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Abstract- This paper proposes a cooperative evolution-
ary method for optimizing the properties of an ANFIS-
architecture-based model where only the input-output
data of the identified system are available. The
primary tasks of fuzzy modeling are structure identi-
fication and parameter optimization: the former
determines the numbers of membership functions and
fuzzy if-then rules while the latter identifies a feasible
set of parameters under the given structure. The
proposed approach manages all mentioned attributes
simultaneously. Particularly, number of rules and
parameters of membership functions are realized by
applying a novel approach using genetic programming
and genetic algorithm whereas consequent parameters
are tuned by using least-squares estimation. Finally,
two examples of nonlinear system are given to
illustrate the effective-ness of the proposed approach.

1 Introduction

Fuzzy modeling has been studied to deal with complex,
ill-defined and uncertain systems, in which the
conventional mathematical models fail to give satisfactory
results [25]. The main purpose of fuzzy modeling is to
describe the behavior of a system by a set of fuzzy
inference rules. In the literature there has been a vast array
of various approaches for the modeling [6], [16], [18],
[21]. One of the most influential fuzzy models has
proposed by Jang in [6] called ANFIS (Adaptive-
Network-Based Fuzzy Inference System). The rule base of
this model contains the fuzzy if-then rules of Takagi and
Sugeno's type in which consequent parts are linear
functions of the inputs instead of fuzzy sets [11], reducing
the number of required fuzzy rules.

The identification of a fuzzy model consists of two
major phases: structure identification and parameter
optimization [2], [4], [7], [14], [20], [23], [24]. The first
phase is the determination of the number of fuzzy if-then
rules and the membership functions of the premise fuzzy
sets while the second phase is the tuning of the parameter
values of the fuzzy model. In comparison with parameter
optimization, structure identification is a more difficult
task, and often is tackled by off-line trial-and-error
approaches, like evolutionary algorithms [3], [5], [15].
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Evolutionary algorithms are optimization methods that
mimic the processes in natural evolution and genetics.
Genetic algorithms (GA), evolutionary strategies (ES),
evolutionary programming (EP) and genetic programming
(GP) are the prominent approaches. Genetic programming
proposed by Koza [10] is concerned with the automatic
generation of computer programs by means of simulated
evolution. GP has been applied to a remarkable variety of
different domains, such as symbolic regression, electronic
circuit design, data mining, biochemistry, robot control,
optimization, pattern recognition, planning and evolving
game-playing strategies.

In this study we propose a novel cooperative
evolutionary approach along with least-squares to obtain
the number of rules, parameters of membership functions
and consequent parameters of fuzzy rules in ANFIS
architecture in order to achieve a neuro-fuzzy system
which can accurately model nonlinear systems from given
input-output data. First, we exploit two sets of training and
test data pairs from the identified system. Second, a
special architecture of ANFIS is designed to be used as a
framework to test the candidate solutions. Third, various
solutions are developed through a cooperative evolu-
tionary method applying genetic programming and genetic
algorithm, and then they are tested by the framework
designed in the previous step to gradually reach the
accurate solution which satisfies the error tolerance.

The cooperative evolutionary approach along with the
least-squares helps to develop an accurate model. It is
worth stressing that there have been a number of
interesting approaches toward evolutionary development
of fuzzy models [3], [5], [8], [9], [16]. This study differs
from them in the following distinct ways.

