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Abstract— Recently, genetic programming (GP) has been
applied to the classification of gene expression data. In its typical
implementation, using training data, a single rule or a single
set of rules is evolved with GP, and then it is applied to test
data to get generalized test accuracy. However, in most cases,
the generalized test accuracy is not higher. In this paper, we
propose a majority voting technique for prediction of the labels
of test samples. Instead of a single rule or a single set of rules, we
evolve multiple rules with GP and then apply those rules to test
samples to determine their labels by using the majority voting
technique. We demonstrate the effectiveness of our proposed
method by performing different types of experiments on two
microarray data sets.

I. INTRODUCTION

Recently, many researchers are investigating the feasibility
of different computational methods for gene expression based
classification of patient samples. The hypothesis behind this
gene expression based classification is that gene expression
levels are affected by a large number of environmental
factors, including temperature, stress, light, and other sig-
nals, that lead to changes in the levels of hormones and
other signaling substances, and many or all human diseases
may be accompanied by specific changes in the expression
levels of some genes [1]. One widely used technique in
cancer research to predict the classes of unknown samples
is clustering, in which patient samples with similar clinical
records are grouped together, and it is used with or without
gene selection [2] [3] [4] [5] [6] [7] [8]. In addition to
clustering, different machine learning classifiers like support
vector machine (SVM) [9], k-nearest neighbor classifier [10],
etc have been applied to the classification of gene expression
data [7] [8] [11] [12] [13] [14]. For gene selection, both filter
and wrapper approaches [15] have been used. Most of the
filter approaches use rank based methods like signal-to-noise
ratio (SNR) [6] to select some discriminative genes. Wrapper
approaches are widely used for selection of genes using
evolutionary computation methods [16] [12] [17] [18] [19]
[20]. A comparative study on multicategory classification
methods for gene expression data can be found in [21]. The
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main disadvantage of the above methods is that it is very
difficult to determine an optimal pairing of gene selection
algorithms and classifiers.

Recently, genetic programming [22], an evolutionary com-
putation method, has been applied to the classification of
gene expression data [23] [24] [25]. The main advantage
of GP is that it can act as a classifier as well as a gene
selection algorithm. In its typical implementation, a training
set of gene expression data of patient-samples are presented
to GP to evolve a boolean or an arithmetic expression of
genes describing whether a given sample belongs to a given
class or not. Then the evolved best rule (s) is (are) applied to
the test samples to get the generalized accuracy on unknown
samples. Unlike SVM and other classifiers, the use of GP
as a classifier is transparent in the sense that the mechanism
used to classify patient samples is available for inspection
[25].

However, the potential challenge for genetic programming
in classification of microarray data is that it has to search two
large spaces of functions and genes simultaneously to find
an optimal solution. In most cases, the evolved single rules
or sets of rules produce very poor classification accuracy
on the test samples. To overcome this limitation of genetic
programming, we propose a majority voting technique for
prediction of the class of a test sample. We call this method
majority voting genetic programming classifier (MVGPC).
The motivation behind this is that a group of rules can be
more accurate than the best member of the group [26]. In its
typical implementation, we evolve multiple rules in different
GP runs, apply them one by one on a test sample and count
their votes in favor of a particular class. Then the sample
is assigned to the class that gets the highest number of
votes in favor of it. However, the success of majority voting
depends on the number of members in a voting group. Here
we investigate the number of members in a majority voting
group that gives the best results.

We apply MVGPC to two microarray data sets and per-
form experiments under different conditions. Our results
suggest that MVGPC is very effective in classification of
gene expression data and the best results are obtained when
the number of members in a voting group is equal to the
number of samples in the training data.

