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Abstract. The substitution of missing values, also called imputation, is an im-
portant data preparation task for data mining applications. This paper describes 
a nearest-neighbor method to impute missing values, showing that it can be use-
ful for a clustering genetic algorithm. The proposed nearest-neighbor method is 
assessed by means of simulations performed in two datasets that are bench-
marks for data mining methods: Wisconsin Breast Cancer and Congressional 
Voting Records. The efficacy of the proposed approach is evaluated both in 
prediction and clustering scenarios. Empirical results show that the employed 
imputation method is a suitable data preparation tool. 

1   Introduction 

Knowledge discovery in databases (KDD) is the non-trivial process of identifying 
valid, novel, potentially useful, and ultimately understandable patterns in data [1]. 
Although the terms KDD and Data Mining (DM) are sometimes employed inter-
changeably, DM is usually considered as a step in the KDD process that centers on 
the automated discovery of patterns in data. In this context, data preparation is a step 
in the KDD process that involves the selection, preprocessing, and transformation of 
data to be mined. When data preparation is performed in a suitable way, higher qual-
ity data are produced, and the outcomes of the KDD process can be improved. In spite 
of its importance, the data preparation step became an effervescent research area only 
in the last few years. An important problem to be tackled in this step concerns about 
missing values. The absence of values is common in real-world datasets and it can 
occur for a number of reasons like, for instance [2]: malfunctioning measurement 
equipment, changes in experimental design during data collection, collation of several 
similar but not identical datasets, refusing of some respondents to answer certain 
questions in surveys. Missing values resulting from such situations may generate bias 
in the data, affecting the quality of the KDD process. 

Many approaches have been proposed to deal with the missing values problem - 
e.g. see [3,4,5]. A simple solution involves ignoring instances and/or attributes con-
taining missing values, but the waste of data may be considerable and incomplete 
datasets may lead to biased statistical analyses. Another alternative is to substitute the 
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missing values by a constant. However, it assumes that all missing values represent 
the same value, leading to considerable distortions. The substitution by the 
mean/mode value is common and sometimes can even lead to reasonable results. 
However, this approach does not take into account the between-attribute relationships, 
which are usually explored by data mining methods. Therefore, a more interesting 
approach involves trying to fill missing values by preserving such relationships.  

The task of fulfilling missing values is often referred to as either missing values 
substitution or missing values imputation. Imputation methods can be helpful for a 
variety of data mining tasks, such as classification, extraction of association rules and 
clustering. In this work, we focus on clustering tasks, in which one seeks to identify a 
finite set of categories (clusters) to describe the data. More specifically, we describe 
and evaluate a Nearest-Neighbor Method (NNM) to substitute missing values in data-
sets to be partitioned by the Clustering Genetic Algorithm (CGA) [6], which can find 
(according to a numeric criterion) the optimal number of clusters. Similar NNMs for 
imputation have been proposed in the literature – e.g. see [7,8] for classification prob-
lems and [9,10] for clustering tasks. NNMs usually do not generate a model to de-
scribe the data and, when used for imputation, they basically search for the best in-
stance(s) of the dataset to be used for substituting missing values. This characteristic 
may produce a high computational cost. On the other hand, as the learning process is 
specific to each query, it may be more accurate. Under this perspective, we believe 
that a NNM can be a suitable data preparation tool for the CGA. 

The remainder of this paper is organized as follows. The next section presents our 
proposed method to substitute missing values. Section 3 reviews the Clustering Ge-
netic Algorithm (CGA) [6]. The employed NNM is evaluated in two datasets that are 
benchmarks for data mining methods, and the obtained results are described in Sec-
tion 4. Finally, Section 5 concludes our work. 

2   Nearest-Neighbor Method (NNM) 

The Nearest-Neighbor Method (NNM) substitutes missing values by the correspond-
ing attribute value of the most similar complete instance, i.e. it is a K-nearest-
neighbor method [11] for K=1. Let us consider that each instance is described by ρ 
attributes. Thus, each instance can be represented by a vector y=[y1,y2,...,yρ]. The 
distance between two vectors (instances) u and y will be here called d(u,y). Also, let 
us suppose that the i-th attribute value (1≤i≤ρ) of vector u is missing. The NNM cal-
culates distances d(u,y), for all y≠u, y representing a complete instance, and use these 
distances to compute the value to be imputed in ui. The Euclidean metric – expression 
(1) – is used to compute distances between continuous/ordinal instances, whereas the 
simple matching approach – expression (2) – is employed to compute distances be-
tween instances formed by nominal/binary attributes. 

