
Detecting New Forms of Network Intrusion 

Using Genetic Programming 

Wei Lu lssa Traore 
Department of Electrical and Computer Engineering 

University of Victoria 
PO Box 3055 STN CSC 

Victoria, BC, Canada 

Department of Electrical and Computer Engineering 
University of Victoria 

PO Box 3055 STN CSC 
Victoria, BC, Canada 

wlu@ece.uvic.ca itraore@ece.uvic.ca 

Abstract - How to find and detect novel o r  unknown 
network attacks is one of the most important 
objectives in current intrusion detection systems. In 
this paper, a rule evolution approach based on 
Genetic Programming (GP) for detecting novel 
attacks on network is presented and four genetic 
operators namely reproduction, mutation, crossover 
and dropping condition operators a re  used to evolve 
new rules. New rules are used to detect novel o r  
known network attacks. A training and testing 
dataset proposed by DARPA is used to evolve and 
evaluate these new rules. The proof of concept 
implementation shows that the rule generated by GP 
has a low false positive rate (FPR), a low false 
negative rate (FNR) and a high rate of detecting 
unknown attacks. Moreover, the rule base composed 
of new rules has high detection rate (DR) with low 
false alarm rate (FAR). 

1. Introduction 

Intrusion detection has been extensively studied since the 
seminal report written by Anderson [I]. Traditionally, 
intrusion detection techniques are divided into misuse 
detection and anomaly detection. Misuse detection 
techniques mainly focus on developing models of known 
attacks, which can be described by specific patterns or 
sequences of events and data. Anomaly detection 
techniques model system or users' normal behaviors, and 
any deviation from the normal behaviors is considered as 
an intrusion. Misuse detection techniques have low false 
detection rates (FDR), but their major weakness is that 
novel or unknown attacks will go unnoticed until 
corresponding signatures are added to the database of the 
Intrusion Detection System (IDS). Anomaly detection 
techniques have the potential to detect novel attacks, but 
quite often they tend to have high false detection rates 
because it is very difficult to discriminate between 
abnormal and intrusive behavior. 

In this paper we propose a rule evolution approach 
based on Genetic Programming (GP) [2][3] for detecting 
known or novel attacks on network. GP extends the 

fundamental idea of Genetic Algorithm (GA), and evolves 
more complex data structures. To do so, it uses parse 
trees to represent initial populations instead of 
chromosomes. Moreover, the GP technique can be used 
to evolve a population of individuals whereas GA 
searches the best solution in all possible solutions. Initial 
rules are selected based on background knowledge from 
h o w n  attacks and can be represented as parse trees. GP 
will evolve these initial rules to generate new rules. New 
rules are used to detect novel or known attacks. To evolve 
and evaluate these new rules, we use the training and 
testing dataset proposed by DARPA [4], which includes 
almost all known network based attacks namely land, 
synflood, ping of death (pod). smurf ieardrop. back. 
neptune. ipsweep. portsweep and UDPstorni attacks. 
The proof of concept implementation shows that the GP 
based approach can detect smurf and UDPstorm attacks. 
which are absent from the training dataset. The average 
false negative rate for each rule is 5.04% and the average 
false positive rate is 5.23%. The average rate of detecting 
unknown attacks for each rule is 57.14%. Moreover, we 
plot a receiving operator characteristic (ROC) curve of 
false alarm rate and detection rate when we apply the 
testing dataset to evaluate our rule base. The ROC'curve 
shows that the detection rate will be close to 100% when 
the false alarm rate falls in the range between 1.4% and 

The rest of the paper is organized as follows. Section 2 
presents an overview of related works. Section 3 provides 
background information on genetic programming. 
Section 4 discusses how to use GP to generate new rules 
for detecting known or novel attacks on network. Section 
5 presents the evaluation of the new rules and discusses 
the experimental results. Finally, section 6 makes some 
concluding remarks. 

1.8%. 

2. Related Works 

In [SI, Frank described and categorized several Artificial 
Intelligence (AI) techniques that can be used for intrusion 
detection; use of AI techniques for intrusion detection is 
categorized according to two dimensions: behavior 
classification and data reduction. Behavior classification 

0-7803-7804-0 /03/$17.00 0 2003 IEEE 2165 



assumes that intrusion can be decided by a given set of 
known behaviors and data reduction is typically used to 
analyze the large amount of audit-log data'produced so as 
to reduce the amount of data handled by human experts. 
However, explicit knowledge of known behaviors is 
difficult to establish. Any mistake occurring in the 
process of defining patterns of known behaviors will 
increase false alami rate and decrease the effectiveness 
of intrusion detection. 

