
Learning non-overlapping rules
A method based on Functional Dependency
Network and MDL Genetic Programming

Wing-Ho Shum, Kwong-Sak Leung
Dept. of Computer Science & Engineering

The Chinese University of Hong Kong
Hong Kong

{whshum, ksleung}@cse.cuhk.edu.hk

Man-Leung Wong
Dept. of Computing & Decision Sciences

Lingnan University
Hong Kong

mlwong@ln.edu.hk

Abstract— Classification rule is a useful model in data mining.
Given variable values, rules classify data items into different
classes. Different rule learning algorithms are proposed, like
Genetic Algorithm (GA) and Genetic Programming (GP). Rules
can also be extracted from Bayesian Network (BN) and decision
trees. However, all of them have disadvantages and may fail
to get the best results. Both of GA and GP cannot handle
cooperation among rules and thus, the learnt rules are likely to
have many overlappings, i.e. more than one rules classify the
same data items and different rules have different predictions.
The conflicts among the rules reduce their understandability
and increase their usage difficulty for expert systems. In
contrast, rules extracted from BN and decision trees have
no overlapping in nature. But BN can handle discrete values
only and cannot represent higher-order relationships among
variables. Moreover, the search space for decision tree learning
is huge and thus, it is difficult to reach the global optimum. In
this paper, we propose to use Functional Dependency Network
(FDN) and MDL Genetic Programming (MDLGP) to learn a
set of non-overlapping classification rules [17]. The FDN is an
extension of BN; it can handle all kind of values; it can represent
higher-order relationships among variables; and its learning
search space is smaller than decision trees’. The experimental
results demonstrate that the proposed method can successfully
discover the target rules, which have no overlapping and have
the highest classification accuracies.

I. INTRODUCTION

Classification rules classify data items according to their
variable values. In the other words, rules represent rela-
tionships among variables and classes. Many rule learning
algorithms are proposed, like GA and GP and rules can also
be extracted from BN and decision trees. However, all of
them have disadvantages and may fail to learn the best rules.

GA and GP have been applied to different areas, like
shortest path finding and classification [2]. While compared
with GA, GP has the greater representation power which can
represent complicated solutions, like classification tree and
Prolog statement [11], [19].

There are two ways to represent rules in GA and GP, the
Pittsburgh and the Michigan approaches [7], [6]. With the
first approach, each individual in the population represents
a set of rules, so the search space is huge and it is difficult
to reach the global optimum. With the latter, each individual
in the population represents a single rule, i.e. a part of a

candidate solution. As individuals evolve and be evaluated
separately, there is no cooperation among them. In result,
the learnt rules are likely to have many overlappings, i.e. the
conflicts among the rules.

Typically, the conflicts among the rules can be solved
by, 1) sorting the rules according to their fitness, higher
classification accuracy higher order, i.e. the first one is the
best; 2) checking the data items if they satisfy the rules’
conditions; 3) if a data item satisfies more than one rules,
only the one with the highest order would be chosen; 4)
firing the chosen rules to predict the classes. Although the
method works well for classification, it is difficult to realize
rules’ effective meaning.

For example, if we want to know the effective meaning
of the sixth rule, we need to combine it with the neglects of
the preceding ones. It would be even worsen if we want to
merge the rules into an expert system, as there may have
couples or even hundreds of rules. Therefore, rules with
overlappings have the lower understandability and the higher
usage difficultly for expert systems.

Figures 1 and 2 illustrate the synthetic data set used in
[16] and the data set with the first eight rules’ coverages
respectively. The data set has 2 variables, 4 classes and 4000
data items and the rules were learnt by a canonical GP. A
rule’s coverages are the parts of the problem space satisfying
the conditions. From the figures, we can see that there are
many overlappings among different rules’ coverages. For
instance, with the typical method, the eighth rule would
possibly be fired only if the data items cannot satisfy all of
the preceding ones. In the other words, to interpret the eighth
rule’s effective meaning, we need, where it is not always
possible to combine it with the neglects of the others.

Table I shows the first six rules for the same data set in
another run. It is hard to combine the sixth rule with the
neglects of the preceding ones.