¢ The majority of suggested evolutionary methods in
the literature treat only one or two sub-tasks
separately. In most cases, the input partition is
predetermined or the structure and parameter
identification are performed in a segregated way. It
should be noted that the learning sub-tasks are related
to each other. In that respect a separate manipulation
of them may lead to sub-optimal solutions. For
example, the determination of the proper number of
rules is highly related to the size, the location and the
overlapping of the fuzzy regions in a partition. In this
paper we propose an approach in which two
evolutionary algorithms cooperatively attempt to
optimize the structure and parameters of membership
functions all together.
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o The existence of a mechanism designed in this
approach to keep the optimized parameter sets of
various structures over generations makes it possible
that the new solutions whose structures have been met
in past generations can inherit the evolved parameter
sets of their families - members which have the same
structure are called a family - and continue the
evolution to reach more optimized parameter sets (see
section 4).

o This cooperative evolutionary approach proposes an
implicit competition beside the explicit evolution for
various candidate structures which are produced in
generations. Every family implicitly competes with
each other in how fast it can evolve its parameters of
membership functions to reach the lower error. The
faster a family evolves its parameters, the more
chance it has to survive. On the other hand, the speed
of evolution is not considered with equal weight for
all families. The more complex the family, the more
speed it needs to survive. The criterion by which a
family is labeled complex is the number of rules
which it suggests.

e Since the proposed approach optimizes the attributes
of a fuzzy model simultaneously, the convergence of
this approach to an optimized solution occurs fast and
the attained solution is noticeably accurate.

Experimental results illustrate that the proposed
approach outperforms the prior works (see section 5) with
regard to model simplicity and the training and testing
error. This paper is organized in six sections. In section 2,
we introduce the ANFIS architecture and the framework
which is utilized in this paper. In section 3, the least-
squares approach applied for optimization of consequent
parameters is elaborated. The details of the cooperative
evolutionary approach which is contributed in this paper
are discussed in section 4. Simulation results of a non-
linear system and the comparison with those reported in
prior studies are given in section 5.

2 ANFIS

Jang's ANFIS [6] is a 5-layered feedforward neuro-fuzzy
network whose node functions of the same layer are of the
same function family. ANFIS applies the rules of TSK
(Takagi, Sugeno and Kang) form in its architecture. Let us
consider a physical system with m input variables x = [x,,
X2 e xm]T and a single output, y, with x;€D; = [X; mn,
Ximad SR (i=1, ., m)andy€Y = [Vmin Yma/ SR.The
TSK fuzzy rules are of the following form:

R”: IFx;is A’} AND ... AND x,,is A",
THENy,=g'(x) =adp+apx; + ... + &
(r=1, .., n). (1)
where n is the number of rules, x; (i=1, ..., m) are the
model inputs, and y, is the output of the rule R”. 4" (i = 1,
..., m) are fuzzy sets in D; characterized by membership
functions “, ( ), and a'; are real coefficients of the rule

polynomlals, g'(x). the m-tuple (4", ..., 4",) of fuzzy sets
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layer 1 layer 2

layer 3

Layer 1 2 3 4 S
Node L*V R R R 1
Parameter 2 0 0 V+1 0

Fig. 1. An adaptive-network-based fuzzy inference system.
The table at bottom shows the number of nodes and the
number of parameters of each node at each layer. V is the
number of input variables; L is the number of linguistic terms
of each input; and R is the number of rules. In this case
R=LxV

in the premise part of R forms a fuzzy region 4" x... x4,
in D = D;x...xD,, called the fuzzy hyper-cube (FHC) in
this paper.

Considering a first-order TSK fuzzy inference system
which contains the following rules:
Rule r: If x; is AL, and x, is Azj, then y; = ofg+of X, T055X,
where r € {1, ..., 4} and i, j € {1, 2}, the corresponding
ANFIS architecture is depicted in Fig. 1. Circles in ANFIS
represent fixed nodes while squares are the representatives
for adaptive nodes. Fixed nodes function as predefined
operators to their inputs and no other parameters but the
inputs participate in their calculations. Adaptive nodes, on
the other hand, have some internal parameters which
affect the results of their calculations.