Some early application of neural networks for user 
behavior modeling was proposed by Fox et al. [6]. Ghosh 
et al. later extended their idea by using back propagation 
algorithm for anomaly detection [7]. They established 
that randomly generating anomalous input data increases 
the performance of anomaly detection. The biggest 
limitation of this method is the difficulty of choosing the 
input parameters. Any mistake in input data selection will 
increase the false alarm rate. Further, how to initialize 
the weights of the neural network is still an open question. 

Lodovic et al. initially proposed another application of 
AI to intrusion detection by using Genetic Algorithm 
(GA) for misuse detection [SI. They defined a n- 
dimensional hypothesis vector H, where Hi = 1 if attack i 
was taking place according to the hypothesis, otherwise 
Hi = 0. Thus, the aim of intrusion detection was reduced 
to the problem of finding the H vector that maximizes the 
product W*H, subject to the constraint (AE.H), <= 0; .  W 
refers to the bdimensional weight vector; AE refers to 
an attacks-events matrix; 0 refers to the observed n 
dimensional audit trail vector. They showed that GA 
applied to misuse detection has a low false alarm rate. 
However, the biggest limitation of their approach is that 
it cannot identify attacks precisely. 

A. Chittur extended their idea by using GA for anomaly 
detection [9 ] .  Random numbers were generated using GA. 
A threshold value was established and any certainty value 
exceeding this threshold value was classified as a 
malicious attack. The experimental result showed that GA 
successfully generated an accurate empirical behavior 
model from training data. The biggest limitation of this 
approach was the difficulty of establishing the threshold 
value, which might lead to a high false alarm rate when 
used to detect novel or unknown attacks. 

More works on using GA for intrusion detection are 
described in [IO], [ I l l  and [12]. J. Gomez et al. [IO] 
proposed a linear representation scheme for evolving 
fuzzy rules using the concept of complete binary tree 
structure. GA is used to generate genetic operators for 
producing useful and minimal stmcture modification to 
the fuzzy expression tree represented by chromosomes. 
The biggest drawback of the proposed approach was that 
the training was time consuming. S.M. Bridge et al. [ 1 I ]  
employed GA to tune he fuzzy membership functions 
and select an appropriate set of features in their 
prototype IIDS (Intelligent IDS). B. Balajinath [12] used 
GA to leam individual user behavior. Active user behavior 
is predicted by GA based on past observed user behavior, 
and used to detect intrusion. Common limitation on both 

approaches is that the training process is time'consuming 
and they can only be used to detect anomalous behaviors 
at the host level. 

In [13], Crosbie and Spafford employed GP and agent 
technology to detect anomalous behaviors in a system. 
The autonomous agents are used to detect intrusions 
using log data of network connections. Each autonomous 
agent is used to monitor a particular network parameter 
and autonomous agents that are predicting correctly are 
given higher weight value in deciding whether a session is 
intrusive or not. There are a number of advantages to 
having many small agents instead of a single large one. 
But how to handle ,the communication among these 
agents is still an issue. Moreover. the training process 
may be time consuming if the proper primitive for each 
agent is not chosen. 

3. Overview of Genetic Programming 

3.1 GP Algorithm 
Genetic Programming [2] is an extension of Genetic 
Algorithm (GA). It is a general search method that uses 
analogies from natural selection and evolution. The main 
difference between them is the solution encoding method. 
GA encodes potential solutions for a specific problem as 
a simple population of fixed-length binary strings named 
chromosomes and then apply reproduction and 
recombination operators to these chromosomes to create 
new chromosomes. In contrast to GA, GP encodes multi 
potential solutions for specific problems as a population 
of programs or functions. The programs can be 
represented as parse trees. Usually, parse trees are 
composed of internal nodes and leaf nodes. Internal 
nodes are called primitive functions and leaf nodes are 
called terminals. The terminals can be viewed as the 
inputs to the specific problem. They might include the 
independent variables and the set of constants. The 
primitive functions are combined with the terminals or 
simpler function calls to form more complex function 
calls. For instance, GP can be used to evolve new rules 
from general ones. The. rules are represented as if 
condition 1 and condition 2...and condition N then 
consequence. In this case, the primitive function 
corresponds to AND operator and the terminals are the 
conditions (e.g. conditionl, condition2 ..... condition N). 