BN and decision trees can produce rules without over-
lapping in nature. But BN can only handle discrete values,
continuous, interval and ordinal ones must be discretized
and thus, the order information is lost [13]. The disability
to handle continuous, interval and ordinal values increases
the network complexity; the relationships represented by BN

0-7803-9487-9/06/$20.00/©2006 IEEE

2006 IEEE Congress on Evolutionary Computation
Sheraton Vancouver Wall Centre Hotel, Vancouver, BC, Canada
July 16-21, 2006

702

TABLE I

THE FIRST SIX RULES FOR THE SYNTHETIC DATA SET.

1. if (var 1 between 0.14 and 1.46321) and (var 0>0.19) then (class=4)
2. if (var 1>0.524064) and (var 0 between 0.38 and var 1) and (var 0 between 0.524064 and 0.59) then (class=2)
3. if (var 0 between 0.524064 and var 1) then (class=3)
4. if (var 1>var 0) and (var 1 between 0.14 and 0.37) then (class=1)
5. if (var 0 between 0.524064 and 0.01) then (class=3)
6. if (var 1≤0.524064) and (var 1>var 0) and (var 0 between 0.524064 and 0.59) then (class=2)

Fig. 1. The synthetic data set.

Fig. 2. The synthetic data set with the first eight rules’ coverages.

become less understandable; and higher-order relationships
among variables cannot be discovered.

Decision tree is a powerful classification model. Well-
known decision tree learning algorithms include classifica-
tion and regression trees (CART), OC1, Ltree, C4.5 and C5.0
[1], [12], [14], [3], [9]. However, as they build decision trees
step by step and node by node, they may get stuck into local
optima. A step looks good in an earlier stage may finally
turn out to be bad. Weak methods, like GA and GP are then
proposed to learn decision trees [11], but have huge search
space. In a BN, each of the variables can appear once at
most, but they can appear many times in the decision tree
counterpart. Therefore, even GA and GP are hard to reach
the global optimum.

Figures 3 and 4 show the best decision tree and the best

Fig. 4. The best Bayesian Network for Monk 3.

BN for the benchmark data set, Monk 3 respectively [5]. The
decision tree is more complicated and has more nodes than
its BN counterpart.

So all of GA, GP, BN and decision trees are hard to get
the best results. We propose to use the FDN and the MDLGP
to learn a set of non-overlapping classification rules [17].

The FDN is an extension of BN, it can handle all of
discrete, continuous, interval and ordinal values and can also
represent higher-order relationships among variables. Like
BN, the rules extracted from BN have no overlapping in
nature.

Consider a university programme selection problem that
has two ordinal variables. Suppose a high school student
would choose a science programme if he/she got a better
grade in biology; he/she would study an art programme if
he/she done has better in history; otherwise, he/she would
study one randomly. Figure 6 shows the BN representing
the problem. Since BN cannot compare the course grades
directly, it enumerates all the instances of the combination of
the subject grades and calculates the corresponding probabil-
ities. Although there are only two subjects, the conditional
tables are large and have a lot of entries, i.e. the network
complexity is high and the meanings of the relationships
are unclear and incomprehensible. The BN shows there are
some relationships, but it cannot illustrate that it is the
grade comparison result affects the programme selection. The
understandability of the relationships is reduced.

Figure 5 shows the FDN for the programme selection prob-
lem. The FDN has a functional node, history > biology. It
represents the grade comparison between the two subjects
and its conditional table has only one entry specifying the

703

Fig. 3. The best decision tree for Monk 3.

Fig. 5. The Bayesian Network for the programme selection problem.

function >. > returns 1 if the first argument is greater than
the second one; if the two arguments are equal, it returns 0;
otherwise, -1 is returned. With the functional node, the FDN
has reduced the number of entries in the conditional tables
from 6 + 6 + 62 ∗ 2, i.e. 84 to 6 + 6 + 3 ∗ 2 + 1, i.e. 19,
the network complexity is significantly reduced. By realizing
the meaning of >, it is easy to understand and interpret the
meanings of the relationships; and the relationships can be
expressed in rule format easily. Furthermore, the number
of rules is proportional to the number of entries in the
conditional tables, so the FDN can produce a smaller rule
set. The smaller number of rules for expert systems the more
savings on computation resources.