Layer 1 is an adaptive layer which denotes membership
functions to each input. In this paper we choose Gaussian
functions as membership functions:

Oil =4, (x)= exp( )- @

-(x-¢)’
20°
where x is the input to node i; A; is the membership
function associated with this node; and {c, o} is the
parameter set that changes the shapes of the membership
function. Parameters in this layer are referred to as the

premise parameters.
Layer 2 is a fixed layer in which each node calculates
the firing strength of each rule via multiplication:

()i2 =w,=p, (x;)x Uy, (x,),i=1234. (3)

Layer 3 is a fixed layer in which the i-th node
calculates the ratio of the i-th rule's firing strength to the
sum of all rule's firing strength:

0} =W, = ,i=12734. S



Layer 4 is an adaptive layer in which the i-th node
deals with the consequent parameters of the i-th rule as
mentioned in (1). Node i in this layer has the following
node function:

O =W,y, =w,(a)x, +aix, +a}),i=12,34. ©))

where , is the output of i-th node of layer 3 and {o; o',

o's} is the parameter set. Parameters in this layer are
referred to as the consequent parameters.

Layer 5 is a fixed single-node layer which computes
the overall output as the summation of all incoming
signals:

4

4 Z Wiy P
O, =overall _output = Z“_’: y, = 1=14 (6)

i=1

v,

i
i=1

From Fig. 1, it is easy to see that the topological
complexity of Jang's general model is O(R) or O(L”). This
is because of the assumption that the feature space is
uniformly partitioned along each input dimension. Since
the size of the network grows exponentially as the number
of inputs increases, obviously the operation efficiency will
be poor when the architecture is used to model a
complicated system with many variables. As we do not
use grid partitioning [17] for structure identification, a
special ANFIS architecture suggested in [20] is pursued
which has the complexity of O(R*V) with R independent
of V. Fig. 2 shows the ANFIS architecture used in this
paper.

The number of membership functions for each input
variable in the architecture shown in Fig. 2 is equal to the
number of rules. In this topology each membership
function participates in only one rule.

3 Optimization of Consequent Parameters

As equation (1) explains, the consequent part of a TSK
fuzzy rule is a linear combination of input variables.
However, equation (6) reveals that other elements, i.e.
wy's, are also involved in construction of the output of
ANFIS architecture. The output of ANFIS, which is
composed of input variables and firing strength of each
rule, can be restated as follows:

YEWP WP, Wy,
= 1 - 1 brd 1
=wa, +(Wx)a, +..+(Wx,)a, +..

+Wa, +(Wx)a +..+(w,x,)a’ @)

where » and m are number of rules and number of input
variables respectively.

If the parameters of membership functions and number
of rules are identified, the equation (7) will become a
linear equation in terms of consequent parameters.
Therefore the consequent parameters can be efficiently
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Layer 1 2 3 4 5
Node R*V R R 1
Parameter 2 0 0 V+1 0

Fig. 2. The framework applied in cooperative evolution

estimated from training data. The three most common
approaches are global least squares used in [6], [19], [21],
local weighted least squares utilized in [5], [12], [13], and
product space clustering [1], [20].

In this paper the global least squares is pursued due to
its advantages in terms of low error and high accuracy.
With the help of equation (7), the parameter vector, X,
regression matrix, A, and the output matrix, B, are defined
as follow:

AX =B,
W Wx Wik, W, WX W, X,
A= :
W W/ wx,, W, WX . WX,
X= [a(’, a .. a4, .. oo a . a, ]T,
B= [y(" yoO e y(p)]f_ @)

The dimension of A and X are px(n(m+l)) and
(n(m+1))x1 respectively, where p is number of training
data pairs, m is number of input variables and » is number
of rules. Since the matrix A is not generally square, the
pseudo-inverse of A is used:

X =(4"A)7"'4"B &)

As a result the optimized consequent parameters are
attained in X .

4 The Cooperative Evolutionary Approach

This section illustrates the details of the approach applied
in this paper to find the optimized fuzzy model based on
ANFIS architecture.

4.1 Scenario

The purpose of this paper, as mentioned earlier, is to find
the number of rules and parameters of membership
functions for a fuzzy model so that the model has accurate
output in comparison with that of identified system. To
reach this goal, two evolutionary algorithms, i.e., GP and
GA, cooperatively attempt to generate an optimized model
inspiring this fact that obtaining an optimal solution
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requires optimization of all involved factors together. Fig.
3 shows how the cooperation between GP and GA is
performed.

