
Simplifying Decision Trees Learned by Genetic Programming

Alma Lilia Garcia-Almanza and Edward P.K. Tsang

Abstract— This work is motivated by financial forecasting
using Genetic Programming. This paper presents a method to
post-process decision trees. The processing procedure is based
on the analysis and evaluation of the components of each
tree, followed by pruning. The idea behind this approach is
to identify and eliminate rules that cause misclassification. As
a result we expect to keep and generate rules that enhance
the classification. This method was tested on decision trees
generated by a genetic program whose aim was to discover
classification rules in financial stock markets. From experimen-
tal results we can conclude that our method is able to improve
the accuracy and precision of the classification.

I. INTRODUCTION

Decision trees have been widely used in machine learning
for classification and prediction. However, the overfitting and
complexity of resulting trees have disclosed the necessity
of pruning procedures. Several classifiers have incorporated
pruning methods, for example: Classifier CART implemented
minimal cost-complexity pruning [1], ID3 incorporated re-
duced error pruning and pessimistic pruning [2], while
classifier C4.5 integrated Error-based pruning [3]. Breiman
[1] and Quinlan [2] have asserted that tree simplification can
benefit almost all decision trees when removing parts that
do not contribute to classification accuracy. They argued that
resultant trees are less complex and more understandable.
Furthermore, this simplification helps to control overfitting.

Decision trees generated by Genetic Programming (GP)
[4] tend to grow [5], [6], [7], [8]. However, this growth is
not necessarily proportional to the quality of the resultant
solution. We presume that decision tree simplification can
be beneficial to trees produced by GP. Code growth has
been controlled introducing a variety of methods. These are
grouped in three main types: parsimony pressure, operator
modification and code modification [9]. Parsimony pressure
tries to evolve small solutions penalizing large individuals,
for instance, to establish a maximum depth allowed [4],
tarpeian method [10] or the implementation of Minimum
Description Length principle (MDL) in the fitness function
[11]. Operator modification is represented by no-destructive
crossover [12]. Code modification involves changing the
structure of the code during or after the evolution, e.g.
the pruning method implemented by Eggermont et al. [13].
According to Soule, code modification methods have not
been explored in depth because it involves the use of more
computational resources [12]. However, researches of other

Alma Lilia Garcia-Almanza is with the Department of Computer Science,
University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK (phone: (44)
01206-873975; email: algarc@essex.ac.uk).

Edward P.K. Tsang is with the Department of Computer Science, Uni-
versity of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK (phone: (44)
01206-872774; email: edward@essex.ac.uk).

machine learning classifiers [1], [3] prefer pruning techniques
instead of stopping criterions, they have pointed out that
pruning is slower but more reliable because it produces more
exploration.

We propose a new approach called Scenario Method (SM)
to analyse decision trees produced by GP. The aim of this
approach is to produce smaller trees with higher prediction
accuracy. Analysis is done by identifying relevant parts that
contribute to the classification task as well as to separate
those fragments that deteriorate their performance or cause
overfitting. From results we affirm that this method is able to
produce compact trees improving their accuracy1 and their
precision2. This work is illustrated with a dataset composed
by closing prices from the London Financial Market. The
remainder of this paper is organized as follows: Section
II contains an overview of the problem that illustrates our
method, Section III presents the SM procedure, while Section
IV describes the experiments to test our approach. Section
V presents the experiment results. Finally, Section VI sum-
maries the conclusions.

II. PROBLEM DESCRIPTION

To illustrate SM, it was applied to a discovery classi-
fication rule problem. The idea is to classify a financial
stock dataset in order to predict future movements in the
stock price. This problem has been addressed previously by
[15], [16], [17]. Every case in the dataset is composed by a
signal and a set of attributes or independent variables. The
signal indicates the opportunities for buying or not buying
and selling or not selling. The signal is calculated looking
ahead in a future horizon of n units of time trying to detect
an increase or decrease of at least r% 3. The independent
variables are composed by financial indicators derived from
financial technical analysis. Technical analysis is used in
financial markets to analyse the price behaviour of stocks.
This is mainly based on historical prices and volume trends
[18].