The MDLGP is a variant of GP proposed to learn the
FDN, which uses an extended MDL to evaluate the candidate
solutions. It does not employ any knowledge-guided nor
application-oriented operator, thus it is robust and easy to
be replicated.

We also propose a procedure to extract classification rules
from the FDN. The paper is organized as follows. We
introduce the FDN in Section II-A, followed by a description

Fig. 6. The Functional Dependency Network for the programme selection
problem.

of the MDLGP and the rule extraction procedure. The ex-
perimental results are presented in Section III. A conclusion
is given in the last section.

II. THE ALGORITHM

A. The Functional Dependency Network

The FDN is a directed acyclic network. Figure 6 shows
an example of the FDN. A variable node denotes a variable
in the domain and a directed link, Ni → Nj represents
the dependency relationships between the child Nj and
the parent Ni. Each variable node has a conditional table
specifying the probability of each particular value of the
variable node given an instantiation of the parents. In other
words, for each variable node Ni with parents ΥNi

, there
is a conditional table specifying the conditional probability
distribution P (Ni|ΥNi

); for each Ni with no parent, the
conditional table specifying the priori probability distribution
P (Ni).

The FDN also has one more type of nodes, functional node
which represents functions of variables. The functions can
have any number of arguments and any number of nesting
levels. Their conditional tables have only one entry, which

704

specifies the functions producing the value of the functional
node given an instantiation of its parents.

Similar to BN, a variable node can handle discrete values
only. If a continuous functional node has a variable node as
its child, discretization is needed.

A continuous variable node can either have another vari-
able node or a continuous functional node or both as its
children. If the child is a variable node, discretized values
are produced; if the child is a continuous functional node,
continuous values are generated according to a Gaussian
distribution function. Each entry in the conditional table
represents an interval. To generate a continuous value, 1)
select an entry according to the probability, 2) according to
Gaussian distribution function, pick up a continuous value
randomly given the mean and the standard deviation of the
interval.

B. The MDL Genetic Programming

1) The Population: The MDLGP is designed to learn
the FDN. It has a population of individuals. Individuals
are represented as trees and each individual encodes one
network. Individuals are of the form, (< parents >→<
child >)1.....(< parents >→< child >)y where y ∈ Z+.
We call each of the (< parents >→< child >) as a
fragment, which represents the relationships between the
< parents > and the < child >. < parents > and
< child > are in the prefix form. < parents > denotes one
or more parents and a parent can either be a variable node
or a functional node. < child > is a variable node. Different
fragments can have the same < child >. The fragments
containing functional nodes also represent the variables in the
functions. For instance, the individual representing the FDN
in Figure 6 is ((> history biology) → art or science)

The MDLGP uses a grammar to prevent the closure
problem, i.e. the type mismatching issue among functions
and variables. Table II shows the grammar.

The MDLGP translates an individual into a network frag-
ment by fragment. Individuals may carry invalid fragments,
which would create cycles in the network. The MDLGP
validates them one by one, starting from the leftmost one.
If the fragment is valid, it would be translated as links
and nodes into the network. If it would create cycle in the
network, it would be simply ignored.

The population has a fixed number of individuals and the
initial population is generated randomly.

2) Extended MDL Calculation: The MDLGP uses an
extended MDL to evaluate the fitness of individuals. MDL
balances between the network’s accuracy and the simplicity;
and it is a combination of network description length and data
description length. The smaller MDL score is the better.

Let G be a network, U = {N1, ..., Nn} be the variables
in the domain, V = {F1, ..., Ff} be the functional nodes in
G, Υφ be the parents of the variable node or the functional
node φ, sφ be the number of possible states of the variable
node or the functional node φ and d is the number of bits
required to store a numerical value. The MDL score of G is

the sum of the MDL scores of U and V .