GP randomly generates an initial population of 
solutions. Then, the initial population is manipulated 
using various genetic operators to produce new 
populations. These operators include reproduction, 
crossover. mutation, dropping condition. etc.. The whole 
process of evolving from one population to the next 
population is called a generation. A high-level 
description of GP algorithm can be divided into a number 
of sequential steps, as follows: 

Create a random population of programs or rules using the 
symbolic expressions provided as the initial population. 

1. 

2166 



2. Evaluate each program or rule by assigning a fibless value 
according to a pre-defined fitness function that can 
measure the capability of the rule or program to solve the 
problem. 
Use reproduction operator to copy existing programs into 
the new generation . 
Generate the new population with cmsmver or mutation or 
other operators fmm a randomly chosen set of parents. 
Repeat steps 2 onwards for the new population until a pre- 
defined termination criterion has been satisfied or a fixed 
number of generations have been completed. 
The solution to the problem is the genetic program with the 
best fitness within all the generations. 

3. 

4. 

5. 

6 .  

3.2 Genetic Operators 
In GP, crossover operation is achieved firstly by 
reproduction of two parent trees. Then two crossover 
points are randomly selected in the two offspring trees. 
Exchanging suktrees, which are selected according to 
the crossover point in the parent trees, generates the final 
offspring trees. The obtained offspring trees are usually 
different from their parents in size and shape. Figure 1 
describes a crossover operation between function 
x2+x+x-2x a?d function 2x-, they produce two offspring 
functions 2x’ix andl”-x. 

Mutation operation is also considered in GP. A single 
parental tree is firstly reproduced. Then a mutation point 
is randomly selected from the reproduction, which can be 
either a leaf node or a sub-tree. Finally, the leaf node or 
the sub-tree is replaced by a new leaf node or sub-tree 
generated randomly. Figure 2 describes a mutation 
operation on function 2x*, the produced mutation 
offspring function is x2+2x. 

A new operator named dropping condition is proposed 
to evolve new rules in this paper. It randomly selects one 
condition in the rule and then tums it into any. That is this 
particular condition is no longer considered in the rule. 
For example, the rule 

if condition1 and condition2 and condition3 then 

can be changed to 
consequence 

if condirionl and condition2 and any then consequence 

Figure 2. Example of mutation in GP 

3.3 Fitness Function 
Fitness functions ensure that the evolution is toward 
optimization by calculating the fitness value for each 
individual in the population. The fitness value evaluates 
the performance of each individual in the population. We 
use a fitness function defined in 133 that is based on the 
support-confidence framework. Support is a ratio of the 
number of records covered by the rules to the total 
number of records. Confidence factor (cf) represents the 
accuracy of rules, which is the confidence of the 
consequent to be true under the conditions. It is the ratio 
of the number of records matching both the consequent 
and the conditions to the number of records matching 
only the conditions. If a rule is represented as if A then B 
and the size of the training dataset is N, then 

/A/ stands for the number of records that only satisfy 
condition A. /B/ stands for the number of records that 
only satisfy consequent B. /A and B/ stands for the 
number of records that satisfy both condition A and 
consequent B. 

A rule with a high confidence factor does not 
necessarily behave significantly different from the 
average. Thus, normalized confidence factor is defined to 
consider the average probability of consequent denoted 
prob. 

normalized-cf = cf * log (cf/prob), prob = /B //N 
To avoid wasting time to evolve those rules with a low 

support value, a strategy is defined: if support is below a 
user-defined minimum threshold (min-support), the 
confidence factor of the rule should not be considered. 

cf = /A and B/ //A/ ; support = /A  and B/ / N 

Thus, the fitness function is defined as follows: 

support ifsupport < min-support I wl *support+ w2 *normalized-cf otherwise 
rawJtness= 

where the weights wl and w2 are user-defined, and 
used to control the balance between the confidence and 
the support during the searches. 

