tree’s effectiveness is discussed. An 
explicit fitness function including parsimony pressure is 
examined. Finally, an example of a fuzzy decision tree 
generated by this algorithm is discussed. 
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