MDL(G) =
∑

i

MDL(Ni,ΥNi
) +

∑

j

MDL(Fj ,ΥFj
)

(1)
a variable node or a functional node φ’s MDL score is

given by

MDL(φ,Υφ) = ND(φ,Υφ) + DD(φ,Υφ) (2)

where φ is either Ni or Fj

The network description length measures the number of
bits encoding the network. To represent a particular FDN,
the following information is necessary and sufficient:
• A list of the parents of each variable node and the number
of bits required is |ΥNi

|log2(n + f).
• The set of conditional probabilities associated with each
variable node and the number of bits required is d(sNi

−
1)

∏
ϕ∈ΥNi

sϕ.
• The functional description associated with each functional
node. For instance, the functional description of the func-
tional node (> variable 1 variable 3) is > v1v3 and the
length is 5 ∗ 8, i.e. 40 bits.

The network description length of a node, ND(φ,Υφ) is

ND(φ, Υφ) = { fdl(φ) if φ is Fj

|Υφ|log2(n + f) + d(sφ − 1)
∏

ϕ∈Υφ
sϕ else

(3)

where fdl() is the length of the functional description and
is measured in term of bits

The data description length measures the number of bits
encoding the data set given the network, using Huffman code
and the probabilities of occurrences of each instantiation in
the data set. Closer the probabilities represented by the net-
work to the correct ones smaller the data description length.
Functional nodes’ data description lengths are counted as 0,
because 1) they simply apply the functions on the parents’
instantiations and the relationships are absolutely certain
(according to the MDL principle, the data description length
would be calculated as 0 if the relationship is certain); 2) the
calculation results are not actually encoded in the data set.

The data description length of a node, DD() is

DD(φ, Υφ) = {
0 if φ is Fj∑

φ,Υφ
M(φ, Υφ)log2

M(Υφ)
M(φ,Υφ) else if Υφ �= {}

∑
φ,Υφ

M(φ)log2
e

M(φ) else
(4)

where M() is the number of data items that match a
particular instantiation in the data set and e is the total
number of data items in the data set (the log2 function will
be 0 if M(Υφ) is 0).

3) Selection and Reproduction: The MDLGP selects in-
dividuals for reproduction through tournament competition.
Each individual competes with a number of randomly chosen
individuals. According to the number of winning compe-
titions, fitter individuals are selected. The MDLGP selects
individuals by the Roulette Wheel method [10].

The MDLGP has four genetic operators, they are the
mutation, the crossover, the insertion and the deletion. The
mutation and the crossover are the canonical ones of GP

705

TABLE II

THE GRAMMAR FOR THE MDL GENETIC PROGRAMMING.

network := link∗

link := (parents → child)
parents := parent∗

parent : = node ‖ functional node
child := any variable
node := any variable
functional node := discrete fnode ‖ continuous fnode ‖ ordinal fnode‖ interval fnode
discrete fnode := d comparison
continuous fnode := c comparison ‖ c operation
ordinal fnode := o comparison
interval fnode := i operation
d comparison := (> discrete variable discrete variable)
c comparison := (> continuous variable continuous variable)‖

(> c operation continuous variable)‖
(> c operation c operation)

o comparison := (> ordinal variable ordinal variable)
c operation := (coperator continuous variable continuous variable)
i operation := (ioperator interval variable interval variable)
coperator := + ‖ - ‖ * ‖ /
ioperator := + ‖ -

where > returns 1 if the first argument is larger than the second one; it returns 0 if
they are equal; else it returns -1 and ∗ denotes one or more occurrences

[8].The insertion inserts a randomly generated fragment or
a parent into a random position of the selected individual
and the deletion deletes a randomly chosen fragment or a
parent from the selected individual. All the offsprings have
to conform the Grammar.

After the reproduction, the total number of individuals
and offspring is double. To keep the population size remain
constant, the worst half of them are destroyed. Then, the
extinction is used to further promote the diversity of the
population [4].

C. Rule Extraction

Once the maximum number of generations is met, the
learning process is stopped and the fittest individual in the
population is chosen as the final solution. Then, classification
rules are extracted from the final solution’s conditional tables.