III. SCENARIO METHOD

The main goal of SM is to simplify decision trees by
means of rule selection. This procedure involves dividing
the problem using class division. The next step is to analyse
the tree in order to identify its rules (Rule extraction). Every
rule is evaluated (Rule evaluation) to select those rules that
contribute positively to the classification task. Finally, rules

1Accuracy is the proportion of the total number of predictions that were
correct [14]

2Precision is the proportion of the predicted positive cases that were
correct [14]

3The gain or loss of an investment over a specified period of time

0-7803-9487-9/06/$20.00/©2006 IEEE

2006 IEEE Congress on Evolutionary Computation
Sheraton Vancouver Wall Centre Hotel, Vancouver, BC, Canada
July 16-21, 2006

2142

TABLE I
DISCRIMINATOR GRAMMAR.

G → <Root>
<Root> → ”If-then-else”, <Conjunction> |

<Condition>,”Class”,”No Class”
<Conditional> → <Operation>, <Variable>, <Threshold> |

<Variable>
<Conjunction> → ”and”|”or”,<Conjunction>|<Conditional>,

<Conjunction>|<Conditional>
<Operation> → ”<”, ”>”
<Variable> → Variable1 | Variable2 | ... Variablen

<Threshold> → Real number

with poor performance will be removed from the tree (Tree
pruning). The above procedures will be explained in detail
in the following sections.

A. Class division

To divide the classification problem, a population per each
class will be evolved independently (example of a class is
to Buy). For this purpose decision trees are generated and
evolved using Discriminator Grammar (DG). This grammar4

produces trees which classify or not a single class. Table I
shows the discriminator grammar and Figure 1 illustrates a
decision tree that was created using DG. At this point we
introduce the concept of Conditional Node, which refers
to any node with syntax <Conditional> in discriminator
grammar. Class division has previously been applied by other
researches such as Teller [20], who evolved an individual
program per class using Parallel Architecture Discovery and
Orchestration (PADO).

B. Rule extraction

This process analyses the decision trees in order to delimit
their rules. Let T be a tree with syntax DG. T is composed
by rules, so it can be expressed as the union of its rules such
as T = (R1 ∪ R2 ∪ · · ·Rn) where Ri is a rule and n is the
total number of rules in T. In order to satisfy the tree T at
least one rule must be satisfied. A rule Rk is a minimum
set of conditions that satisfy the tree T. The rule Rk can be
expressed as the intersection of conditional nodes such as
Rk = (nk1 ∩ nk2 ∩ · · ·nkt) where nki is a condition and kt
is the number of conditions in rule Rk . To satisfy rule Rk

every condition in this rule has to be satisfied. Let us define
Rule Map as a matrix that lists the rules of a tree T and the
conditions that composed every rule. The kth-row in the rule
map contains the conditions of rule Rk. Given that the size
of rules could be different, the size of the matrix will be N
x L, where N is the number of rules in the tree, and L is the
size of the largest rule. When the length of a rule is smaller
than L the empty spaces will be fulfilled using 0. Figure 1
shows an example of a decision tree and its rule map. The
rule map is used to control the interactions between rules.

4The term grammar refers to a representation concerned with the syntactic
components and the rules that specify it [19]

Fig. 1. Example of an individual generated by DG and its Rule Map.

TABLE II
CONFUSION MATRIX.

Predicted/Actual Positive Negative
Positive TP True Positive FP False Positive
Negative FN False Negative TN True Negative

C. Rule evaluation

This section explains the procedure to evaluate the per-
formance of each rule in the tree T. Every rule Ri ∈ T
is compared against the training dataset and the result is
registered in a Confusion Matrix 5. Thus there will be a
confusion matrix Mi for each rule Ri ∈ T . Table II displays
a confusion matrix for the classification of two classes.

It is important to keep in mind that this problem is exposed
to imbalanced classes because the number of opportunities
for investors may be infrequent. According to Kubat et al.
[21], when imbalanced classes take place, it is not reliable
to measure the performance of a classifier only using the
equation of accuracy. This work is not only focused on the
accuracy improvement but also in the precision improvement,
because every decision involves an investment. To illustrate
this, suppose that every time a true positive is succeeded we
gain 1 unit, but every time a false positive is predicted we
loss the same amount. Thus the number of true positives has
to be bigger than the number of false positives; otherwise the
final result will be a negative balance. Taking into account
the previous consideration, let (1) be the equation to measure
the rule contribution.

