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Abstract— This paper proposes a relational version of the
fuzzy c-means (FCM) classifier in which relational data instead
of object data are used. The classifier based on the relational
clustering is called “relational classifier”. The classifier is useful
when a feature space has an extremely high dimensionality that
exceeds the number of objects and many of the feature values
are missing, or when only relational data are available instead
of the object data. The relational data is represented by a matrix
in terms of distances (dissimilarity) between object data, and
is not concerned with the relational database. The clustering
algorithm used in the classifier includes, as a special case,
the relational dual of FCM proposed by Hathaway, Davenport
and Bezdek and can be seen as a simultaneous application of
multidimensional scaling and clustering.

The computational intensity of the classifier is comparable
to Gaussian mixture classifier (GMC). The proposed classifier
outperforms well established relational classifier known as k-
nearest neighbor (k-NN) on several benchmark datasets from
the UCI ML repository.

I. INTRODUCTION

The unsupervised partitioning of data is often called clus-
tering, which forms a significant area of research effort. The
fuzzy c-means (FCM) algorithms [1], [2] are widely used,
effective tools for the problem of clustering n objects into
groups of similar individuals when the data is available as
object data, consisting of a set of feature vectors (x).

In the FCM clustering, an entropy method that uses an
additional entropy term or quadratic term for fuzzification
was proposed [3]. Gaussian mixture models or normal mix-
tures [4] with the expectation maximizing algorithm [5], [6]
is parameterized and derived from the FCM clustering with
regularization by K-L information.

From the above consideration, a generalized FCM clus-
tering is proposed and applied to a post-supervised clas-
sifier design and is called IRLS-FCM classifier (FCMC)
[7], [8], [9]. The classifier with deterministic initialization
clearly outperforms many well established classifiers [10].
Although the classification performace of the FCMC is high,
its computation is not feasible when a feature space has an
extremely high dimensionality (m) that exceeds the number
of objects (n). The size of covariance matrices is m×m, and
its eigenvalue decomposition and inverse operation become
difficult due to the restrictions of memory and computation
time. This paper tackles the problem.

In the post-supervised design, clustering is implemented
by using the data from one class at a time (i.e., on a per
class basis). When working with the data class by class, the
prototypes that are found for each labeled class already have

the assigned physical labels. The unsupervised clustering
plays a major role in the post-supervised classifier.

The fundamental distinction between types of clustering
algorithms resides in types of data available. A second form
of data that may appear is relational data. For example,
text (character sequences) and web page sequences are non-
numerical pattern sequences that can be represented numer-
ically using (pairwise) relation matrices.

The fuzzy clustering algorithm for relational data was
initiated by Ruspini [11] followed by Roubens [12], Wind-
ham [13], Hathaway, Davenport and Bezdek [14], and Kauf-
man and Rousseeuw [15], [16]. Davé and Sen [17] extended
the relational FCM approach to handle data sets containing
noise and outliers. Clustering method for relational data can
also be found by relational alternating cluster estimation
(RACE) [18]. Fuzzy c-medoids (FCMdd) [19] is based on
selecting c representative objects (medoids) from the data
set. An object datum that has the maximum membership in
cluster i is chosen and specified as the cluster center vi.

The relational clustering used in the classifier of this paper
is of the type of [14] but takes covariance structure of clusters
into account. In the relational version of FCM algorithm,
the n objects are implicitly described in terms of relational
data, which consists of a set of n2 measurements of relations
between each of the pairs of objects. The relation can be
represented by a matrix R = (rij), which comes about in
either of two ways. First, when x is given as a numerical
vector (object data), then distance between data vector pairs
or some appropriate two place function like Pearson’s corre-
lation coefficient, can produce the data matrix R. This kind
of data is used in the Internet related systems often referred
to as recommender or collaborative filtering [20].

When a data set includes large number of objects and the
number exceeds the data dimensionality, some method as
local principal component analysis might be effective [21].
But, if the data dimension of x is extremely large (Case
1) and/or x includes missing values (Case 2), one may not
be able to explicitly partition objects. Hence, we need to
implicitly partition the set of objects by instead operating
on R using relational clustering methods. The second way
that R is obtained is directly from a human expert, or
measuring device that supplies estimates of rij by observing
or measuring the relation between ith and jth object pairs
(Case 3).