The FDN is an extension of BN and classifies data
items with probabilities. To generate classification rules,
the probabilities are removed and each of the rows in the
conditional tables is translated to be a rule. As different rows
represent different instantiations of the parents, the translated
rules must have no overlapping. For each of the rows in the
conditional tables, 1) with the meanings of the functions,
translate the instantiation of the parents to be the conditions
of the rule; 2) among the class values, select the one with
the highest probability to be the prediction; and 3) if more
than one class values have the highest probability, select one
randomly.

Figure 7 shows an example of the rule extraction. There
are 3 rules. The first and the third ones simply use the class
values with the highest probability as the predictions. In the
case of the second one, the two class values have the same
probability, thus either one, i.e. science is chosen.

Fig. 7. An example of the rule extraction.

III. EXPERIMENTAL RESULTS

A. Experimental setting

1) Data Sets: We have evaluated the rules learnt by
the FDN on three real-life data sets from UCI machine
learning repository [5]. Data set 1 is the Monk 3 data set.
It has 7 nominal variables and 556 data items. The vari-
ables are variable 0, variable 1, variable 2, variable 3,
variable 4, variable 5 and variable 6. The values of
variable 2, variable 4 and variable 5 determine the values
of variable 6. It can also be classified correctly by the
decision tree shown in figure 3.

Data set 2 is a data set that models the psychological
experiments reported by Siegler [18]. It has 5 continuous
variables and 625 data items. Each data item is classified as
having the balance scale tip to the right, tip to the left or
be balanced. The variables are left distance, left weight,
right distance and right weight. The correct way to find
the class is the greater of (left distance ∗ left weight)

706

and (right distance∗ right weight). If they are equal, it is
balanced.

Data set 3 is the Monk 1. It has 7 nominal vari-
ables and 556 data items. The variables are variable 0,
variable 1, variable 2, variable 3, variable 4, variable 5
and variable 6. The relationships, variable 1 = variable 2
and variable 5 = 1 determine the values of variable 6.

2) Evaluation Methods: In the experiments, the MDLGP
has learnt both of the FDN and BN. The rules extracted
from them were compared with those discovered by Generic
Genetic Programming (CGP) and the C4.5 [15]. By the
nature of GP, rules learnt by the CGP are likely to have
overlappings.

The data sets were split into two parts. 66% of them
were used for the learning and the rest were used for the
evaluation. The experimental results are evaluated in terms
of the classification accuracy and the number of rules based
on 10 independent runs.

B. Results for Data Set 1

The values of the maximum number of generations, the
tournament competition size, the number of individuals, the
extinction portion, the number of discretization levels, the
crossover rate, the mutation rate, the insertion rate and the
deletion rate are 1000, 7, 50, 0.7, 10, 0.3, 0.3, 0.3 and 0.1
respectively.

Table III shows the results for Data Set 1. The rules learnt
by the FDN have got the most accurate result. Both of the
CGP and the C4.5 failed to discover good rules. The C4.5
has stuck into a local optimum, it was unable to discover the
best decision tree shown in figure 3 and thus got the worst
classification result.

Table IV shows the first five rules learnt by the CGP in
a run. As the rules were evaluated and evolved separately,
they had no cooperation and thus have many overlappings.
For instance, it is hard to interpret the effective meaning of
the fifth rule. The rules have the lower classification accuracy
and the lower understandability. Furthermore, as it is hard to
realize their effective meaning, we could not anticipate which
of them would be (or would not be) fired ultimately. So all
of them were preserved and were collected to be the rule set.
In result, the CGP had the largest fixed number of rules.

C. Results for Data Set 2

The values of the maximum number of generations, the
tournament competition size, the number of individuals, the
extinction portion, the number of discretization levels, the
crossover rate, the mutation rate, the insertion rate and the
deletion rate are 1000, 7, 50, 0.7, 10, 0.3, 0.3, 0.3 and 0.1
respectively.

Table V shows the results for Data Set 2. The rules
discovered by the FDN have got the most accurate result.
The BN and the C4.5 could not learn the rules classifying
the data items accurately, since they could not represent the
higher-order relationship existing in Data Set 2. In contrast,
the FDN can represent any kind of relationships and got the
most accurate result.