First, GP initializes its first generation in which each
chromosome specifies how the feature space should be
partitioned. The chromosomes produced in each
generation of GP make a pool of solutions for the
structure identification of the fuzzy model (see section
4.2). Then, proper values are assigned to parameters
(parameters of membership functions) of the structures
proposed by the chromosomes according to whether or not
their corresponding chromosomes have been met before.
After that, every structure is sent to GA. GA evolves the
structure's parameters to make it more accurate. Then, GA
saves the optimized parameters of the structure into the
database and sends it back with the evolved parameter set
to GP. When all the chromosomes of the generation are
performed as the same, GP produces the chromosomes of
the next generation by using crossover and mutation
operators. This process will continue until a structure with
satisfying error is attained or a predefined number of
generations are generated. The following pseudo-code
explains the aforementioned process:

Cooperative evolution pseudo-code
g=0
GP initializes generation,
while the condition is not satisfied do

{

for i = 1..number of chromosomes in generation,
{
chr; = the i-th chromosome in generation,
if chr; is already met in past generations
GP retrieves the values of chr;'s parameters from
DB
else
GP assigns values to chr;'s parameters according
to the way chr; partitions the feature space
GA optimizes chr's parameters and saves the
optimized parameters into DB
/
GP generates next generation (generationg.;) by
means of crossover and mutation operators
g=g+1
/

end

The cooperative evolution makes different families
compete with one another to upraise their own fitness
values (The word family refers to the chromosomes which
partition the feature space in a same manner). In the mean
time the members of a family cooperate with each other to
optimize the parameters of their membership functions as
much as they can. This simultaneous competition and
cooperation makes this approach produce impressive
results in comparison with the others. Moreover, the
optimization imposed by GA on every GP's chromosome,
causes faster convergence. Hence, a desirable result can be
obtained by fewer generations.
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Fig. 3. Cooperative evolution. (A) GP retrieves the evolved
parameters corresponding to the chromosomes of current
generation from database, (B) the parameters are received by
GP, (C) GP sends the chromosomes with the optimized
parameters ever found to GA, (D) GA evolves the parameters
further and saves them into database, (E) the chromosomes
with more evolved parameters are sent back to GP.

4.2 Genetic Programming (GP)

GP is concerned with the automatic generation of
computer programs. Most GP systems are represented as
tree structures which have two kinds of nodes, function
and terminal. Terminal nodes refer to nodes at the leaves
of the tree and either provide a value, such as constant or
correspond to primitive action such as a robot motion
command. Function nodes, on the other hand, correspond
to the non-leaf nodes in the tree and compute or process
the information passed up from their children.

In this paper, GP is utilized as a Pittsburgh approach
[17] for structure identification [5]. It deals with trees
whose terminal set is 7 = {L} and function set is F' = {F,
F,, ..., F,,} where m is the number of input variables. The
first generation is seeded with variety of different trees
generated randomly. A tree is generated by starting with
the root node and recursively adding nodes to left and
right of each node (binary tree). The type of each node is
declared as a‘terminal or function randomly. The process
of generating nodes for a tree will be terminated when
every branch ends with a terminal node. If the length of a
branch exceeds from a maximal depth, it will be forced to
stop growing by a terminal node.

The selection method used by GP is the tournament
selection, in which a group of K chromosomes (trees) are
randomly selected. From these candidates only the best
chromosome is selected for reproduction, whereas the
others are discarded. The tournament is repeated until the
population is filled with a new generation of offspring.
The Crossover operator exchanges a subtree taken from a
parent with another subtree of the other parent. First
crossover randomly selects a subtree from each parent.
Subsequently, the subtrees are cut off and swapped
between the parents resulting in to new offspring.