II. NOTATION AND TERMS

We use the term rule to mean an individual in a population.
The term experiment in the figures of this paper is used
to mean a collection of runs needed to generate all the
members of a voting group. Y is used to mean a test sample,
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which is a real-valued vector of gene expressions. The serial
number of a gene in a microarray data set is indicated by ‘X’
followed by a number. However, during writing of biological
significance of a gene, we have used a notation like ‘X1234
(ID1) [NM 000123]’ where X1234 is the serial number of
the gene in the microarray data set, ID1 is the real name of
the gene, and [NM 000123] is the GenBank [27] accession
number of the mRNA sequences of that gene. We use c to
mean the number of categories of samples in a microarray
data set and v to denote the number of members in a majority
voting group. Other terms and notations are described in
places of their uses.

III. METHODS

A. Genetic programming

Genetic programming (GP) [22] is an extension of the
genetic algorithm in which genetic population consists of
computer programs. Genetic programming starts with a pop-
ulation of randomly generated computer programs composed
of functions and variables. The population of programs is
then bred over many generations in a domain independent
way using the Darwinian principle of survival of the fittest
and an analog of the naturally-occurring genetic operation
of crossover. The crossover operation is designed to create
syntactically valid offspring programs from parents that are
probabilistically selected based on their fitness at solving the
problem at hand [28]. In gene expressions based classifica-
tion, the programs in a GP population are rules of classifi-
cations consisting of functions and variables corresponding
to the genes of a microarray data set. A generic example of
these rules might look as follows:

IF (2 ∗ X2474 − X1265/X1223) ≥ 0
THEN ‘Cancerous’ ELSE ‘Normal’

where X2474, X1265 and X1223 correspond to the ex-
pression levels of genes 2474, 1265 and 1223, respectively.
From now on, we will use the term ‘individual’ to mean a
classification rule. Genetic programming breeds a population
of individuals to solve the problem of classification by
executing the following steps:

1) Generate initial population of random compositions of
functions and terminal sets (genes).

2) Execute each individual in the population and assign
it a fitness.

3) While termination criteria is not met do the following
sub steps:

a) Create new offspring by repeatedly applying the
following two operations to the parents that are
selected from the population with a probability
based on fitness:

i) Copy a selected parent to the new population
without any modification.

ii) Create two offspring for the new population
by genetically recombining randomly chosen
parts of two selected parents.

b) Execute each individual in the new population
and assign it a fitness.

After termination of the algorithm, the best individual in the
population is the solution or sub-solution to the problem. In
classification of gene expression data, genetic programming
acts as a classifier as well as a gene selection algorithm.
There are many parameters like population size, maximum
depth of a rule, crossover depth, probability of crossing
over, etc. associated with genetic programming. Detailed
descriptions on GP can be found in [22].

1) Components of a rule: Each rule in a population
consists of randomly chosen functions and genes. Each gene
in the rule is represented by an ‘X’ followed by the gene
number. For example, X1314 represents gene 1314 of a
data set. As functions, arithmetic and/or boolean functions
can used for evolution of classification rules. For a binary
classification problem, the class of a sample is determined
as follows:

Boolean output:

IF (rule) THEN ‘Class A’ ELSE ‘Class B’.

Real-valued output:

IF (rule ≥ 0) THEN ‘Class A’ ELSE ‘Class B’.

During writing of a computer program for genetic
programming, we have to choose function set
depending on our targeted output. If we want
Boolean outputs, we can consider a set of functions
consisting of either arithmetic and Boolean functions
like {+,−, ∗, /, sqr, sqrt, exp, and, or, not,>,>=
, <,<=,=} or only Boolean functions like
{and, or, not, xor,>,>=, <,<=,=}. If our targeted
output is real, we consider only arithmetic functions like
{+,−, ∗, /, sqr, sqrt, ln, exp, power, sin, cos, tan}.