D. Results for Data Set 3

The values of the maximum number of generations, the
tournament competition size, the number of individuals, the
extinction portion, the number of discretization levels, the
crossover rate, the mutation rate, the insertion rate and the
deletion rate are 1000, 7, 50, 0.7, 10, 0.3, 0.3, 0.3 and 0.1
respectively.

Table VI shows the results for Data Set 3. Both of the
FDN and the BN have got the best classification results, but
the latter had the larger number of rules. Tables VII and
VIII show the first rule learnt by the FDN and the first five
ones discovered by the BN in a run respectively. Their rules
have the same total meaning. Instead of enumerating all of
the instances of the combination of the conditions, the FDN
represented the higher-order relationships directly and thus
produced the smallest number of rules. The smaller number
of rules increases the rules’ understandability and decreases
the usage difficulty for expert systems. Similarly, the C4.5
could not represent higher-order relationships, so it generated
a number of rules too.

The experimental results show the FDN, BN and decision
trees guarantee to produce rules with no overlapping. But,
as decision tree learning has much larger search space,
algorithms may stuck into local optima and cannot discover
the best solution. On the other hand, BN lacks of the ability
to handle continuous, interval and ordinal values and cannot
represent higher-order relationships among variables, so it
is likely to have higher number of rules and cannot get the
best classification result. While compared to decision trees,
the FDN has the smaller learning search space; it can also
handle all kinds of values; and it can represent higher-order
relationships among variables. Therefore, the FDN and the
MDLGP together is the best method to learn non-overlapping
rules.

IV. CONCLUSION

In this paper, we propose to use the Functional De-
pendency Network and the MDL Genetic Programming to
learn classification rules without overlappings. Rules with no
overlapping have higher understandability and lower usage
difficulty for expert systems. The experimental results show
the proposed method has got the best results.

ACKNOWLEDGMENT

This research was partially supported by RGC Earmarked
Grant 4192/03E of Hong Kong SAR and RGC Research
Grant Direct Allocation of the Chinese University of Hong
Kong.

REFERENCES

[1] L. Breiman, J. H. Friedman, R. A. Olshen, and C.J. Stone, editors.
Classification and Regression Trees. CRC Press, 1984.

[2] Alex A. Freitas, editor. Data Mining and Knowledge Discovery with
Evolutionary Algorithms. Springer, 2002.

[3] Joao Gama. Discriminant trees. In Proceeding 16th International
Conf. on Machine Learning, pages 134–142, 1999.

[4] G.W. Greewood, G.B. Fogel, and M. Ciobanu. Emphasizing extinction
in evolutionary programming. In Proceedings of the 1999 Congress
on Evolutionary Computation, pages 666–671, 1999.

707

TABLE III

RESULTS FOR DATA SET 1.

Classification Accuracy Number of rules
Average(%) Best(%) Worst(%) Standard Deviation Average

MDLGP with FDN 96.28 98.36 94.36 0.01 12
MDLGP with BN 95.79 97.81 93.99 0.01 12
CGP 74.64 77.05 72.13 0.02 50
C4.5 63.66 67.30 59.00 0.03 14

TABLE IV

THE FIRST FIVE RULES LEARNT BY THE GENERIC GENETIC PROGRAMMING FOR DATA SET 1.

1. if (var 5=var 1) and (var 1=var 4) then (class=1)
2. if (var 5�=var 1) and (var 1�=var 4) and (var 1�=var 2) and (var 5�=var 2) then (class=0)
3. if (var 2=var 1) and (var 4=var 5) then (class=1)
4. if (var 5=var 1) and (var 1=var 4) then (class=0)
5. if (var 5�=var 1) and (var 1�=var 4) and (var 4�=var 2) and (var 1�=var 2) and (var 3=var 5) and
(var 0=var 3) then (class=0)

TABLE V

RESULTS FOR DATA SET 2.