Ev(Ri) =

(

TPi

P T

)(
TPi−FPi

TPi+FPi

)
if TPi+FPi>0

0 Otherwise

(1)

5A confusion matrix consists of information about actual and predicted
classifications done by a classifier system. It is an information summary of
the performance of the classifier, it shows the accuracy of predicted class
as well as errors and omissions[14].

2143

Where the terms in (1) are the components in the confusion
matrix and PT = TPi + FNi, it is the total number of
positive cases in the dataset. Notice that PT is a constant
number for all Ri because it depends on the dataset. The first
parenthesis of equation (1) encloses the recall6, it encourages
the increment of true positive cases. The second parenthesis
encloses an expression similar to precision. However, it
severely penalizes the false positive cases. Equation (1) could
be useful to perform classification in risky problems because
it strongly discards the false positive cases.

D. Rule selection

Once the rules in tree T have been evaluated the next
step is to perform a rule selection based on hypothetical
scenarios for the union of rules. The rule with the highest
evaluation is taken as a starting point, let us call it RB . To
disclose the potential of the remaining rules Rη ∈ T, the
Best and the Worst scenario for RBη = (RB ∪ Rη) are
calculated. Where RBη is the union of rules RB (the best rule
of T) and Rη. The best scenario is calculated assuming that
the true positives cases in RB and Rη are not overlapped
and the false positive cases maximally overlap each other.
Thus the best scenario for true positive and false positive
cases are calculated as follows: TPBη

+ = TPB + TPη

and FPBη
+ = max(FPB , FPη). Superscripts are used

to indicate the scenario, it could be worst (-) or best (+).
Subscripts are used to denote rules. The worst scenario is
calculated in exactly the opposite way, it assumes that true
positive cases maximally overlap. And false positive cases
are not overlapped so the total number of false positive
cases is the sum of false positives in both rules. Finally the
worst scenario for true positive and false positive cases is
TPBη

− = max(TPB , TPη) and FPBη
− = FPB + FPη.

Once the best and the worst scenarios were calculated,
Equation (1) is applied to them as follows:

Ev(RBη
+) = TPB+TPη

P T · TPB+TPη−max(FPB ,FPη)
TPB+TPη+max(FPB ,FPη)

Ev(RBη
−) = max(TPB ,TPη)

P T · max(TPB ,TPη)−FPB−FPη

max(TPB ,TPη)+FPB+FPη

Let us define the Potential of Improvement (PI) as the
capacity of a rule for improving the tree T. PI is calculated
using the distance between Ev(RB) and Ev(RBη

+) as
Figure 2 shows. The potential of improvement is calculated
as follows:

PI(Rη) =

Ev(RBη

+)−Ev(RB)

Ev(RBη
+)−Ev(RBη

−) if Ev(RB)≤Ev(RBη
+)

0 Otherwise

6The recall (true positive rate) is the proportion of positive cases that
were correctly identified [14].

Fig. 2. Interval of the worst and the best scenario of (RB ∪Rη).

TABLE III
EXAMPLE

Rη RB ∩Rη RB ∪Rη

(TPη , FPη) (TPBη , FPBη)
Rη=1 (1, 15) (0, 15) (41, 20)
Rη=2 (10, 2) (10, 1) (40, 21)

Once the potential of improvement is calculated, it is
necessary to decide whether or not the rule Rη is beneficial
for the tree. A threshold from 0% to 100% is used to
determine the level of pruning, it will be defined as Pruning
Threshold (PT). If (PI(Rη) < PT) the rule Rη will be
pruned. When PT is close to 0 the level of pruning is low,
but when PT is close to 100 a hard pruning is performed.
The experiments included in this paper used different pruning
thresholds (PT = 0%,10%,...90%) to find out the effect of this
parameter.
At this point it is worth addressing an important question:
why is the SM preferred rather than the direct evaluation of
the combined rule RBη? One of the reasons is that the direct
evaluation of the new rule consumes more computational
resources. Another reason is that SM avoids overfitting
because it discloses the individual performance of the rule.
To illustrate the last point we present an example where it is
shown that the direct evaluation of RBη and the comparison
against RB does not give a good performance estimation
of Rη. Let us express the evaluation of RB (Best rule) as
follows: RB = (TPB , FPB) = (40, 20). Now we add the
rules R1 and R2 from Table III. The performance of R1 =
(1,15), this shows that it can produce more misclassifications
than accurated results. However, direct evaluation suggests
that R1 is able to improve the tree. In contrast, SM discards
this rule if we apply a low pruning threshold (greater than
7%). Now let’s analyze R2, its performance indicates that it
is able to classify with a good rate of precision (83%). Nev-
ertheless, direct evaluation discards R2 because it classifies
the same true positive cases than RB . However the fact that
R2 classifies a subset of RB in training data does not mean
that they classify the same cases in other dataset. SM only
discards R2 when a hard pruning threshold is applied (bigger
than 82%).