The mutation operator applied for GP in this paper is a
point mutation. Point mutation can be used to change the
symbols of terminal or function nodes. Our approach
employs point mutation over function nodes. It randomly
alters the function symbol of an inner node; as a result the
partition map of feature space denoted by the tree will be
changed.



As mentioned earlier, each tree in our GP describes
how feature space should be partitioned into hyper-cubes.
A function node F; denotes the dimension along which the
input space is divided. A terminal node, on the other hand,
signals that the dividing should be abandoned. Fig. 4(a)
depicts a possible tree and its correspondence to the
resulting partition of a two-dimensional case for the sake
of better illustration. The partition scheme starts with the
root node, which describes a single hyper-cube (hyper-
rectangle) in the center of the input space marked by a
dashed ellipsoid. This hyper-rectangle is split into two
hyper-rectangles along the dimension x; specified by the
function symbol F; at the root node. Subsequently, each
split hyper-rectangle is performed the same so that the
ultimate hyper-rectangles, which are specified by solid
ellipsoids, are obtained. Theses ultimate hyper-rectangles
are the representatives of the rules introduced by the tree.
To obtain the parameters of membership functions for
each rule, the center and width of each hyper-cube should
be calculated. Therefore two lists called center list and
width list are denoted to each node. The center list and
width list of a node contain the center and width of the
hyper-cube which corresponds to the node. Assume, we
split along dimension i for a parent node F; with center list
(¢iy .us Ciy -.., C) and width list (34, ..., &;, ..., 6y,) Where
m is the dimension of the input space. The center list and
width list of the left and right child node then become

Clefi = (€1, -, CF O/4, ..., Cw),

5/4, = (51, ssieis 51/2, oo 5n),

Cright = (C], e, Gt 5,/4, ity Cm),

Oright = (01, .., 01/2, ..., Oy) (10)

By using (10) the locations of ultimate hyper-cubes,
which are interpreted as fuzzy rules, are found. The next
step is to assign membership functions to the rules
extracted above. We use membership functions of
Gaussian form defined by (2). To extract each
membership function's parameters, i.e. center and standard
deviation, the following equations are used:

¢ = center of hyper-cube,

o = A x width of hyper-cube. (11

where 1 is a design parameter.

Fig. 4(b) explains the way membership functions are
assigned to a hyper-cube (hyper-rectangle) for a two-
dimensional input space and A = 0.3. As can be seen,
every hyper-rectangle is assigned two membership
functions, one along each input variable.

There exists a trade-off between the accuracy and
complexity of a fuzzy model which should be considered
in defining fitness function. The more rules the model has,
the more accurate it is. On the other hand, a neuro-fuzzy
system with a large number of local models is more
difficult to understand and computationally less tractable
than a more comprehensive one with a fewer number of
rules. To take into account of this trade-off between model
accuracy and the number of rules, a penalty factor, p, for
the number of local models (number of rules), #R, is
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Fig. 4. (a) GP tree and corresponding partition map of input
space. (b) Membership function assignment to a hyper-cube
with A = 0.3.

added into the fitness function. The overall fitness
becomes:

1

Foe b (12)
error + p#R
error in (12) is defined as follows:
N , N
error=\/2(y,- —f’;)z \/Z)’iz (13)
i1 i=1

where N is number of data pairs , y, and , are the i-th

observed and predicted outputs respectively.

The fitness of a fuzzy model improves if adding an
additional rule reduces the overall error by an amount
larger than the penalty factor p. A small value of p favors
input space partitions with a smaller approximation error
at the cost of an increased number of rules.

4.3 Genetic Algorithm (GA)

Proposed by John Holland in the 1960s, genetic
algorithms are the best known class of evolutionary
algorithms. They are used so extensively that often the
terms genetic algorithms and evolutionary computation
are used interchangeably. In this paper a continuous GA 1is
applied to optimize the parameters of membership
functions for the structures generated by GP. Fig. 5 shows
the way by which GA encodes the parameters of
membership functions. Each chromosome consists of
genes whose number equals to number of rules x number
of input variables. Each gene encapsulates the parameters
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of a Gaussian membership function, i.e. standard deviation
and center.