Classification Accuracy Number of rules
Average(%) Best(%) Worst(%) Standard Deviation Average

MDLGP with FDN 100.00 100.00 100.00 0.00 3
MDLGP with BN 61.30 65.70 56.52 0.03 5
CGP 98.36 100.00 92.27 0.03 50
C4.5 78.21 83.10 71.80 0.03 34

TABLE VI

RESULTS FOR DATA SET 3.

Classification Accuracy Number of rules
Average(%) Best(%) Worst(%) Standard Deviation Average

MDLGP with FDN 100.00 100.00 100.00 0.00 8
MDLGP with BN 100.00 100.00 100.00 0.00 36
CGP 81.96 84.24 79.89 0.01 50
C4.5 96.59 100.00 91.10 0.04 28

TABLE VII

THE FIRST RULE LEARNT BY THE FUNCTIONAL DEPENDENCY NETWORK FOR DATA SET 3.

1. if (var 5=1) and (var 1=var 2), then (class=1)

TABLE VIII

THE FIRST THREE RULES LEARNT BY THE BAYESIAN NETWORK FOR DATA SET 3.

1. if (var 5=1) and (var 1=1) and (var 2=1), then (class=1)
2. if (var 5=1) and (var 1=2) and (var 2=2), then (class=1)
3. if (var 5=1) and (var 1=3) and (var 2=3), then (class=1)

[5] S. Hettich, C.L. Blake, and C.J. Merz. Uci repository of machine
learning databases, 1998.

[6] JH Holland. Escaping brittleness: the possibilities of general-purpose
learning algorithms applied to parallel rule-based systems. In Machine
Learning, pages 593–623, 1986.

[7] De Jong KA, Spears WM, and Gordon DF. Using genetic algorithms
for concept learning. In Machine Learning, pages 161–188, 1993.

[8] J.R. Koza, editor. Genetic Programming: On the Programming of
Computers by Means of Natural Selection. MIT Press, 1992.

[9] RuleQuest Research Pty Ltd. Data mining tools see5 and c5.0.
http://www.rulequest.com/see5-info.html, 2003.

[10] Z. Michalewic, editor. Genetic Algorithms+DataStructures=Evolution
Programs. New York: Springer-Verlag, 1994.

[11] Durga Prasad Muni, Nikhil R. Pal, and Jyotirmoy Das. A novel
approach to design clasifiers using genetic programming. In IEEE
Transactions on Evolutionary Computation, pages 183–195, 2004.

[12] Sreerama K. Murthy, Simon Kasif, and Steven Salzberg. A system for
induction of oblique decision trees. Journal of Artificial Intelligence
Research, 2:1–32, 1994.

[13] P. Myllymaki, T. Silander, H. Tirri, and P. Uronen. B-course: a
web service for bayesian data analysis. In Proceedings of the 13th
International Conference on Tools with Artificial Intelligence, pages
247–256, 2001.

[14] J.R. Quinlan, editor. C4.5: Programs for Machine Learning. Morgan
Kauffman, 1993.

[15] Ngan P. S., Wong M. L., Lam W., Leung K. S., , and J. C. Y. Cheng.

708

Medical data mining using evolutionary computation. In Artificial
Intelligent in Medicine, Special Issue On Data Mining Techniques and
Applications in Medicine, pages 73–96, 1999.

[16] Wing-Ho Shum, Hui-Dong Jin, Kwong-Sak Leung, and Man-Leung
Wong. A self-organizing map with expanding force for data clustering.
In ICDM02, IEEE International Conference on Data Mining, pages
434–441, 2002.

[17] Wing-Ho Shum, Kwong-Sak Leung, and Man-Leung Wong. Learning
functional dependency networks based on genetic programming. In
ICDM05, IEEE International Conference on Data Mining, pages 232–
230, 2005.

[18] R.S. Siegler. Three aspects of cognitive development. In Cognitive
Psychology, pages 481–520, 1976.

[19] S. Sohn and C.H. Dagli. Advantages of using fuzzy class memberships
in self-organizing map and support vector machines. In Proceedings.
IJCNN ’01. International Joint Conference on Neural Networks, pages
1886–1890, 2001.

709

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