2) Evaluation of a rule: The success of an evolutionary
computation method is very much dependent on the fitness
function used to measure the goodness of an individual.
For classification problems, the accuracy or the error rate
of a predicting program can be used as a fitness measure;
however, these methods may not get the optimum fitness.
Matthews [29] proposed correlation between the prediction
and the observed reality as the measure of raw fitness of a
predicting program. For a binary classification problem, the
correlation (C) is calculated as follows:

C =
NtpNtn − NfpNfn√

(Ntn + Nfn)(Ntn + Nfp)(Ntp + Nfn)(Ntp + Nfp)
(1)

where Ntp, Ntn, Nfp and Nfn are the number of true
positives, true negatives, false positives and false negatives,
respectively. When the denominator of equation (1) is 0, C
is set to 0. The standardized fitness of a rule is calculated as
follows:

fitness(rule) =
1 + C

2
. (2)

Since C ranges between -1.0 and +1.0, the standardized
fitness ranges between 0.0 and +1.0, the higher values being
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better and 1.0 being the best. The ultimate objective of GP
is to find a rule that can classify all the samples correctly
and thus has fitness=1.0. During execution of a rule on a
sample, we take precautions so that the two functions ‘sqrt’
and ‘/’ do not produce undefined results. In the case of
undefined results, we treat them as follows: x

0 = 1, and√
x = 0 if x < 0 . Note that after adjustment,

√
(x)2 �=

(
√

x)2 �= x. For example, if x = −3, then
√

(x)2 = 3 while
(
√

x)2 = 0. Similarly, z ∗ (x/y) �= (z ∗ x)/y; if y = 0, then
z ∗ (x/y) = z while (z ∗ x)/y = 1.

3) Evolution of multiple rules for a multiclass problem:
For classification of multicategory samples, we consider one-
vs-rest approach. In this approach, if there are c types of
samples in a microarray data set, we evolve c classification
rules in c GP runs. During evolution of a rule i, the samples
of class i are treated as positive; other samples as negative
and the fitness is calculated employing equation (2). Suppose
the output of a rule i on a test sample Y is O(Y ). Then
the measures: true positive (TP), true negative (TN), false
positive (FP) and false negative (FN) for the fitness of rule
i are determined as follows:

IF (O(Y ) ≥ 0) AND (CLASS(Y )=i) THEN TP;
IF (O(Y ) < 0) AND (CLASS(Y ) �= i) THEN TN;
IF (O(Y ) ≥ 0) AND (CLASS(Y ) �= i) THEN FP;
IF (O(Y ) < 0) AND (CLASS(Y )=i) THEN FN.

In general case (without majority voting), the sample Y is
correctly classified when only one rule has positive output on
it. If more than one rule fit Y , it is treated as a misclassified
sample.

B. Class prediction through majority voting

Majority voting technique is widely used in different forms
in pattern recognition and classification. For example, in the
kNN classifier, the class of a test sample is determined by the
majority voting of k nearest neighbors of that sample. In mul-
ticlass classification using all-pairs (one-vs-one) approach,
the majority voting technique is also used. In another form,
when multiple classifiers like SVM, kNN, etc are combined
to predict the label of a sample, majority voting is widely
used. However, our approach is a little bit different from
these methods.

In binary classification, we run genetic programming v
times to generate the v best rules for a voting group. Then
we execute these rules on the test samples one by one and
predict their classes using majority voting. For a multiclass
problem, we generate v rules for each category of samples
in v runs. By executing a rule on a test sample, if we get a
positive output, vote in favor of that class (positive vote) is
increased by one; otherwise, the negative vote for that class
is increased by one. Then the class is predicted as follows:

Class(Y ) = max
i

{r1, r2, . . . , rc} (3)

where c is the number of types of samples in the data set, ri

is the ratio of positive and negative votes for class i. If more
than one rule have the same ratio of positive and negative
votes, the class corresponding to the lower index will be the

predicted class for Y . However, if all the ratios are 0s, the
sample is treated as misclassified. Let us give an example.
Suppose a microarray data set contains three categories of
samples: A, B and C, and we are trying to predict the class
of a test sample Y by majority voting with v = 7. For each
of these three categories, we generate 7 rules in 7 GP runs. If
the number of positive and negative votes for the three classes
are {0, 4, 5} and {7, 3, 2}, respectively, the predicted class
of the test sample will be C since it has the highest ratio
(= 5

2 ) of the positive and negative votes.