We extend the generalized FCM clustering to those based
on relational dissimilarity measures, which partitions the data
set into flexible elliptic shapes of clusters. The relational
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FCM clustering (RFCM) in [14] uses only the Euclidean
distance so is a special case of our proposed method.

For reducing dimensionality of data space in each cluster,
a way to control the number of parameters in the mixture of
probabilistic principal component analysis (MPCA) [22] or
the character recognition [23] is adopted. Whereas MPCA
is a simultaneous approach to PCA and clustering, Our
approach can be seen as a simultaneous approach to the
multidimensional scaling (MDS) and FCM clustering.

The FCM clustering is applied to a classifier design in
a similar manner to the Gaussian mixture model, which is
applied to the classifier called Gaussian mixture classifier
(GMC). The IRLS-FCM classifier is a modified GMC and
the basic difference resides in the membership function and
the matrix used. The relational FCM classifier (RFCMC) uses
the matrices in terms of inner products instead of covariance
matrices. When the data dimension is larger than the number
of objects, the matrix of inner products is more convenient
than the covariance matrix. In this sense, the computational
intensity of the classifier is comparable to GMC.

The basic performance is compared with the well estab-
lished relational classifier known as k-nearest neighbor (k-
NN) by using relational data computed from the object data
of the UCI ML repository (http://www.ics.uci.edu/˜ mlearn/)
[29]. The proposed classifier outperforms k-NN classifier on
several benchmark data sets.

The paper is organized as follows. Section II gives a
brief description of the generalized FCM clustering and the
classifier design based on IRLS. The proposed relational
classifier will be described in Section III. Section IV provides
the results of numerical experiments. Section V concludes the
paper.

II. FCM CLASSIFIER BASED ON IRLS

A. A Generalization of FCM Clustering

The clustering is used as an unsupervised phase of the
classifier design. FCM clustering partitions data set by in-
troducing memberships to fuzzy clusters. Let m dimensional
vector vi denote prototype parameter (i.e., cluster centroid).
uik denotes the membership of k-th object datum to i-th
cluster.

The objective function of the standard method is:

Jfcm =
c∑

i=1

n∑
k=1

(uik)λd2
ik, (λ > 1). (1)

d2
ik denotes the squared distance between xk and vi, so

the standard FCM objective function is the weighted sum
of squared distances. Taking the objective function for the
entropy-based method and the quadratic-term-based method
[3] into account, we can generalize the standard objective
function a little further as:

Jgfc =
c∑

i=1

n∑
k=1

(uki)λd2
ik + η

c∑
i=1

n∑
k=1

(uik)λ. (2)

where η > 0, λ > 1. From the necessary condition of
optimality, we have

uik =


 c∑

j=1

(
η + d2

ik

η + d2
ik

) 1
λ−1



−1

. (3)

vi =
∑n

k=1(uik)λxk∑n
k=1(uik)λ

. (4)

Gustafson and Kessel’s modified FCM [24] can handle
covariance structure and is derived from an FCM objective
function with fuzzifier λ, though, we need to specify the
values of determinant |Ai| for all i. Otherwise, we need some
modifications.

B. IRLS FCM Clustering

In order to deal with covariance structure within the
scope of fuzzy c-means clustering, we proposed a simplified
derivation of the algorithm, which is based on the IRLS
technique. Runkler and Bezdek’s fuzzy clustering scheme
called alternating cluster estimation (ACE) [25] is this kind
of simplification.

Now we consider to deploy a technique from the robust
M-estimation [26], [27]. The M-estimators try to reduce the
effect of outliers by replacing the squared residuals with ρ-
function, which is chosen to be less increasing than square.
Instead of solving directly this problem, we can implement it
as the IRLS. While the IRLS approach does not guarantee the
convergence to a global minimum, experimental results have
shown reasonable convergence points. If one is concerned
about local minima, the algorithm can be run multiple times
with different initial conditions.