d(u,y)E = 22
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In the above expressions, the i-th attribute is not considered, because it is missing 
in u. After computing the distances d(u,y) for all y≠u, y representing a complete in-
stance, the more similar instance (the neighbor of u) is employed to complete ui. The 
nearest neighbor of u is here called s. This way, d(u,s)=min d(u,y) for all y≠u, and ui 
is substituted by si. For a set of instances whose distances d(u,y) are equal, the substi-
tuted value comes from the first instance of this set. Although expressions (1) and (2) 
just consider one missing value (in the i-th attribute), they can be easily generalized 
for instances with more missing values. 

The imputation by the K-Nearest Neighbor (KNN) method is simple, but it has 
provided encouraging results [7,8,9,10]. In clustering problems, this approach is par-
ticularly interesting, because the imputation is based on distances between instances, 
as well as the clustering process is. In other words, the inductive biases of clustering 
and imputation methods are equal. 

3   Review of the Clustering Genetic Algorithm (CGA) 

Clustering is a task in which one seeks to identify a finite set of categories (clusters) 
to describe a given dataset, both maximizing homogeneity within each cluster and 
heterogeneity among different clusters [12]. In other words, instances that belong to 
the same cluster should be more similar to each other than instances that belong to 
different clusters. Thus, it is necessary to devise means of evaluating the similarities 
between instances. This problem is usually tackled indirectly, i.e. distance measures 
are used to quantify the dissimilarity between instances. Several dissimilarity meas-
ures can be employed for clustering tasks, such as the Euclidean distance – expression 
(1) – or the simple matching approach – expression (2). In both cases, the CGA uses 
all the available information (attribute values) to calculate such dissimilarities. 

The CGA assumes that clustering involves the partitioning of a set X of instances 
into a collection of mutually disjoint subsets Ci of X. Formally, let us consider a set of 
N instances X={x1,x2,...,xN} to be clustered, where each xi ∈ ℜρ is an attribute vector 
consisting of ρ measurements. The instances must be clustered into non-overlapping 
groups C={C1,C2,...,Ck} where k is the number of clusters, such that: 

C1 ∪ C2 ∪... ∪ Ck = X ,    Ci ≠ ∅,    and    Ci ∩ Cj = ∅  for  i ≠ j. (3) 

The problem of finding an optimal solution to the partition of N data into k clus-
ters is NP-complete [13] and, provided that the number of distinct partitions of N 
instances into k clusters increases approximately as kN/k!, attempting to find a globally 
optimum solution is usually not computationally feasible [12]. This difficulty has 
stimulated the search for efficient approximate algorithms. Evolutionary algorithms 
[14,15] are widely believed to be effective on NP-complete global optimization prob-
lems and they can provide good sub-optimal solutions in reasonable time [13]. Under 
this perspective, a genetic algorithm specially designed for clustering problems was 
introduced in [6] and it is here reviewed. Figure 1 provides an overview of the CGA, 
whose main features are described in the sequel. 
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1) Initialize a population of genotypes; 
2) Evaluate each genotype in the population; 
3) Apply a linear normalization; 
4) Select genotypes by proportional selection; 
5) Apply crossover and mutation; 
6) Replace the old genotypes by the ones formed in step 5); 
7) If the convergence criterion is attained, stop; if not, go to step 2). 

Fig. 1. Clustering Genetic Algorithm (CGA) 

3.1   Encoding Scheme 

The CGA [6] is based on a simple encoding scheme. Let us consider a dataset formed 
by N instances. Then, a genotype is an integer vector of (N+1) positions. Each posi-
tion corresponds to an instance, i.e., the i-th position (gene) represents the i-th in-
stance, whereas the last gene represents the number of clusters (k). Thus, each gene 
has a value over the alphabet {1,2,3,...,k}. For example, in a dataset composed of 20 
instances, a possible genotype is: 223451234533214545525. In this case, 5 instances 
{1,2,7,13,20} form the cluster whose label is 2. The cluster whose label is 1 has 2 
instances {6,14}, and so on. Finally, the last gene represents the number of clusters. 