The selection method used for GA is tournament
selection like the one applied in GP. Two groups of K
randomly selected chromosomes are generated and the
chromosome with the best fitness function is picked up
from each group. Then these two chromosomes with the
offspring produced by crossover operator are sent to next
generation. This process continues to fill the next
generation completely.

The crossover which is used for GA is a one-pint
crossover. After taking two chromosomes it randomly
selects the position of a gene and then exchanges the
genes positioned before the selected one with the
corresponding genes in the other chromosome. Thus two
offspring are generated and passed to the next generation.

Mutation operator selects a chromosome randomly in a
population. Then along the chromosome a parameter is
chosen again in a random manner. The value of the chosen
parameter is replaced with another one based on the type
of the parameter. If the parameter represents center; (the
center of the i-th hyper-cube), then a random value ranged
between center-width/n and center;+width/n (n 1s a
design parameter) will be generated and replaced. If the
parameter represents width; (the width of the i-th hyper-
cube), then a random value ranged between 0 and
S >width; will be replaced where f is a design parameter.

Since the aim of GA is to optimize the membership
functions of a predetermined structure to reach the lower
error, the fitness function is defined as the inversion of the
model's MSE (mean square error) between the data and
the model output. Thus trying to upraise the fitness value
of the model, GA searches for better parameters to reduce
the model error.

5 Simulation Results

In this section we bring two non-linear systems introduced
in prior studies and apply the cooperative evolution (CE)
approach proposed in this paper to reach accurate models.
The following information is used for the simulations:
e General information of GA and GP

o population size = 100 chromosomes

o selection method = tournament selection with two
competitors

o | mutatuion/generation
e Specific information of GP

o A=03

o penalty factor (p) = 0.001
e Specific information of GA
B=0.5
n=2
number oNf generations = 50
MSE = Z(yi ")A}i)z/N

i=1

O O O O
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Population:

conosomes | | ||

Fig. 5. Encoding of parameters by GA. Each gene includes two
parameters of Gaussian membership function, i.e. standard
deviation (o) and center (c).
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Fig 6. The nonlinear function used in example 1

where N is number of data pairs, y, and y, are
the 1i-th observed and predicted outputs
respectively.

5.1 Example 1

In order to show the difference between the results of
simultaneous and partial optimizations in terms of the
factors involved in a problem, a nonlinear system which is
used by Hoffmann and Nelles in [5] is chosen. Hoffmann
and Nelles proposed the following two-dimensional
function as a test case for model selection of TSK fuzzy
systems (Fig. 6).

flx, x5) = 1.9% (1.35 + exp(x,) % sin(x | - 0.6)° x exp(-x,)
x sin(7%x;)), x5, x,¢ [0, 1]. (14)

Since our GP can partially optimize a fuzzy model on
its own (without cooperative GA), we try to reach a fuzzy
model for the preceding system in two ways; once by
using only GP and another time by using GP and GA
together (CE). Table I shows the average normalized root
mean square error (NRMSE) of 50 runs of GP for 20
generations for the models obtained by each of two
methods mentioned above, i.e. GP and CE. The results
shown in Table I are attained using 400 equally spaced
samples {(x;, x,, y)} where x; = { 0.05, 0.10, ..., I } and



2188

TABLE I TABLE II

Comparison between Simultaneous and Partial Optimization Model Comparison for the Second Numerical Example

for the First IﬁIurnencal Example Method 4Rule Training Test MSE
Method  #Rule  Training NRMSE  Test NRMSE T —— MSE
GP 4 0.1852 0.5965 taker%from [14] 13 0.04 -
CE 3 0.0327 0.0856 Ouyang and Lee 7/ 0.04 <
CE 8 0.0008 0.0007
TABLE III
Premise and Consequent Parameters for the Second Numerical Example
MF along x1 MF along x2 consequent parameters
(o.c) (o.c) (5., @)