E. Tree pruning

After rule selection is performed the rules that do not
achieve the expected pruning threshold will be removed.
During the pruning procedure the condition map is used to
detect the interactions between rules and determine which

2144

PROCEDURE Prune(T, Rk , ConditionMap)
BEGIN

/*Given the rule Rk =(nk1 ∩ nk2...∩nkj ...)
where nkj is a conditional node and Rk is
the kth-row in ConditionMap*/

FOR each nkj ∈ Rk

IF (nkj /∈ Ri where i 6= k) THEN
/* If nkj is not part of other rule, delete it*/

BEGIN
np → Parent of node nkj
nb →The other child of node np

ng →Parent of node np

nc1, nc2 → The two children of node nkj

/* Delete nkj , its parent and its children*/
T → T − nkj , np, nc1, nc2

T → T + Link between ng and nb

END
ConditionMapkj → 0 /* Set 0 in node map */

RETURN T
END

Fig. 3. Pruning Psedocode

nodes in bad rules can be pruned without affecting the useful
rules. The pruning pseudocode is described in Figure 3.
Notice that not all decision trees are applicable to SM, in
the following cases it is not posible to prune the tree:

1) The tree is composed by a single rule.
2) SM does not suggest pruning to improve the tree.
3) SM suggests pruning but all conditional nodes to prune

are involved in good rules.
4) The evaluation of the best rule is inferior to zero.

IV. EXPERIMENTS DESCRIPTION

To test our approach a series of experiments were per-
formed. The objective was to find out the effects of scenario
method in the performance of decision trees. The performace
is measured in terms of the accuracy, precision and tree size.
Scenario method was tested on series of 25 runs. Every
series comprises five populations from different stages of
the evolutionary process. In order to discover the impact of
pruning treshold the experiment was tested with different
values for this parameter. The results of the experiment were
grouped and averaged by generation and pruning threshold.
The training data description and the procedure to generate
the population for the experiment are described in the fol-
lowing sections.

A. Training data description

The dataset that was used to train the GP in the experiment
came from the London stock market. The dataset contains
756 records that describe the behaviour of the closing price7

for TESCO stock (from January, 2001 to January, 2004). The

7The settled price at which a traded instrument is last traded at on a
particular trading day

TABLE IV
FINANCIAL INDICATORS USED IN THE EXPERIMENT

Short Long
Indicator name period period

(Days) (Days)
Price moving average 12 50
Price Trading breaking rule 5 50
Filter rule 5 63
Price volatility 12 50
Volumen moving average 10 60
Momentum 10 60
Momentum 10 days moving average 10 –
Momentum 60 days moving average 60 –
Generalized Momentum indicator 10 60
FOOTSIE moving average 12 50
LIBOR: 3 months moving average 12 50

attributes of each record are composed by indicators derived
from financial technical analysis; these were calculated on
the base of the daily closing price, volume and some financial
indices as FOOTSIE8 and LIBOR9. The financial indicators
used in the experiment are listed in Table IV. These were
calculated using two periods of time, one short and one long.
Each period provides a different interpretation. The shorter
the time span, the more sensitive the indicator will be to
changes.

B. Creation of populations

To test our approach in different stages of the evolutionary
process, it was necessary to generate populations from differ-
ent points of the evolution. By doing so a population of 1,000
individuals was created using DG, it was evolved during 100
generations. Every twenty generations the whole population
was saved, therefore the result was five populations of
1,000 individuals each, let us call them P20, P40, · · · , P100

where subscripts indicates the number of the generation.
The mentioned procedure was repeated 25 times in other
to test the experiment with different sets of decision trees.
Finally the experiment results were grouped and averaged by
generation and pruning threshold. Table V presents the GP
parameters used to evolve the populations.