Token competition is used to increase the diversity of 
solutions [14]. The idea is as follows: In the natural 
environment, once an individual finds a good place to live, 
then it will try to protect this environment and prevent 
newcomers from using it unless the newcomers are 

2167 



stronger than this individual. Other weaker individuals are 
hence forced to search their own place. In this way, the 
diversity of the population is increased. A token is 
allocated to each record in the training &aset. If a rule 
matches a record. its token will be seized by the rule. The 
priority of receiving the token is determined by the 
strength of the rules. Thus, a rule with high raw-fitness 
score can acquire as many tokens as possible. The 
modified fitness is defined as follows: 

n~odified_fifne~~=i~aw_firness * count / ideal 
Where count is the number of tokens that the rule has 

actually seized. ideal is the total number of tokens that it 
can seize, which is equal to the number of records that 
the rule matches. 

Rules 
A fp 
AAgg 
Aab 
bAbA 
AhAg 

4. Generating New Rules Using GP 

The use of GP to detect unknown attacks is based on the 
belief that new rules will have better performance than 
initial ones based on known attacks. Better performance 
means the new rules obtained after evolving the initial 
ones using GP will not only cover known attacks but also 
possibly detect the novel ones. 

Individual solution in a population is represented as a 
derivation tree that we describe using a string data 
structure. For example, a tree can be represented as 
“AabAcdAceI”. A means ‘and’ operator; a,b,c,d and e 
correspond to the conditions in the rules. I is the 
consequence, which means intrusion. The redundant 
conditions in the rule will be deleted after the evolution 
and thus ‘XabAcdAceI” can be interpreted as $ a  and b 
and c and d and e then intrusion. The attribute values of 
a.b,c,d.e are selected from known attacks. 

New rules are generated in two phases. In the first step, 
temporary new rules are composed of new rules 
generated by four operators including mutation, 
reproduction, crossover and dropping condition and 
additional rules directly generated from previous 
populations. Thus, the number of temporaly new rules is 
doubled. In the second phase, one half of the temporary 
new rules with the highest fitness scores after token 
competition are retained and passed to the next 
generation. 

To assess the feasibility and efficiency of GP for 
intrusion detection, we have selected an initial population 
of 40 rules that cover a series of network based attacks. 
Table 1 shows 10 instances of the initial rules, the rest of 
the rules are given in the appendix. 

We calculate the fitness value for each rule based on 
the training dataset. Currently, the most widely used 
training and testing dataset for anomaly detection is 
provided by DARPA Intrusion Detection Evaluation 
Program [4], which consists of the raw TCP dump data of 
nine weeks activity in a local area network simulating a 
typical U.S. Air Force LAN. The training dataset is 
labeled as either normal or intrusive. The test dataset is 

Illeanine, 
if land=l and wrongfrabmient=O then inmsion 
if wrong_fra,gnent>l then intrusion 
if protocol-type=tcp and count>3 then intrusion 
if s y c o u n t > 3  then inhusion 
ifprotocol-type=icmp and wrongiragment>l 

similar with the training dataset. The only difference is 
that the test dataset includes some unknown attacks not 
occurring in the training dataset. 

In our case, 10,000 network connection records 
provided by DARPA training dataset are used to train the 
rules, each connection lasting 2s. Eleven parameters 
defined in DARPA dataset are used to describe the 
attacks in the training dataset. Table 2 describes these 
parameters and their meaning. 

wwww 
A 
Aait 

then intrusion 
if diff-sw-rate>O.33 then intrusion 

ifcount<3 ind num_comDmmised>I 

. .  1 then inmsion~ ’ 

rA I ifsynflod=1.m then intrusion 
AatA 1 ifprotccol-type=tcp and nuLcompromised>l 

synflood 
nun-compromised 
same-srv-rate 

I then intrusion 
I ifprotocoI-type=tcp and same-srv-rate=l .oO Aaav 

connection 
connections that have “SYN” errors 
number of compromised conditions 
percentage of connections to the same 

count 

srv-count 

~ 1 then intrusion 
Table 1. Initial Rules 

different services 
number of connections from the same 
souice host to the same destination host 
number of connections from the same 

Parameters Meanin 
protocol-type type of protocol 

flag to identify whether connection is 
fmrnlto the same hostlport 

I services 
diff-srv-rate I percentage of connections to the 

source service to the same destination 
service 

destination service to the same source 
1 service 

Table 2. Representation of Parameters 

The rules in the initial population are evolved using 
mutation, crossover and dropping condition operators. 
The rates of crossover, mutation and dropping-condition 
operations are respectively 0.6, 0.0 1 and 0.001 for each 
rule. Fourty offspring rules are evolved from the previous 
fourty parent rules. Based on token competition, 
combining offspring rules with parent rules generates 
temporary new rules. One half of the temporaly new 

2168 



rules with highest fitness scores after token competition 
are selected as the new rules. 