Let the objective function of the IRLS-FCM be

Jifc =
c∑

i=1

n∑
k=1

uik

(
d2

ik + log|Ai|
)
, (5)

where c denotes the number of clusters.

d2
ik = (xk − vi)�A−1

i (xk − vi) (6)

is squared Mahalanobis distance from data vector xk to
i-th cluster centroid, where � denotes transpose. Ai is a
covariance matrix of data samples of the i-th cluster, which
is derived from (5) as:

Ai =
∑n

k=1 uik(xk − vi)(xk − vi)�∑n
k=1 uik

, (7)

and vi is derived as:

vi =
∑n

k=1 uikxk∑n
k=1 uik

. (8)

To facilitate competitive movements of cluster centroids,
we need to define the membership function to be normalized
as:

uik =
u∗

ik∑c
l=1 u∗

lk

. (9)
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We confine our discussion to the membership function

u∗
ik =

πi|Ai|−1/γ

(η + d2
ik/0.1)1/λ,

(10)

then, uik is written as:

uik = πi|Ai|−1/γ


 c∑

j=1

(
η + d2

ik/0.1
η + d2

ik/0.1

) 1
λ

πj |Aj|−1/γ



−1

.

(11)

u∗ is a modified and parameterized multivariational ver-
sion of Cauchy’s weight function in M-estimator or of the
probability density function (PDF) of Cauchy distribution.

πi =
∑n

k=1 uik∑c
j=1

∑n
k=1 ujk

=
1
n

n∑
k=1

uik. (12)

C. FCM Classifier

After completing the clustering for each class, the clas-
sification is performed by computing class memberships of
unseen test data. Let αq denote the mixing proportion of
class q, i.e., the a priori probability of class q. The class
membership of k-th data xk to class q is computed as:

u∗
qjk = πqj|Aqj |−1/γ/(η + d2

qjk/0.1)1/λ, (13)

ũqk = αq

c∑
j=1

u∗
qjk/

Q∑
s=1

αs

c∑
j=1

u∗
sjk, (14)

where c denotes the number of clusters of each class. The
denominator in (14) can be disregarded when applied solely
for classification.

III. RELATIONAL FCM CLASSIFIER BASED ON IRLS

A. Relational FCM Clustering with Mahalanobis Distances

In the relational clustering, clusters are formed using the
matrix R = (dR

ij) of relational data corresponding to pairwise
distances between objects. Although explicit values of x′s
are not known, if they are known, since

‖xj − xi‖2 = (xj − xi)�(xj − xi)
= x�

j xj − 2x�
i xj + x�

i xi, (15)

R can be written by a matrix form as

R = 1n1�
n diag(XX�) − 2XX�

+diag(XX�)1n1�
n . (16)

X = (x1, ..., xn)� and XX� is a matrix in terms of inner
product (x�

k xl)n×n, where ( )n×n denotes a matrix of
n× n dimension. 1n denotes the vector of dimension n× 1
with all entries equal to 1. diag(XX�) denotes a diagonal
matrix whose diagonal entries are composed of the diagonal
elements of XX�. Let

Qn = In − 1
n
1n1�

n , (17)

then QnX is a matrix of centered x. A matrix in terms of
inner product of centered x is written as

X0X
�
0 = QnXX�Qn

= −1
2
QnRQn (18)

When the matrix in terms of inner product is given instead
of R, this centering process can be omitted.

If exact values of the object data are known, fuzzy
covariance matrix for the ith cluster is written in the matrix
form as:

Ai =
1

nπi
X�

i MiXi

= ((nπi)−
1
2 M

1
2

i Xi)�((nπi)−
1
2 M

1
2

i Xi), (19)

where Xi = (x1 − vi, ..., xn − vi)� and Mi is a diagonal
matrix whose diagonal elements equal to (u1, ..., un), i.e.,
Mi =diag(u1, ..., un). vi is a cluster centroid. The dimension
of x and v is m. vi is a centroid for the ith cluster given
by (8).

Eigenvalue decomposition of Ai is written as

Ai = Wi∆2
i W

�
i , (20)

where Wi = (wi1, ..., wir) is an m × r matrix and
wi1, ..., wir are eigenvectors associated with positive eigen-
values (δ2

1 , ..., δ2
r) of Ai. The vectors are normalized as

w�
ilwil = 1. ∆2 =diag(δ2

1 , ..., δ
2
r) is a diagonal matrix of

the eigenvalues. By the singular value decomposition

(nπi)−
1
2 M

1
2

i Xi = Fi∆iW
�
i , (21)

we have

XiWi∆−1
i = (nπi)