TABLE V
SUMMARY OF PARAMETERS.

Parameter Value
Population size 1,000
Initialization method Growth
Generations 100
Crossover Rate 0.8
Mutation Rate 0.05
Selection Tournament (size 2)
Elitism Size 1
Fitness function Equation (1)
Control bloat growing Tarpeian method, 50% of those trees

whose largest branch exceed 7 were
penalized with 20% of the fitness for
each node that surpassed the largest
branch allowed.

8An index of 100 large capitalization companies stock on the London
Stock Exchange.

9London interbank offered rate

2145

V. MAIN RESULTS

We now document the results obtained by applying SM
to the set of populations described in section IV. The
performance of the experiment is measured in terms of
the prediction accuracy, precision, tree size and number
of pruned trees. The experiment was tested using different
pruning thresholds (PT = 0%,10%,..90%). All figures given
in this section denote average results from series of 25 test
runs.

A. Number of pruned trees

Figure 4 plots the number of trees that were pruned
by SM. Every series represents a population in a specific
generation P20, P40, ..P100. As can be seen in X-axis every
population was tested using different pruning thresholds.

Not surpisingly these results show that the increase in
pruned trees is related to the number of generations. The
number of pruned trees grows when the number of gen-
erations increases, this occurs because the tree size rises
and there are more opportunities to perform a pruning.
During earliest generations the number of pruned trees is
low because in early stages of the evolutionary process the
tree size is small and trees must contain more than one rule
in order to be pruned. As an instance the average number
of rules per tree in a population of generation twenty is 1.9.
It means that there is a high number of trees that hold only
one rule, as a consequence they can not be pruned.

On the other hand, as one might expect, the number of
pruned trees increases when pruning threshold increases.
This occurs because SM removes the rules whose PI does
not achieve the PT and the increase of this threshold causes
that many rules have to be pruned. Table VIII displays the
number of pruned trees per population and threshold.

B. Accuracy improvement

Figure 5 displays the accuracy improvement achieved by
SM. Every curve represents a population tested with different
pruning thresholds. As it can be seen SM helped to improve
the accuracy in almost all cases. The average improvement
in accuracy is 4.6%. The best results are obtained when

Fig. 4. Pruned trees

Fig. 5. Accuracy improvement

PI is less than 60%. However, the number of pruned trees
decreases when threshold does the same. According to the
experiment results the best thresholds are between 40% and
60%. In this range the accuracy improvement and the number
of pruned trees are high . The results of some experiments
uncovered that it is possible to have a slightly decrease in
the accuracy when the threshold is close to 100% and the
population has converged. It is because, when the PI is big
the selection becomes stricter and some useful rules could
be pruned. Table VI shows the accuracy of a standard GP
and the new accuracy when SM is applied.

C. Precision improvement

Table VII describes the precision of a standar GP before
and after SM was applied. The average precision improve-
ment is 9%. The minimum improvement is 2% and the
maximum is 16%. The improvement is affected by the tree
generation and the PT. As it can be seen from table 6 the
precision improvement declines when PT is close to 100%,
or when the population starts to converge.

D. Tree size reduction

Table IX shows the tree size reduction per each gener-
ation. As can be seen SM reduces considerably the size of
the trees, the average reduction is 27%. As one might expect

Fig. 6. Precision improvement

2146

Fig. 7. Tree size reduction

the tree size reduction is related with the pruning threshold.
When PT increases, the pruning is intensified because only
rules with high PI can achieve the mentioned threshold. On
the other hand the tree size reduction increases when the
number of generations does the same. It can be explained
that during earliest stages of the evolutionary process the
tree size is small. When a tree holds only one rule, it can
not be pruned so the possibilities to be pruned increases when
the tree size rises. Figure 7 shows the tree size reduction
achieved in the experiment.

VI. CONCLUSIONS

A pruning method for decision trees called Scenario
Method (SM) has been presented. This pruning procedure
applied for trees generated by genetic programming whose
objective is to discover classification rules. The aim of this
method is to identify rules that enhance the classification
task as well as those that deteriorate the performance of the
tree. The approach is based on the analysis of scenarios. The
intensity of pruning is controlled by a pruning threshold. The
new approach is tested on a financial classification problem.
From the experimental results it can be concluded that SM
is able to select useful parts of the tree, indicating which of
them are able to contribute with the classification task. The
pruning of non useful conditions improved the accuracy and
precision of the decision trees. In addition SM shows that it
is able to reduced the tree size. The improvement achieved
by SM varies, it depends on the stage of the evolutionary
process and the pruning threshold.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their valuable comments of the paper. The first author
thanks to Consejo Nacional de Ciencia y Tecnologı́a (CONA-
CyT) to support her studies at the University of Essex.