The evolution will not be terminated until we have 
executed 5000 runs or the fimess value for each rule is 
bigger than a threshold equal to 0.95. Table 3 describes 
I O  instances of obtained new rules. To view the rest of 
new rules, please refer to the appendix. 

The initial and new rules are composed of attribute 
descriptors. Table 4 shows attribute descriptors 
representations and meanings. 

- and synflocd4 then intrusion 
Aikq if protocol-type=udp and s~-count>367 and 

synflood=O then intrusion 
Aat if protocol_me=tcD and nuni_compromised> I 

Rules I Meaning 
Ag 
Afpq 

1 If wrongfragment>l then intrusion 
I if land=l and wrong_fragment=O and syntlood=C 

& 
Ail I if protocol-type=udp and dst-host-count>203 

.~ ~~ I then intrusion 
1 if protocol-type=tcp and same_srv-rate=l .OO Aav 
I thenintrusion 

Ahcq 1 if protocol-type=icmp and ds-host-sw-count>l60 

1 I then intrusion 
Table 3. New Rules 

Terminal I Meaning I Terminal I Meaning 
S num I i  I protocol 

count>R I 
srv-count>R I 
dst-host-count 
... 

k Synflood=0 
P wrong ‘ r  I syntlocd>l 

I -fragment=O 
e 1 .dst-host_srv a 1 protocol 

-count>R I -type=tcp 

<R2 -type=icmp 
I dst-host-count h protocol 

m dst-host-srv - U  same-srv 
rate=O.OO 

compromisecbl rate=l .OO 
same-srv 

wrongfragment 

Table 4. Representation ofTerminals 
Note:R13R2,R3 are random values 

5. Evaluation of New Rules 

Evaluation of intrusion detection approaches for 
detecting novel attacks is an important and multi-faceted 
problem. The training dataset we use is one day’s 

connection records provided by DARF’A, that is 10000 
connection records. Eight kinds of network attacks are 
included in the training dataset, namely land. synfood, 
pod. teardrop. back, neptune, ipsweep and portsweep. 
The bsting dataset we use is another one-day activity 
consisting of 10000 connection records. Ten kinds of 
network attacks are included in the testing dataset, 
namely smwJ UDPsiorm, land, synflood, pod. teardrop. 
back, neptune, ipsweep and portsweep. Smurf and 
UDPstorm attacks are the novel attacks which are absent 
from the training dataset. Detection of attacks involved in 
the test dataset and not occurring in the training dataset 
assesses the potential ability to detect novel attacks. We 
use three performance metrics to evaluate the new rules, 
namely false positive rate (FPR), false negative rate 
(FNR) and unknown attack detection rate (UADR). A 
false positive occurs when a rule classifies normal traffic 
as intrusive. A false negative occurs when a rule 
characterizes an intrusion as normal. UADR measures the 
capability o fa  new rule to detect novel attacks. 

For each rule, we calculate its FPR, FNR and UADR 
independently. We find that every time we use GP to 
evolve the rules, the number of generated rules is 
different and thus the FPR, FNR and UADR for each rule 
is also different. Therefore, to statistically evaluate the 
efficiency of our GP based approach, FPR, FNR and 
UADR are defined as the arithmetical average value of all 
new rules’s rates: 

FPR=averageE FPR),,,rJ; 
FNR =averagen (FNR),,,I,); 
lJADR=averagec (UADR),.*J; 
For instance, consider a rule base that includes two 

new rules: rulel and rule2. The FPR, FNR and UADR of 
rulel is 0.001, 0.015 and 0.56 respectively. The FPR, 
FNR and UADR of rule2 is 0.002, 0.03 and 0.78 
respectively. Thus, according to the defmition: 

average FPR for  each rule=(0.001+0.002j/2=0.0015; 
average FNR for  each rule=(O.OI5+0.03)/2=0.0225; 
average UADR for each rule=(0.56+0.78)/2=0.67. 
Since the number of new rules is different in each run, 

the average FPR, FNR and UADR for each run is also 
different. We execute 10,000 runs and plot the 
probability distribution of FPR, FNR and UADR. Figure 
3 and Figure 4 illustrate the FPR’s probability 
distribution and the log scale probability distribution. 
Figure 5 and Figure 6 illustrate the FNR’s probability 
distribution and the -log scale probability distribution. 
Figure 7 and Figure 8 illustrate the UADRs probability 
distribution and the log scale probability distribution 