1
2 M

− 1
2

i Fi, (22)

where Fi is an n × r matrix.
The Mahalanobis distance between xk and cluster centroid

vi can be written by using (22) as:

d2
ik = (xk − vi)�A−1

i (xk − vi)
= (xk − vi)�Wi∆−2

i W�
i (xk − vi)

= ((xk − vi)�Wi∆−1
i )

×((xk − vi)�Wi∆−1
i )�

= nπiu
−1
ik f�

ikf ik , (23)

where Fi = (f i1, ..., fin)�.
Since the explicit values of x are not known, for obtaining

the values of Fi and ∆i, let us define an n × n matrix Ki

as:

Ki = (nπi)−1M
1
2
i XiX

�
i M

1
2

i , (24)

where

Xi = (In − 1nui
�)X0, (25)

and In is a unit matrix of dimension n.

ui = (ui1/
n∑

k=1

uik, ..., uin/
n∑

k=1

uik)�, (26)

330

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)



and XiX
�
i can be written as

XiX
�
i = X0X

�
0 − X0X

�
0 ui1�

n

−1nui
�X0X

�
0

+(1nui
�)X0X

�
0 (ui1�

n ). (27)

Fi and ∆i are obtained from the eigenvalue decomposition
of Ki , since Ki can be rewritten by using (21) as:

Ki = ((nπi)−
1
2 M

1
2

i Xi)((nπi)−
1
2 M

1
2

i Xi)�

= (Fi∆iW
�
i )(Wi∆iF

�
i )

= Fi∆2
i F

�
i . (28)

The remaining value that we need for updating ui is |Ai|. If
rank(Ai) = m,

|Ai| = |Wi||∆2
i ||W�

i | = |∆2
i | =

r∏
l=1

δ2
il. (29)

This is not always the case for all clusters and some modifi-
cations of the nonsingular covariance matrices are needed.
Moreover, because this relational clustering approach can
find up to n nonzero eigenvalues of Ki, reduction of the
number of decision variables (Fi) is significant. Unlike the
global nonlinear approaches, Gaussian mixture models or
normal mixture [4] is to model nonlinear structure with a
collection, or mixture, of local linear sub-models of PCA.
When estimating covariance structures in high dimensions,
while not over-constraining the model flexibility, Tipping and
Bishop proposed a way to control the number of parameters
in the mixture of probabilistic principal component analysis
(MPCA) [22]. Honda et al. discussed the similarity between
MPCA and FCV type fuzzy clustering with regularization
by K-L information [28]. A common practice to estimate
the unknown dimensionality r is to use the number of
positive eigenvalues of Ai. And, we make this parameter an
adjustable one to reduce the decision variables (Fi). Let A′

i

denotes an approximation of Ai in (19) and (20) for p < r
as

A′
i = W p

i ((∆p
i )

2 − σ2
i Ip)W p�

i + Wi(σ2
i Ir)W�

i , (30)

where Ip is a unit matrix of dimension p. Note that (A′
i)

−1

can be computed easily from (30). ∆p
i is a diagonal matrix

whose diagonal elements are p largest eigenvalues of Ai,
and W p

i is an m × p matrix consisted of corresponding p
eigenvectors.

σ2
i =

1
r − p

r∑
l=p+1

δ2
il

=
1

r − p
(trace(Ki) −

p∑
l=1

δ2
il). (31)

The squared distance between xk and cluster centroid vi can

be approximated as

d2
ik = (xk − vi)�A

′−1
i (xk − vi),

=
p∑

l=1

1
δ2
il

(xk − vi)�wil ×

(xk − vi)�wil

+
1
σ2

i

r∑
l=p+1

(xk − vi)�wil ×

(xk − vi)�wil

= nπiu
−1
ik


 p∑

l=1

f2
ikl +

1
σ2

i

r∑
l=p+1

f2
iklδ

2
il




= nπiu
−1
ik f

′�
ik f ′

ik

+ σ−2
i (xk − vi)�(xk − vi)

− σ−2
i nπiu

−1
ik f

′�
ik (∆p

i )
2f ′

ik), (32)

where f ′
ik = (fik1, ..., fikp)�, and (xk − vi)�(xk − vi) is

a diagonal element of XiX
�
i .