Standard genetic operators may not be suitable for clustering problems for several 
reasons [6,16]. First, the encoding scheme presented above is naturally redundant. In 
fact, there are k! different genotypes that represent the same solution. Thus, the size of 
the search space is much larger than the original space of solutions. This augmented 
space may reduce the efficiency of the genetic algorithm. In addition, the redundant 
encoding also causes the undesirable effect of casting context-dependent information 
out of context under the standard crossover, i.e., equal parents may originate different 
offspring. Mainly for these reasons, the development of genetic operators specially 
designed for clustering problems has been investigated [6,16]. In this context, the 
CGA operators are of particular interest since they operate on constant length geno-
types. 

3.2   Crossover and Mutation Operators 

The crossover operator combines partitions codified in different genotypes. It works 
in the following way. First, two genotypes (A and B) are selected. Then, assuming 
that A represents k1 clusters, the CGA randomly chooses c ∈ {1,2,...,k1} clusters to 
copy into B. The unchanged clusters of B are maintained and the changed ones have 
their instances allocated to the corresponding nearest clusters (according to their cen-
troids). In this way, an offspring C is obtained. The same procedure is employed to 
get an offspring D, but now considering that the changed clusters of B are copied into 
A. Thus, the crossover operator produces offspring usually formed by a number of 
clusters that are neither smaller nor larger than the number of clusters of their parents. 

Two operators for mutation are used in the CGA. The first operator works only 
on genotypes that encode more than 2 clusters. It eliminates a randomly chosen clus-
ter, placing its instances to the nearest remaining clusters (according to their cen-
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troids). The second operator divides a randomly selected cluster into 2 new ones. 
The first cluster is formed by the instances closer to the original centroid, whereas 
the other cluster is formed by those instances closer to the farthest instance from the 
centroid. 

3.3   Objective Function 

The objective function is based on the silhouette [17]. To explain it, let us consider an 
instance i belonging to cluster A. The average dissimilarity of i to all other instances 
of A is denoted by a(i), whereas the average dissimilarity of i to all instances of a 
different cluster C will be called d(i,C). After computing d(i,C) for all clusters C ≠ A, 
the smallest one is selected, i.e. b(i) = min d(i,C), C ≠ A. This value represents the 
dissimilarity of i to its neighboring cluster, and the silhouette s(i) is given by: 

)}(),(max{

)()(
)(

ibia

iaib
is

−=  (4) 

It is easy to verify that −1 ≤ s(i) ≤ 1. Thus, the higher s(i) the better the assignment 
of instance i to a given cluster. In addition, if s(i) is equal to zero, then it is not clear 
whether the instance should have been assigned to its current cluster or to a neighbor-
ing one [18]. Finally, if cluster A is a singleton, then s(i) is not defined and the most 
neutral choice is to set s(i) = 0 [17]. The objective function is the average of s(i) over 
i = 1,2,...,N and the best clustering is achieved when its value is maximized.  

3.4   Selection, Settings and Initial Population 

The genotypes corresponding to each generation are selected according to the roulette 
wheel strategy [19], which does not admit negative objective function values. For this 
reason, a constant equal to one is summed up to the objective function before the 
selection procedure takes place. In addition, the best (highest fitness) genotype is 
always copied into the succeeding generation. 

The CGA does not employ crossover and mutation probabilities; that is, the de-
signed operators are necessarily applied to some selected genotypes after the roulette 
wheel selection procedure is performed. Particularly, 50% of the selected genotypes 
are crossed-over, 25% are mutated by Operator 1 and 25% are mutated by Operator 2. 

In this work, we have employed the methodology developed in [17] to set up the 
initial population. The process is based on the selection of representative instances. 
The first selected instance is the most centrally located in the set of instances. Subse-
quently, other instances are selected. Basically, the chance of selecting an instance 
increases when it is far from the previously selected ones and when there are many 
instances next to it. After selecting the representative instances, the initial population 
is formed considering that the non-selected instances must be clustered according to 
their proximity to the representative ones. Considering k representative instances, the 
first genotype represents 2 clusters, the second genotype represents 3 clusters,..., and 
the last one represents k clusters. Thus, we have employed initial populations formed 
by (k-1) genotypes, each one representing a different data partition. 
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4   Simulation Results 