TABLE VI
ACCURACY BEFORE AND AFTER SCENARIO METHOD WAS APPLIED.

PT Gen=20 Gen=40 Gen=60 Gen=80 Gen=100
(a) (b) (a) (b) (a) (b) (a) (b) (a) (b)

0 .54 .65 .56 .66 .57 .66 .53 .67 .58 .65
10 .55 .64 .57 .65 .58 .65 .53 .67 .59 .65
20 .54 .64 .57 .65 .58 .65 .54 .66 .59 .65
30 .55 .65 .58 .65 .59 .65 .60 .68 .61 .66
40 .55 .65 .59 .66 .59 .65 .61 .68 .62 .65
50 .56 .65 .60 .66 .61 .66 .63 .68 .62 .65
60 .59 .66 .63 .67 .64 .67 .64 .67 .64 .66
70 .63 .67 .65 .68 .66 .68 .66 .68 .67 .68
80 .67 .68 .67 .68 .68 .69 .67 .69 .68 .69
90 .67 .68 .68 .68 .69 .69 .68 .69 .69 .69

100 .67 .68 .68 .68 .69 .69 .68 .69 .69 .69

(a) Accuracy before SM, (b) Accuracy after SM

TABLE VII
PRECISION BEFORE AND AFTER SCENARIO METHOD WAS APPLIED

PT Gen=20 Gen=40 Gen=60 Gen=80 Gen=100
(a) (b) (a) (b) (a) (b) (a) (b) (a) (b)

0 .41 .59 .43 .57 .47 .62 .46 .64 .50 .58
10 .42 .59 .46 .60 .47 .62 .46 .63 .51 .59
20 .42 .59 .46 .60 .48 .62 .47 .64 .51 .58
30 .43 .59 .47 .60 .49 .63 .53 .69 .52 .61
40 .44 .60 .47 .61 .50 .64 .55 .69 .54 .62
50 .46 .61 .51 .62 .54 .65 .59 .67 .55 .62
60 .54 .66 .57 .67 .58 .66 .60 .67 .59 .64
70 .61 .70 .62 .70 .64 .69 .64 .69 .66 .71
80 .69 .74 .69 .74 .71 .74 .70 .74 .71 .75
90 .72 .75 .72 .76 .74 .77 .72 .76 .74 .76

100 .72 .76 .72 .76 .75 .77 .73 .76 .74 .78

(a) Precision before SM, (b) Precision after SM

TABLE VIII
NUMBER OF PRUNED TREES BY SCENARIO METHOD

PT Gen=20 Gen=40 Gen=60 Gen=80 Gen=100
0 47.3 53.1 77.0 53.0 95.4

10 48.1 58.8 92.3 88.2 104.8
20 49.4 60.9 89.3 93.8 114.0
30 52.6 63.7 135.7 112.8 159.1
40 116.4 144.7 175.2 162.2 207.5
50 132.4 190.1 204.9 209.6 245.3
60 195.5 237.8 252.1 246.5 306.7
70 238.3 313.7 353.6 324.5 443.3
80 388.4 478.5 481.7 482.5 546.5
90 417.0 521.0 558.4 521.7 575.7
100 427.1 535.9 575.5 556.9 591.9

TABLE IX
TREE SIZE REDUTION PRODUCED BY SCENARIO METHOD

PT Gen=20 Gen=40 Gen=60 Gen=80 Gen=100
0 31% 30% 26% 23% 26%

10 28% 32% 26% 23% 26%
20 29% 31% 24% 21% 26%
30 32% 28% 24% 16% 21%
40 31% 28% 25% 16% 20%
50 31% 28% 24% 18% 21%
60 29% 32% 22% 20% 20%
70 29% 32% 22% 20% 19%
80 34% 35% 27% 27% 24%
90 37% 37% 30% 28% 28%
100 36% 40% 33% 36% 36%

2147

REFERENCES

[1] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classifi-
cation and regression trees. United States of America: Wadsworth
International Group, 1984.