C. Leave-one-out-cross-validation in GP

Since the number of available training samples in a
microarray data set is usually very small compared to the
number of attributes (genes), leave-one-out-cross-validation
(LOOCV) technique [30] is usually used to calculate the
training accuracy. In LOOCV, one sample from the training
set is excluded, and the rest of the training samples is used
to build the classifier. Then, the classifier is used to predict
the class of the left out one, and this is repeated for each
sample in the training set. The LOOCV estimate of accuracy
is the overall number of correct classifications, divided by
the number of samples in the training set. Thereafter, the
final classifier is built using all the training samples, and the
classes of the test samples are predicted one by one using that
classifier. Note here that the data corresponding to selected
genes remain the same during learning of the classifier
using the LOOCV technique. Conversely, in genetic pro-
gramming, different rules may evolve in different iterations
of the LOOCV technique, and therefore we cannot calculate
the LOOCV accuracy of a particular rule. Nonetheless, in
MVGPC, we have used LOOCV in the following way:

• Generate N (=number of training samples) rules in N
GP runs.

• In each run i, leave sample i for validation and use
the remaining (N − 1) samples as training data. If the
evolved best rule can correctly classify the left out one,
add this best rule to the voting group.

• Apply majority voting on the test data using the mem-
bers of the voting group.

Note here that the number of members in a voting group
may be smaller than N .

IV. EXPERIMENTS

A. Microarray data sets

For our experiments, we chose two benchmark data sets:
brain cancer [7], and breast cancer [31]. The summary of
these data sets are shown in table I. The preprocessed data
of breast cancer are available from the link provided below
while the brain cancer data set is preprocessed by us using
the technique described in [16].

The brain cancer data set contains expression levels
of 12625 genes of 50 gliomas samples: 28 glioblastomas
(GBM) and 22 anaplastic oligodendrogliomas (AO) divided
into two subsets of classic and non-classic gliomas. The com-
plete sets of data are available at http://www-genome.
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TABLE I

MICROARRAY DATA SETS USED IN THE EXPERIMENTS. TRS=NUMBER

OF TRAINING SAMPLES; TES=NUMBER OF TEST SAMPLES

Data set #Genes #Classes TrS TeS
Brain cancer 4434 2 28 22
Breast cancer 3226 3 17 5

wi.mit.edu/cancer/pub/glioma. After download-
ing the classic and non-classic data sets from the website,
we merged them to get a single file and then applied prepro-
cessing on it. After preprocessing of the raw data, only 4434
genes were left. Then this data set is divided into training and
test subsets containing 28 and 22 samples, respectively. The
training subset consists of 14 glioblastomas and 14 anaplastic
oligodendrogliomas samples; the test subset consists of 14
glioblastomas and 8 anaplastic oligodendrogliomas samples.

The breast cancer data set contains 22 cDNA microarrays,
each representing 5361 genes based on biopsy specimens
of primary breast tumors of 7 patients with germ-line
mutations of BRCA1, 8 patients with germ-line mutations
of BRCA2, and 7 with sporadic cases. After preprocess-
ing, only 3226 genes were left. The preprocessed data set
is available at http://research.nhgri.nih.gov/
microarray/NEJM Supplement/. We divide this data
set into two mutually exclusive training and test subsets
containing 17 and 5 samples, respectively. The numbers of
BRAC1, BRAC2 and sporadic samples into training and test
subsets are {5, 6, 6} and {2, 2, 1}, respectively. Notice here
that one sample, which is labeled as ‘Sporadic/Meth.BRCA1’
in the original data set, was treated as ‘BRAC1’ type in our
experiments.