Imputation methods can be evaluated as prediction tools. To do so, known values can 
be artificially excluded from a dataset (missing values simulation), with the goal of 
predicting them by a particular imputation method. Thus, the predicted value can be 
compared with the real, known value artificially eliminated from the dataset. Consid-
ering this scenario, the more similar the imputed value is in relation to the real one, 
the better the imputation method is. In this work, we compare the prediction results 
obtained by the NNM with those achieved by the mean/mode imputation. Although 
the prediction results provide an efficient way to compare different imputation meth-
ods, requiring few computations after imputation, they do not provide any guarantee 
that the imputed values will be suitable for the ultimate data mining task – e.g. the 
clustering process. In summary, the prediction results are not the only important issue 
to be analyzed. Data mining methods usually explore relationships between attributes 
and, thus, it is critical to preserve them, as far as possible, when replacing missing 
values [3]. This aspect has motivated us to propose the NNM as an imputation tool for 
the CGA. Indeed, since both methods (NNM and CGA) are based on distance meas-
ures, which can somehow reflect the between-attribute relationships, the patterns 
inserted by the NNM tend to be consistent with the clustering process performed by 
the CGA. To assess this aspect, we compare the partitions obtained in the original 
datasets with those obtained in the imputed datasets. The next section describes the 
procedure employed to generate datasets formed by imputed values. 

4.1   Missing Values Simulation and Imputation   

Our simulations consider that there is just one missing value at a time. Let us consider 

a dataset formed by N instances xi=[ iii x,...,x,x ρ21 ]. First, we simulate that 1
1x  is missing 

and it is consequently substituted. Second, 1
2x  is missing and it is consequently sub-

stituted. This process is repeated until 1
ρx  is substituted. After that, we simulate that 

2
1x  is missing and it is consequently substituted. In summary, this procedure is re-

peated for all i
jx  (i=1,...,N; j=1,...,ρ). This way, simulations can be easily reproduced, 

i.e. they are not influenced by the choice of random samples. After the imputation 
process, we obtain a substituted dataset, which is formed only by imputed values 
(same number of instances and attributes of the original dataset). Thus, it is possible 
to compare the imputed values with the original ones, as well as the partitions ob-
tained in the original dataset can be compared with those achieved in the imputed 
datasets. 

4.2   Employed Datasets   

The assessment of clustering results usually requires datasets for which the clusters 
are a priori known. In this sense, clustering algorithms can be evaluated by means of 
classification datasets. To do so, the clustering algorithm is applied in the classifica-
tion dataset (without the class labels) in order to verify whether it finds the correct 
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clusters (according to the known classes) or not. Our simulations were performed in 
two classification datasets that are benchmarks for data mining methods: Wisconsin 
Breast Cancer and Congressional Voting Records. These datasets are available at the 
UCI Machine Learning Repository [20]. These datasets were chosen because they are 
formed by ordinal and binary attributes, showing the applicability of our method, 
which can also be employed for continuous and nominal attributes, e.g. using expres-
sions (1) and (2) to compute distances respectively. In this sense, we extend our pre-
vious work [21], in which only ordinal attributes were considered. 

In the Wisconsin Breast Cancer dataset, each instance has 9 ordinal attributes 
(A1,…, A9) and an associated class (benign or malignant). The attribute values belong 
to the set {1,2,…,9}. There are 699 instances, of which 16 have missing values. We 
removed those instances (to allow evaluating the prediction results) and used the 
remaining ones to simulate imputations. The Congressional Voting Records dataset 
includes votes for each of the U.S. House of Representatives Congressmen on 16 key 
votes (attributes A1,…,A16). There are 435 instances, of which 203 have missing val-
ues. These instances were removed (to make the prediction evaluation possible) and 
the proposed method was employed in the remaining ones. 

4.3   Evaluating the NNM as a Prediction Tool  

In this section, we compare the imputed values with the original ones (artificially 
excluded from the dataset). This is performed by reporting the average prediction 
error for each attribute. For the ordinal attributes of the Wisconsin dataset, we calcu-
late the average absolute differences between substituted and original values for each 
attribute – considering all substitutions. In this case, the NNM imputations are com-
pared with those achieved by the mean value, and the obtained results (average pre-
diction error) are depicted in Figure 2. For the binary attributes of the Congress data-
set, the NNM average error rate is compared with the results obtained by the mode 
imputation (Figure 3). The NNM provided better results than the substitution by the 
mean in all attributes of Wisconsin, whereas in Congressional the NNM provided 
better results in 14 out of 16 attributes. The mean/mode imputation was also per-
formed according to the methodology described in Section 4.1. 