The standard dedation of FPR for each rule over 
10000 runs is 0.0944 and the average value of FPR for 
each rule over 10000 runs is 0.0523. The confidence 
interval is 0.0019. In the figure of Log Scale Distribution 
of FPR, we amplify the probability difference of 
different FPR scales, and then conclude that the 
probability of the rules whose FPRs fall in a range 
between 0 and 0.1 is about 10 times greater than the 
probability of rules whose FPRs fall in other ranges, such 

2169 



as between 0.1 and 0.2, 02 and 0.3, etc. Table 5 
summarizes this infomation. 

The standard deviation of FNR for each rule over 
10000 runs is.O.0801 and the average value of FNR for 
each rule over 10000 runs is 0.0504. The confidence 
interval is 0.0016. In the figure ofLog Scale Distribution 
of FNR, we amplify the probability difference of 
different FNR scales, and then conclude that the 
probability of the rules whose FNRs fall in a range 
between 0 and 0.1 is about IO times greater than the 
probability of rules whose FNRs fall in other ranges, 
such as between 0.1 and 0.2, 02 and 0.3, etc.. Table 6 
summarizes this information. 

The standard deviation of UADR for each rule over 
10000 runs is 0.397 and the average value of UADR for 
each rule over 10000 runs is 0.2509. The confidence 
interval is 0.00794. In the figure of Log Scale 
Distribution of UADR, we amplify the probability 
difference of different UADR scales, and then conclude 
that the probability of the rules whose FPRs fall in a 
range between 0 and 0.1 is about IO times greater than 
the probability of rules whose FPRs falls in other ranges 
except 0.9 and 1.0. The UADR for each rule in about 
20% of the runs are bigger than 0.9 and rates in 70% of 
the runs fall in a range between 0 and 0.1. Table 7 
summarizes this information. 

FlCR 

\urn. 
Gf 
R"" 

0- 0 . ) -  0.2- 0 3 .  0 . 1 ~  0.5- 0.6 0 7 -  0 8 -  00- 
0 t 0 . 2  0.3 0 4 0 5 0.6 0 7 0.8 - 0.9 1.0 
s300 i l 0 0  3w iw 100 30 40 5 25 0 

U . D R  0- 0.1- 0.2- 0.3- 0.4- 0 5 -  0 6  

0 7  
Num 6835 25 75 105 550 60 250 
OiR"" 

0 1  0.2 0 3  0.1 0.5 0 6  - 

In practical evaluation, we usually use the rule base 
instead of single rule to test the performance of intrusion 
detection system based on GP. We execute 10000 runs 
to evaluate the statistical performance of our system 

0.7- 0.8- 0.0- 
0.8 0 9  1.0 

50 5 2055 

Figure 3.  Distribution of FPR Figure 4. Log Scale 
Distribution of FPR 

FPK 0. 0 1 ~  0.2- 0.3- 0.C 0.5- 0.6 0.7- 0.8- 0.9- 
0.1 0.: 0 3  0 4  0.5 0.6 0.7 0 8  0.9 1.0 

Num. 8200 1000 mu 200 9g 10 20 s 3 U 
n 
R"" 

Table 5 .  Scale Distribution Over 10000 mns 

a m o > m 0 4 0 5 ~ n 7 m m  1 
MI 

since we get different rules every time. We use as 
evaluation metrics the false alarm rate (FAR) and the 
detection rate (DR). Generally speaking, we say that an 
intrusion detection approach is good if it has high 
detection rate with low false alarm rate. The probability 
distribution of FAR for the rule base over 10000 runs is 
illustrated in Figure 9. Figure 10 illustrates the same 
information for FAR between 0 and 0.1 

Figure 9. Distribution of FAR Figure IO. Distribution of FAR 
between 0 and 0.1 

The average value of FAR over 10000 runs is 0.41% 
and the standard deviation value of FAR over 10000 runs 
is 0.0063. 

The probability distribution of DR for the rule base in 
I0000 runs is illustrated in Figure 11. Figure 12 
illustrate the log scale probability distribution of DR. 