B. Values of different parameters

The values of different genetic programming parameters
were: population size=4000; maximum depth (size) of a
rule=100; maximum number of generations in a run=100;
maximum crossover depth=7; maximum initial depth=6;
crossover probability=0.9, and reproduction probability=0.1.
By some preliminary test runs, we observed that increasing
either the population size or the maximum number of gener-
ations did not improve classification accuracies. The initial
population of each run was generated using the ramped half-
and-half method [22]. We used Koza’s greedy over selection
for choosing mating pairs for crossing over and elitism
so that the best found rule of a population survived for
the next generation. In each run, the algorithm terminated
when either all the training samples were correctly classi-
fied or the maximum number of generations had passed.
As a set of functions, we used only arithmetic functions:
{+,−, ∗, /, sqr, sqrt}. However, if more functions (espe-
cially complementary functions like ln and exp) are used
or the depth of a rule is increased, the evolved rules may be
more complex with little or no improvement in accuracy. By
performing some preliminary trial runs on the training data of
the three data sets using more functions, we observed these
phenomena. For example, we found some rules containing

expressions like ln exp(X1234) or exp ln(X1234), which
turns out to be a simple X1234.

To compare the classification accuracy of MVGPC, we
performed experiments using the kNN classifier with RPM-
BGA [16]. The kNN classifier is widely used by the bioin-
formatics community in gene expression based classification
and is easy to implement. Moreover, the kNN classifier uses
the majority voting technique to predict the class of a sample.
We chose RPMBGA because it is an evolutionary compu-
tation method like GP and better than traditional genetic
algorithm in gene expression based classification of cancer
data [16]. Therefore, the comparison of GP and RPMBGA on
the data sets is convincing. The values of different parameters
of RPMBGA were the same as the values used in [16].

C. Results

1) Test accuracy: First, we performed different experi-
ments on the brain cancer data with different number of
rules in a voting group. Since the brain cancer data set
contains two types of samples (GBM vs AO), we started
with v = 3; the reason behind this value is that the number
of voting members in the majority voting technique should
be greater than the number of types of samples. Then we did
the same with v = 5 and v = 28. Moreover, we performed
different experiments with the leave-one-out-cross-validation
technique described above. Our findings are summarized in
figure 1. In the figures, the average accuracy stands for the
average test accuracy acquired by the v rules of a voting
group, and the majority voting accuracy stands for the test
accuracy obtained by those v rules using the majority voting
technique. In addition to the average accuracy, we have
shown the maximum and the minimum test accuracies of
the v rules in a group by the corresponding error bars.

From the results of the brain cancer data, we found that the
majority voting accuracy was better than the corresponding
average accuracy in all cases; the best results were obtained
when the number of rules in a voting group was equal
to the number of the training samples. In that case, out
of 20 experiments, MVGPC obtained 81.82% test accuracy
in 19 experiments. Interestingly, in each case, the four
test samples that were misclassified by MVGPC were the
same: sample# 22, 28, 35 and 41. The five test samples
that were misclassified by MVGPC in one experiment also
included these four samples; the fifth misclassified sample
was sample# 26 (the numbers of positive and negative votes
for this sample were 14 each). Out of 560 (=28*20) rules, we
found only four single rules that can classify 20 test samples
out of 22 correctly. One of them is as follows:

• IF (SQRT ((X3739 − X3947) ∗ (X895 −
X3600)) + ((SQRT (X664) − (X1660/X2475) +
X1871)/(X664 + X612 − X895 + 2 ∗ X3600)) ∗
SQRT (X1615)) ≥ 0 THEN ‘GBM’ ELSE ’AO’.