We approximate |Ai| by the product of largest p eigen-
values of Ki and σ

2(r−p)
i where r is the number of positive

eigenvalues.

|A′
i| � (

p∏
l=1

δ2
il)σ

2(r−p)
i . (33)

The membership to cluster uik and the ratio πi are given by
(10), (11) and (12).

The algorithm is the repetition of these update for all
clusters, i.e., i = 1, ..., c and may be described as

Relational-IRLS-FCM clustering algorithm
Step 1: Initialize ui with random numbers.
Step 2: Calculate πi for all i by (12).
Step 3: Calculate Ki using (27) and its eigenvalue de-

composition using (28).
Step 4: Calculate uik by (11).
Step 5: If iteration exceeds the predetermined number

then terminate, else go to Step 2.

B. Relational Classifier

For classification, we need to calculate distances between
new data points and cluster centers. From (21)

(nπi)−
1
2 X�

i M
1
2

i Fi∆−2
i = Wi∆−1

i , (34)

and

(nπi)−
1
2 XiX

�
i M

1
2

i Fi∆−2
i = XiWi∆−1

i . (35)

Hence, if n new unseen data are given, by replacing left-most
Xi in both sides of (35) with XNEW

i , we can calculate the
right side of (22) by

XNEW
i Wi∆−1

i = (nπi)−
1
2 XNEW

i X�
i M

1
2

i Fi∆−2
i

= (nπi)−
1
2 (XNEW

0 X�
0

+ XiX
�
i − X0X0)M

1
2

i Fi∆−2
i , (36)
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where XNEW
i denotes the matrix of new data centered to

the i-th cluster centroid and XNEW
0 denotes the matrix of

new data centered to the global mean. We used the fact that
from (22)

1�
n M

1
2

i Fi = 0�, (37)

and

(xNEW
i )�X�

i − (xNEW
0 )�X�

0 + x�
i X�

i − x�
0 X�

0

= (xNEW
i − xi)�X�

i − (xNEW
0 − x0)�X�

0

= (xNEW
i − xi)�(Xi − X0)�

= (xNEW
i − xi)�(vi − v0)1�

n , (38)

where xNEW
0 (= xk′−v0) denotes an unseen new data vector

centered to the global mean v0 and xNEW
i (= xk′ − vi) is

the vector centered to i-th cluster centroid vi. Note that v0

and vi are not known explicitly.
Usually, the number of new test data is not equal to n, but

we see from (36) that for a single new datum xk′

(xk′ − vi)�Wi∆−1
i = (nπi)−

1
2 ((xk′ − v0)�X�

0

+(xl − vi)�X�
i − (xl − v0)�X�

0 )M
1
2

i Fi∆−2
i , (39)

for any l ∈ {1, ..., n}.
For computing d2

ik′ by (32), we need to calculate Euclidean
distance between the new unseen data and cluster centroid
(||xk′ − vi||2). Since

xNEW
i = xNEW

0 − X�
0 ui, (40)

the squared Euclidean distance between xNEW
0 and vi is

||xNEW
i ||2 = (xNEW

0 )�xNEW
0 − 2ui

�X0x
NEW
0

+ ui
�X0X

�
0 ui, (41)

where (xNEW
0 )�xNEW

0 and X0x
NEW
0 can be obtained

from the entire relational data including the new unseen data
in a similar way to (17)-(18).

It should be noted that if object data are available, even
though the dimensinality is high, after clustering Wi can be
computed from Fi, ∆i and object data matrix. Therefore, the
classification for new unseen data can be more simple and
less time-consuming.

C. Relational Duals of FCM classifier

The relational clustering/classifier stated above implicitly
handles covariance structure of each cluster and the Maha-
lanobis distances are used. If we omit the covariance structure
and replace the matrix Ai with a unit matrix, then the
algorithm reduces to a relational dual of FCM by Hathaway,
Davenport and Bezdek [14].

When p=0, d2
ik in (32) is

d2
ik =

1
σ2

i

(xk − vi)�(xk − vi), (42)

where (xk −vi)�(xk −vi) is a diagonal element of XiX
�
i .