[2] J. R. Quinlan, “Simplifying decision trees,” in International Journal
of Machine studies, 1986, pp. 221–234.

[3] J. R. Quinlan., C.45 Programs for Machine Learning. San Mateo
California: Morgan Kaufmann, 1993.

[4] J. Koza, Genetic Programming: On the Programming of Computers
by Means of Natural Selection. Cambridge, Massachusetts: The MIT
Press, 1992.

[5] P. Angeline, “Genetic Programming and Emergent Intelligence,” in
Advances in Genetic Programming, K. E. Kinnear, Jr., Ed. MIT
Press, 1994, ch. 4, pp. 75–98.

[6] P. Nordin, F. Francone, and W. Banzhaf, “Explicitly Defined Introns
and Destructive Crossover in Genetic Programming,” in Proceedings of
the Workshop on Genetic Programming: From Theory to Real-World
Applications, J. P. Rosca, Ed., Tahoe City, California, USA, 9 July
1995, pp. 6–22.

[7] T. Soule and J. A. Foster, “Code size and depth flows in genetic
programming,” in Proceeding of the Second Annual Conference, J. R.
Koza, K. Deb, M. Dorigo, D. B. Fogel, M. Garzon, H. Iba, and R. R.
Riolo, Eds. Morgan Kaufmann, 1997, pp. 313–320.

[8] W. B. Langdon, “Quadratic bloat in genetic programming,” in Pro-
ceedings of the Genetic and evolutionary Computation Conference
(GECCO-2000), 2000, pp. 451–458.

[9] T. Soule and J. A. Foster, “Effects of code growth and
parsimony pressure on populations in genetic programming,”
vol. 6, no. 4, Winter 1998, pp. 293–309. [Online]. Available:
citeseer.ist.psu.edu/article/soule98effects.html

[10] R. Poli, “A simple but theoretically-motivated method to control
bloat in genetic programming,” in Proceedings of the 6th European
Conference. Springer-Verlag, 2003, pp. 204–217.

[11] H. Iba, H. de Garis, and T. Sato, “Genetic Programming using a
Minimum Description Length Principle,” in Advances in Genetic
Programming, K. E. Kinnear, Jr., Ed. MIT Press, 1994, pp. 265–
284.

[12] T. Soule, Code Growth in Genetic Programming. Moscow, Idaho,
USA: PhD Thesis, College of Graduate Studies, University of Idaho,
15 May 1998.

[13] J. Eggermont, J. N. Kok, and W. A. Kosters, “Detecting and pruning
introns for faster decision evolution,” in The 8th International Con-
ference of Parallel Problem Solving from Nature. Springer-Verlag,
2004.

[14] R. Kohavi and F. Provost, “Glossary of terms,” in Edited for the
Special Issue on Applications of Machine Learning and the Knowledge
Discovery Process, vol. 30, February 1998.

[15] E. P. Tsang, J. Li, and J. Butler, “Eddie beats the bookies,” in
International Journal of Software, Practice Experience, ser. 10,
vol. 28. Wiley, August 1998, pp. 1033–1043.

[16] E. P. Tsang, P. Yung, and J. Li, “Eddie-automation, a decision support
tool for financial forecasting,” in Journal of Decision Support Systems,
Special Issue on Data Mining for Financial Decision Making, ser. 4,
vol. 37, 2004.

[17] E. P. Tsang, S. Markose, and H. Er, “Chance discovery in stock
index option and future arbitrage,” in New Mathematics and Natural
Computation, World Scientific, ser. 3, vol. 1, 2005, pp. 435–447.

[18] W. F. Sharpe, G. J. Alexander, and J. V. Bailey, Investments. Upper
Saddle River, New Jersey 07458: Prentice-Hall International, Inc,
1995.

[19] N. Chomsky, Aspects of the theory of syntax. Cambridge M.I.T. Press,
1965.

[20] A. Teller and M. Veloso, “Neural programming and an internal
reinforcement policy,” in In fisrt international Conference on Simulated
Evolution and learning. Springer-Verlag, 1996, pp. 279–286.

[21] M. Kubat, R. C. Holte, and S. Matwin, “Machine learning for the
detection of oil spills in satellite radar images,” in Machine Learning,
vol. 30. 195-215, 1998.

2148