This rule fails to classify the two test samples: 35 and 41.
For the breast cancer data, we performed experiments with

v=5, 7 and 17. The results are shown in figure 2. In all
cases, the majority voting accuracy was much better than
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Fig. 1. Test accuracies on the brain cancer data under different conditions. For each voting group, in addition to the average accuracy, the maximum and
the minimum accuracies are plotted on the graphs through error bars

the average accuracy of the v sets of 3 rules. Like the brain
cancer data, the best results were obtained when the number
of members in a voting group was equal to the number of
training samples. Out of 20 experiments, we got 100% test
accuracy in 11 cases and in the remaining 9 cases, the test
accuracy was 80%. However, as individual sets of rules, only
one set among the 340 (=17*20) sets of rules could classify
all the samples 100% accurately. This best set of 3 rules is
as follows:

• IF (SQR(X2942 ∗ X3132 ∗ (X176/X790)) −
SQR(X1399 − X337 + (X821/X809))) ≥ 0 THEN
‘BRAC1’.

• IF (SQR(X982)− (((X3221 ∗X799)/SQR(X2382))
/(SQR(X647) + X1619 − X2454))) ≥ 0 THEN
‘BRAC2’.

• IF (((X1876 − X2126) ∗ X863)/(X2307/X97) +
SQR(X1644 + X1096) − SQR(((X1494/X3056) −
SQR(X2463)) ∗ (X1876 − X2126))) ≥ 0 THEN
’SPORADIC’.

To get comparative results, we performed experiments
using the kNN classifier with RPMBGA (we denote it by
kNN+). For the brain cancer data, we performed experiments
with different number of nearest neighbors: k=3, 5 and
11. Similarly, for the breast cancer data, we performed
experiments with k=5, 7 and 11. The best results for the
brain and the breast cancer data were obtained with k = 3
and k = 5, respectively. The comparative results of MVGPC
and the kNN classifier with RPMBGA are provided in table

TABLE II

COMPARATIVE TEST ACCURACIES ON THE BRAIN CANCER AND THE

BREAST CANCER DATA

Data Set Method Average Max Min Median
Brain MVGPC 81.59 81.82 77.27 81.82
cancer kNN+ 39.55 63.64 36.36 36.36
Breast MVGPC 91.0 100.0 80.0 100.0
cancer kNN+ 68.0 100.0 0.0 70.0

II. In the table, the results of MVGPC are the best ones that
were obtained when v was set to the size of the training
samples. The results of kNN+ are of 20 independent runs.
In all criteria, the test accuracy of MVGPC was better than
that of the kNN classifier with RPMBGA.

2) Evolution of fitness: When the number of training
samples is smaller, the algorithm converges to the optimum
very quickly; when the number of training samples is larger,
it takes longer to reach the optimum. For the breast cancer
data, GP converged to the optimum very quickly. However,
for the brain cancer data, GP converged to the optimum
fitness slowly and in some runs, it arrived at a local optima.
In the 20 experiments on the brain cancer data, the number
of rules in each group of 28 rules that could classify all the
samples 100% accurately are {21, 19, 25, 27, 22, 21, 22, 23,
20, 24, 23, 21, 23, 24, 26, 19, 21, 21, 22, 24}. However, on
the breast cancer data, all the rules (=340) in 20 experiments
got 100% accuracy on the training data. In figure 3, we have
shown the progression of the fitness of GP in a typical run.
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Fig. 2. Test accuracies on the breast cancer data under different conditions.
For each voting group, in addition to the average accuracy, the maximum
and the minimum accuracies are plotted on the graphs through error bars

Note that only one rule is evolved in each run. For the breast
cancer data, we need three separate runs to get three rules
for the classification of three-category samples.