4.4   Evaluating the Influence of NNM Imputation in a Clustering Task 

In this section, we report results that allow estimating the suitability of the NNM in 
the context of the partitions found by the CGA. As previously mentioned, imputed 
values should preserve the between-attribute relationships observed in the clean 
(original) dataset. In a clustering process, it means that the correct clusters should be 
preserved, i.e. it is expected that the imputed values do not change the classification 
of each particular instance. To evaluate this aspect, it is assumed that the correct clus-
ters are given by the classes. Thus, it is possible to verify to what extent the CGA is 
capable of finding the correct clusters, which are given by the instances of each class. 
In this sense, we compare the Average Correct Classification Rates (ACCRs) ob-
tained by CGA in the original dataset with those obtained in the substituted datasets.  

The CGA was applied in the original dataset and in the dataset formed only by 
substituted values, using populations formed by 20 genotypes that, in turn, implies in 
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using 21 clusters at most (see Section 3.4 for details). We simulated the clustering 
process 11 times (this number is convenient to perform the Wilcoxon/Mann-Whitney 
test [22]) for each dataset and the maximum number of generations was set to 100. In 
all simulations, the CGA has found the correct number of clusters. Table 1 shows the 
obtained results in terms of the Average Correct Classification Rates (ACCRs). 

Table 1. ACCRs (%): average (µ); standard deviation (σ) 

Dataset CGA (Original) CGA (Imputed by NNM) 
Wisconsin Breast Cancer µ=95.45; σ=0.30 µ=95.27; σ=0.30 

Congressional Voting µ=86.41; σ=0.22 µ=88.36; σ=0.00 
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Fig. 2. Average prediction error - Wisconsin Breast Cancer 
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Fig. 3. Average prediction error (%) - Congressional Voting Records 

The CGA has provided similar ACCRs in both datasets (original and imputed by 
NNM). This aspect was statistically evaluated by means of the Wilcoxon/Mann-
Whitney test [22]. In the Wisconsin Breast Cancer, it was performed supposing that 
the ACCR values in the original dataset are equal to those obtained in the substituted 
dataset, and we concluded that the results are statistically significant at the 5% sig-
nificance level. In the Congressional Voting Records, there is sample evidence 
(α=5%) suggesting that the results in the imputed dataset are slightly better than in the 
original dataset. These results suggest that the proposed method is a suitable estimator 
for missing values, preserving (Wisconsin) or slightly improving (Congress) the rela-
tionships between attributes in the clustering process. Finally, due to the methodology 
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employed in our simulations (Section 4.1), most of the values imputed by the 
mean/mode are equal across all instances. In this sense, instances in the substituted 
dataset form only one cluster. In this case, it does not make sense to evaluate the clus-
tering results achieved by the mean/mode imputation. However, the methodology 
described in Section 4.1 is particularly interesting to evaluate clustering results in the 
datasets imputed by NNM, because these datasets do not contain any original values 
and, thus, the corresponding CGA´s results are not positively biased by them. 

5   Conclusions 

Missing values are a critical problem in data mining applications. In this work, we 
presented a Nearest-Neighbor Method (NNM) to substitute missing values and 
showed that it can be useful for a Clustering Genetic Algorithm (CGA). In the NNM, 
each instance containing missing values is compared with the complete instances, 
using a distance metric, and the most similar complete instance is used to assign the 
missing value for a particular attribute.  

 The proposed method was assessed by means of simulations performed in two 
datasets that are benchmarks for data mining: Wisconsin Breast Cancer and Congres-
sional Voting Records. Our simulations were designed to evaluate the NNM both in 
prediction and in clustering tasks. In the prediction task, we compared the results 
obtained by the NNM with those achieved by the mean/mode imputation. In the clus-
tering task, we compared the partitions obtained in original datasets with those 
achieved in imputed datasets. The prediction results showed that the NNM provided 
better results than the mean/mode imputation. Although the prediction results are 
relevant, they are not the only important issue to be analyzed. In fact, imputation 
methods must generate values that least distort the original characteristics of the 
original sample, preserving the between-attribute relationships. In our work, we 
evaluated this aspect in the CGA context, performing clustering simulations and com-
paring the results obtained in the original datasets with the substituted ones. These 
results indicated that the proposed method is a suitable estimator for missing values. 

Considering our future work, there are many aspects that can be further investi-
gated. One important issue involves evaluating the best number of neighbors (K) in 
the K-nearest-neighbor method. Finally, we are also going to assess the efficacy of the 
proposed method in real-world datasets, comparing the NNM results with those ob-
tained by other imputation methods. 
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