Duality of FCM in [14] states that this Euclidian squared
distance between xk and vi can be written as

d2
ik = (Rûi)k − 1

2
ûi

�Rûi, (43)

where

ûi =

(
(ui1)m/

n∑
k=1

(uik)m, ..., (uin)m/

n∑
k=1

(uik)m

)�

. (44)

In the case of RFCMC, if p=0, d2
ik in (32), i.e., a diagonal

element of XiX
�
i in (27), becomes equal to

d2
ik = (Rui)k − 1

2
ui

�Rui, (45)

except that a fixed constant σ2
i is multiplied. This is straight

forward if we write XiX
�
i in terms of R, ui and Pn =

1
n
1n1�

n . Since

Pnui1�
n = 1nui

�Pn = Pn, (46)

and R is symmetric, we have

diag(RPnui1�
n ) = diag(RPn)

= diag(PnR)
= diag(1nui

�PnR), (47)

where diag(A) denotes the vector whose entries are com-
posed of the diagonal elements of a square matrix A.

PnRui1�
n = 1nui

�PnRui1�
n

= 1nui
�RPnui1�

n

= 1nui
�RPn. (48)

Since the diagonal elements of R are all zero, thus we have

diag(XiX
�
i ) = diag(

1
2
Rui1�

n ) + diag(
1
2
1nui

�R)

− diag(
1
2
1nui

�Rui1�
n )

= Rui − 1
2
1nui

�Rui. (49)

The element of diag(XiX
�
i ) is d2

ik with p = 0 and
corresponds to the d2

ik in (43) where (44) is used instead
of (26).

The squared Euclidean distance between xNEW
0 and vi is

obtained by (41).

IV. NUMERICAL EXPERIMENTS

We compare the basic performance of the proposed clas-
sifier with k-NN by preparing artificial dissimilarity data
computed from object data. This approach enables us to
compare the performance with well-known classifiers for
object data, although the dimensionality of the benchmark
data is not so high. We used 8 sets of object data, i.e., Iris,
Wisconsin breast cancer, Ionosphere, Glass, Liver disorder,
Pima Indian diabetes, Sonar and Wine as shown in Table
I. These dat sets were used for comparisons among several
prototype-based methods in [30]. All these data sets consist
of object data and are available from the UCI ML repository
(http://www.ics.uci.edu/˜ mlearn/) [29]. Incomplete samples
in the breast cancer data set were eliminated from the
training and test sets. All categorical attributes were encoded
with multivalue (integer) variables. All attribute values were
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TABLE I

DATA SETS USED IN THE EXPERIMENTS

features objects classes
Iris 4 150 3

Breast 9 683 2
Ionosphere 33 351 2

Glass 9 214 6
Liver 6 345 2
Pima 8 768 2
Sonar 60 208 2
Wine 13 178 3

normalized to zero mean and unit variance. Iris and Wine are
the sets with three classes. Iris-Vc is a binary classification
problem for discriminating between the iris versicolor and
the other two iris subspecies. Though Iris is the set with
three classes, it is known that Iris setosa is clearly separated
from the other two subspecies and Iris versicolor is between
Iris setosa and Iris verginica in the feature space [4]. If the
problem is defined as binary one we can easily find that two
clusters are necessary for the setosa-verginica class. To show
this case, we use the binary problem of Iris data. Wine-3 is
also a binary problem.

Table II shows the results by RFCMC and k-NN. The
nearest neighbor classifier easily overfits to the training
data. Accordingly, instead of 1-nearest neighbor, generally
k nearest neighboring data objects are considered in k-
NN classifier. Then, the class label of unseen objects is
established by majority vote. For the parameter (k) of k-NN,
we tested all integer values from 1 to 50 by 10-CV with a
default partition and the optimum values are shown in Table
II. The k-NN classifier itself is a relational classifier, since
the relational data consisted of Euclidian distances between
objects are used.

The relational data are computed from object data. The
boldface letters in Table II indicate that the classification
error rate is smaller than or equal to that of the other
approache according to the two sample t test with signifi-
cance level p = 0.05 in the comparison between RFCMC
and k-NN. RFCMC overwhelmingly surpassed k-NN. The
classification performances of other four well-known classi-
fiers are reported in [10]. Although they are not relational
classifiers and evaluated by 10-CV with a default partition,
generally speaking, RFCMC results are better than those of
the classifiers. It should be noted that the performance of
FCMC on the object data is theoretically equivalent to those
of RFCMC on the relational data which are obtained from
the object data.