3) More frequently selected genes: The more frequently
occurred genes in the rules of majority voting that produced
the best test accuracies on the brain and the breast cancer
data are shown in table III. (For the brain and the breast
cancer data, these rules are of the experiments with v=28
and v = 17, respectively.) Out of 4434 genes, 3369 genes
were included at least once in the 560 (=28*20) rules of
the brain cancer data. Similarly, in the 1020 (=17*3*20)
rules of the breast cancer data, 3079 genes were included
at least once. However, the two genes: X2981 (IGFBP2)
[X16302] and X3062 (ECE1) [Z35307] of the brain cancer
data are of biological interest. IGFBP2 contributes to glioma
progression in part by enhancing MMP-2 gene transcription
and in turn tumor cell invasion [32]; ECE1 limits the Abeta
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Fig. 3. Progression of fitness in one typical run of GP

accumulation in the mouse brain, which suggests it may
have a role in Alzheimer’s disease [33]. Among the more
frequently occurring genes of the breast cancer data, the two
genes: X860 (PLAU) [NM 002658] and X1479 (CCND1)
[NM 053056] are known to be involved in breast cancer.
PLAU and PAI-1 have roles in progression and recurrence of
breast cancer [34]; CCND1 is overexpressed in human breast
cancers and is required for oncogene-induced tumorigenesis
[35].

V. DISCUSSION

The task of classification of gene expression data faces
many challenges due to the smaller number of available train-
ing samples compared to huge number of genes. Moreover,
many of the genes in the microarray data set are redundant.
These redundant genes sometimes affect the acquired classi-
fication accuracy by other genes negatively; sometimes they
have no effect on the acquired accuracy. It sometimes may
happen that the training accuracy of a classifier is 100%
but its accuracy on test data is 0%. In our experiments, we
observed this phenomenon on breast cancer data. Rather than
using a single rule (or a single set of rules) to predict the
class of a test sample, multiple rules can be combined for a
prediction task. One of the simplest and most intuitive way of
combining multiple classifiers is majority voting technique.
However, in majority voting, the main point is what should be
the size of the voting group. If the size is very smaller or very
larger, the prediction accuracy may not improve. Our present
experimental results and some preliminary results on other
data sets suggest that the size of the voting group should be
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TABLE III

MORE FREQUENTLY SELECTED GENES

Data set Serial# Accession# Description Freq.
X2981 X16302 IGFBP2: insulin-like growth factor binding protein 2, 36kDa 69

Brain X3318 S37730 cds of IGFBP2 59
cancer X1489 X77956 ID1: inhibitor of DNA binding 1 32

X1930 M80254 PPIF: peptidylprolyl isomerase F 29
X3062 Z35307 ECE1: endothelin converting enzyme 1 23
X860 NM 002658 PLAU: plasminogen activator, urokinase 25
X1479 NM 053056 CCND1: cyclin D1 20

Breast X2152 ESTs 20
cancer X2804 NM 002709 PPP1CB: protein phosphatase 1, catalytic

subunit, beta isoform 20
X336 NM 005749 TOB1: transducer of ERBB2, 1 20

equal to the size of the training samples. In that case, the
predictive accuracy is almost deterministic.

Nonetheless, some of the genes that are more frequently
included in the best voting groups or in the best rules that
produce the best classification accuracy have no direct links
with the cancer being studied in this paper. It may be the case
that these genes regulate the expressions of other genes that
are responsible for the cancers. We need further investigation
in this regard.

VI. CONCLUSIONS

In this paper, we propose the majority voting technique
for the prediction of the class of a test sample by the rules
of the genetic programming. By performing experiments on
two microarray data sets, we have found that in all cases,
the accuracy obtained with majority voting is better than the
average accuracy of the rules in a voting group. Individually
those rules classify the test samples very poorly but as a
group of rules, they classify the samples very accurately.
However, the best results were obtained when the number
of members in a voting group was equal to the number of
training samples. Moreover, some of the more frequently
occurred genes in the evolved rules of MVGPC are the
potential biomarkers of the types of cancers considered in
this paper.

However, our proposed method did not get 100% accuracy
in all experiments. In our future work, we want to investigate
how we can improve the accuracy and apply our method to
other benchmark microarray data sets. Preliminary results on
other microarray data sets show that our method will also get
better results on other data sets.
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