The averaRe value of DR over 10000 runs is 0.5714 
Figure 5.  Dismbution of M R  Figure 6. Log Scale 

Distribution of FNR 
and the standard deviation value of DR over 10000 runs is 

2170 



0.4068. Figure 13 is the ROC curve plotting the false 
alarm rate and the detection rate. 

Figure 11. Distribution of DR Figure 12. Log Scale of 
Distribution of DR 

Figure 13. ROC curve of FAR and DR 

The DR increases as the FAR does the same. The DR is 
close to 100% when the FAR is in the range between 
1.4% and 1.8%. However, when the false alarm rate is 
close to 0%, the DR is only about 40%. The reason why 
the DR falls in a broad range from 40% to 100% is 
because the number of rules in the rule base is different 
for each run. When there are more rules in the rnle base. 
we have a high detection rate and thus will possibly have a 
low false alarm rate. There are some other approaches 
used to detect intrusion using the DARPA’s dataset as 
testbed. For example, the ROC curve plotted by Eskm et 
al. [ 151 is illustrated in Figure 14. 

Figure 14. ROC curve of FAR and DR 
plotted by Eskin et al. [ I51 

Figure 14 shows that DR increases as the FAR does 
the same. The DR is close to 100% when the FAR falls in 
the range between 0.06% and 0.1%. It is obvious that 
Eskm’s result is better than ours considering the ROC 
curve comparison. However, the curve plotted by Eskin et 
al. is for only one kind of attack, which is a fipd attack, 
while our ROC curve is for ten attacks. Our approach can 
detect ten kinds of attacks when the FAR is smaller than 
1.8%. The approach proposed by Eskin et al. can be used 
to detect only one kind of attack when its FAR is smaller 
than 0.1%. 

6. Conclusions 

In this paper, we’ve presented and evaluated a GP-based 
approach for detecting known or novel attacks on a 
network. The proof of concept implementation shows 
that new rules generated by GP have the potential 
capability to detect novel forms of attacks. However, the 
detection result is not good for some runs. The main 
reason is that h e  selection of crossover and mutation 
points in corresponding operations is random. And also 
deciding the probability of genetic operators selection is 
experience based. In our implementation, the probability 
of mutation, crossover is 0.01 and 0.6 individually. 

The purpose of the work reported in this paper was 
mainly to assess the efficiency of GP for known or novel 
attacks detection. The next step in OUT work will consist 
of extending the scope of the rules involved, and using 
alternative training and testing data sources. 

References 

1. A J.P. Anderson. Computer Security Threat Monitoring and 
Surveillance. Technical Report, James P. Anderson Co., Fort 
Washington, PA, 1980. 
John R. Koza. Genetic Programming. MIT Press, 1992. 
Man Leung Wong, Kwong Sak Leung, Data Mining Using 
Grammar based Genetic Programming and Applications, 
Kluwer Academic Publishers, 2000. 
Lippmann, R., et al., The 1999 DARPA Off-Line lnhusion 
Detection Evaluation. Computer Networks, 34(4) 579-595, 
2000. 
Jeremy Frank. Amficial Intelligence and Innusion Detection: 
Current and Future Directions. In Proceedings of the 17th 
National Computer Security Conference, pages 11-21, Oct. 
1994. 
K.L.Fox, R.R. Henning, J.H. Reed, and P.R. Simonian. A 
Neural Network Approach towards Intrusion Detection. In 
Proceedings of 13Ih National Computer Security Conference, 
pages 125-134, 1990. 

7. A.K.Ghosh, J.Wanken, and F. Chamn. Detecting 
Anomalous and Unknown Intrusions against Programs. In 
Proceedings of the I4lh Annual Computer Security 
Applications Conference, pages 259-267, December 1998. 
Lodovic Me. Genetic Algorithms, an Alternative Tool for 
Security Audit Trails Analysis, Technical report, Supelec, 
France, 1992. 

2. 
3. 

4. 

5. 

6. 

8. 

2171 



9. Adhytia Chittur, Model Generation for an Inrmsion Detection 
System using Genetic Algorithm High School Honors Thesis, 
2002. 

IO. J .  Gb meS D. Dasgupta, 0. Nasaroui, and F. Gonzi la 
Complete Expression Trees for Evolving Fuzzy Classifiers 
Systems with Genetic Algorithms and Application to 
Network Intrusion Detection. I n  Proceedings of NAFIPS- 
FLlNTjoinr Conference, pages 469-474, New Orleans, LA, 
lune 2002. 