Table III shows the parameter values used for RFCMC.
The parameter optimization with golden section search
method for FCMC in [10] may be a good way, but is not used
in our numerical experiment. The parameters of RFCMC
are optimized by trial and error using 10-CV with a default
partition and evaluated by 10 separate runs of 10-CV with
random partitions. The results of FCMC on object data and
optimized by trial and error are reported in [8].

On the four data sets, RFCMC with plural clusters for

TABLE II

CLASSIFICATION ERROR RATES (%) ± STANDARD DEVIATION ON

RELATIONAL DATA COMPUTED FROM BENCHMARK OBJECT DATA. THE

RESULTS OF 10 SEPARATE RUNS OF 10-CV WITH RANDOM PARTITIONS.

RFCMC k-NN
Iris 2.20 ± 0.31 5.73 ± 0.61 k=21

Iris-Vc 2.33 ± 0.45 5.73 ± 0.61 k=21
Breast 2.93 ± 0.10 3.03 ± 0.10 k=11

Ionosphere 4.20 ± 0.31 13.63 ± 0.79 k=1
Glass 31.48 ± 1.14 29.00 ± 0.96 k=2
Liver 31.26 ± 0.87 34.97 ± 1.36 k=23
Pima 23.87 ± 0.39 24.50 ± 0.72 k=21
Sonar 11.65 ± 0.98 15.30 ± 1.36 k=3
Wine 0.59 ± 0.37 2.35± 0.64 k=25

Wine-3 0.00 ± 0.00 0.94± 0.39 k=15

TABLE III

PARAMETER VALUES USED FOR THE RELATIONAL FCM CLASSIFIER

c λ γ η p
Iris 1 1.2 8 1 4

Iris-Vc 2 0.6 3 1 4
Breast 1 1 20 1 1

Ionosphere 1 0.55 25.4 50 4
Glass 1 1 22 13 4 α=1
Liver 1 1 7 1 6
Pima 2 0.5 15 1 5
Sonar 20 0.2 – 1 0
Wine 1 1 30 1 13 α=1

Wine-3 2 1 30 1 13 α=1

each class performs well. For the several data sets, the
performance is not so sensitive to the values of λ and η,
so the values are fixed to 1 for the data sets. Depending on
the data sets, γ and p assume various values. p = 0 represents
that Euclidean distance, instead of Mahalanobis distance, is
used.

For Sonar data, to use 20 clusters and Euclidean distance
was the best choice among several trials by 10-CV. For Breast
cancer data, Euclidean distance, (i.e., p=0, c=3), was used
and the classification decision was made by the maximum
of cluster membership values in [8]. The result for this case
by RFCMC was 2.79 ± 0.07, which is slightly better than
the result in Table II in which Mahalanobis distances are
used (p = 1) and the decision was made by the sum of
memberships.

In the table, α = 1 represents that class mixing proportions
are not take into account in classifying new data.

For the data whose classification error rate is lager than
20%, there is not significant difference between RFCMC and
k-NN. Usually the classifier with such a high classification
error rate is not enough for practical use, and RFCMC works
for the data with small classification error rates such as Iris,
Ionosphere and Wine as shown in Table II.

V. CONCLUSION

We have proposed a classifier based on relational data
and FCM with Mahalanobis distances. Experimental com-
parisons by using benchmark object data revealed that the
performance of RFCMC for relational data is equivalent to
that of FCMC for object data.
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RFCMC uses the matrices in terms of inner products
instead of covariance matrices. When the data dimension
is larger than the number of objects, the matrix of inner
products is more convenient than the covariance matrix.

When object data are available, even if the dimensionality
is high, the classification for new unseen data can be done
in a similar manner to FCMC, so is simple and less time-
consuming. The derivation of the algorithm seems to be
complicated, though the derived algorithm and its compu-
tational intensity are similar to those of the classifier based
on Gaussian mixture models or normal mixture. The only
difference from GMC is that the proposed classifier needs
parameter optimization when designing the classifier.

Application and evaluation on large dimensional data such
as those used in recommender or collaborative filtering
and bioinformatics are our imminent tasks. The β-spread
transform in non-Euclidean relational fuzzy clustering [31] to
convert a non-Euclidean matrix into an Euclidean matrix may
also be a good way when the observation is non-Euclidean.
These challenges are left for our future study.
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