Rule 1 (0.1547,-0.6935 ) (0.2057, 0.4840 ) (1.0338, 3.8126, -1.5068 )

Rule 2 (0.2232,-0.2607 ) (0.1646, 0.4979 ) (2.2697, 3.1532, -0.6094 )

Rule 3 (0.2076, 0.0656 ) (0.1986,0.3818)) (3.4784,-0.0242, 0.2671 )

Rule 4 (0.1999, 0.9446 ) (0.1874,0.4463 ) (-3.1496, 0.0909, 3.2811)

Rule § (0.2319,-0.9223 ) (10.2404, 0.5320) (1.7295, -0.3230, 1.9938 )

Rule 6 (0.1632,-0.1427) (0.1500, 0.7500 ) (-1.1090, 2.6138, -1.4708 )

Rule 7 (0.2441, 0.0989 ) (0.2427,0.6359 ) (-0.3988, 0.2341, -0.9821)

Rule 8 (0.2011, 0.9648 ) (0.1969, 0.6184 ) (3.3538,0.5139, -3.8680 )

x; = {0.05, 0.10, ..., 1} that the first 300 samples are used sinta xq) costa xg)

for training and the rest are utilized for test. As we expect,
the cooperation of GP and GA gives a more accurate
model in comparison with what GP comes up with alone.
Additionally, the model resulted by CE is simpler than
what GP has suggested. In this example NRMSE is
calculated as follows:

NRMSE=\/Z(yi_j’i)z/\/z,(yi—)_/)z (15)

where N is number of data pairs, y, and y, are the i-th

observed and predicted outputs respectively, and V is the
average of observed outputs.

5.2 Example 2
Let us consider a nonlinear function which is defined as

y = sin(mx;).cos(mx,) (16)

where x; ¢ [-1, 1] and x, ¢ [0, 1] (Fig. 7). The input-output
data represented by {(x; x, y)} are sampled from (16),
where x; = {-1, -0.9, -0.8, ..., 1} and x, = {0, 0.1, 0.2, ...,
1}. As a result, there are totally 231 data points for
training. Additionally, 133 data points are produced
randomly for testing the model. The average MSE error of
50 runs of CE for three generations is shown in Table II.
The table reveals that our model outperforms the
competing models with regard to the training MSE.
Moreover, the convergence speed of CE, which is done in
three generations, is noticeably prominent in this example.

Table III presents the parameters of membership
functions and consequent parameters of each rule for the
solution resulted by means of CE after three generations.
Each rule has two membership functions, one of them is
along x; and the other one is along x,. The consequent

{[,y‘,,
i
I'I(Igj‘l‘{'flf

1/
m,,,;”{;%{a ,;; S0

&n‘:‘"\“\‘g‘:“ i
SN i
2 RN RIS i *‘«’Ii,«, Gt

“n m“,«\.« ‘a‘"’&”ffjﬁfflj f!}, ;
o S
!l(r Y

o

Fig 7. The nonlinear function used in example 2

parameters, which construct the last column of the table,
have been attained with the help of least-squares method
explained in (9).

6 Conclusions and Future Work

This paper presents a cooperative evolutionary approach
for fuzzy modeling on ANFIS architecture. The structure
and parameters of the model are generated simultaneously
by imposing competition and evolution among candidate
solutions. The experimental results show that the approach
outperforms its rivals in finding better solutions. It should
be noted that the proposed approach concerns with
simplicity and accuracy of the models. Therefore, the
computational burden is justified in applications for which
improvements in the model accuracy or a reduction of the
number of rules carry a remarkable benefit. In the future
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we plan to reduce the number of membership functions
and also put weights for them so that they are not
considered fairly. Designing methods for obtaining the
values of other parameters, such as f, #, and 4, are further
optimization which can be added to this approach.
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