I I .  Bridges, Susan M., and Rayford M. Vaughn. Fuzzy Data 
Mining and Genetic Algorithms Applied to Intrusion 
Detection. Proceedings of the Twenty-third National 
Information Systems Security Conference, Baltimore, MD, 
October 2000. 

12. B. Balajinath and S. Raghavan. Intrusion Detection Through 
Learning Behavior Model. pp. 1202-1212, Computer 
Communications, Vol. 24, No. 12. July 2001. 

13. Mark Crosbie and Gene Spafford. Applying Genetic 
Programming to Inmion Detection. Technical Repon FS- 
95-01, AAA1 Fall Symposium Series, AAA1 Press, 1995. 
Leung, K.. S., Y., So, L., and Yam, K. F., Rule Learning in 
Expen Systems Using Genetic Algorithms: I ,  Concepts. In 
proceeding of the Znd International Conference on Fuuy 
Logic and Neural Networks, pp. 201-204. 

15. Eleazar Eskin, Matthew Miller, Zhi-Da Zhong, George Yi, 
WekAng Lee, Sal Stolfo. Adaptive Model Generation for 
Intrusion Detection Systems. Workshop on lnrrusion 
Defection and Prevention, 7th ACM Conference on 
Computer Securiw, Athens, GR, November, 2000. 

14. 

Aasf 
AsAg 

AAAtfz 

Aaib 
Attt 
Avfrg 

AAAtiA 

Appendix 

ifnuoi_compromised=O and land=l .then intrusion 
if wiongfrapmenr> I and num_compromised=O 
then intrusion 
if num_campromised>l and land=l and 
wrongfrapment> I then intrusion 
if prorocol_type=udp and count>3 then intrusion 
ifnuni-compromissd> I then intruni& 
if land=I and u,rongfragment>l and 
samejrv_rate=l .OO and synflood>l then intrusion 
ifprotocol_type=udp and num_compromiseO I 

Aaiog 

Ar 
Aaee 
AaflA 

1 then intrusion 
I if srr_count>3 and synfload>l then intNSioll 
I ifvrotocolLrvve=icmrr and SIV count>3 and svnflaod>l 

Aarr 
Ahcr 

- _ _  
then intrusion 
ifpratocol_type=udp and land=O and wrong_fragment> I 
then intrusion 
ifsyntlood>l then intrusion 
ifwrongflapmentzl then ~ ~ I N u s ~ o ~  

if h d = l  then infrwion 

Ruler 
AfpAqA 

AapgqA 
Aigq 

AabrA 

ifcounP3 and srv_counr;.l then intrusion 

then intrusion 
if srv_countc3 and syntlood=O and same_riviate=l.OO 
then intrusion 

Meanlnz 
ifland=l and wrongfragment=O and synflood=0.00 
then imrusion 
i fwrongfiapwnt>l  and rynflood=O.OO then intr~sion 
if proroeolLtype=udp and wronpfragmlent>l and 
synflood=O.OO then intrusion 
ifprotocol_type=tcp and count;.3 and rynfloodsl 

num_compiomisrd=O and same_srv_rate=O.OO 

AaaAfi 

AaAoc 

gaAjA 

capAA 

_ 
then intrusion 
ifprotocol_lype=tcp and land=l and count<3 
then intrusion 
ifprotocol_type=tcp and rrv~count>3 and land=O 
then intrusion 
if protocol_typ=tcp and count<3 and 
wmn&fra.menr,l lhrn intrusion 
if protocolLtype=tcp and srv_count>3 and 

I then intrusion 
A A A v A  I ~fsame_srv_rate=I.OO then intrusion 
cwAA ifsrv ~ount,25 anddiff srv ralez0.33 I 

Aeh 

Aopf 

then intrusion 
if protacal_type=icmp and ds~has t_srecount ,25 j  
then inirusion 
ifland=O and wrongfia,menent>l and num_compromised>l 

I then intrusion 
I iflmd=l and ditT-srv_rate>O.i then intNSioln 
1 i f ~ ~ v _ c o ~ n t > 4 6  andnum_compromised>l then intrusion 

Afw 
Act 

Table 9. New Rules (Ctd.) 

2172 


