

L. Wang, K. Chen, and Y.S. Ong (Eds.): ICNC 2005, LNCS 3612, pp. 245 – 254, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Missing Values Imputation for a Clustering
Genetic Algorithm

Eduardo R. Hruschka1, Estevam R. Hruschka Jr.2, and Nelson F.F. Ebecken3

1 Catholic University of Santos (UniSantos), R. Carvalho de Mendonça, 144,
11.070-906, Santos, SP, Brazil

2 Federal University of São Carlos, CP 676, 13.565-905, São Carlos, SP, Brazil
3 COPPE / Federal University of Rio de Janeiro, Bloco B, Sala 100,

CP 68.506, 21.945-970, Rio de Janeiro, RJ, Brazil
erh@unisantos.br, estevam@dc.ufscar.br, nelson@ntt.ufrj.br

Abstract. The substitution of missing values, also called imputation, is an im-
portant data preparation task for data mining applications. This paper describes
a nearest-neighbor method to impute missing values, showing that it can be use-
ful for a clustering genetic algorithm. The proposed nearest-neighbor method is
assessed by means of simulations performed in two datasets that are bench-
marks for data mining methods: Wisconsin Breast Cancer and Congressional
Voting Records. The efficacy of the proposed approach is evaluated both in
prediction and clustering scenarios. Empirical results show that the employed
imputation method is a suitable data preparation tool.

1 Introduction

Knowledge discovery in databases (KDD) is the non-trivial process of identifying
valid, novel, potentially useful, and ultimately understandable patterns in data [1].
Although the terms KDD and Data Mining (DM) are sometimes employed inter-
changeably, DM is usually considered as a step in the KDD process that centers on
the automated discovery of patterns in data. In this context, data preparation is a step
in the KDD process that involves the selection, preprocessing, and transformation of
data to be mined. When data preparation is performed in a suitable way, higher qual-
ity data are produced, and the outcomes of the KDD process can be improved. In spite
of its importance, the data preparation step became an effervescent research area only
in the last few years. An important problem to be tackled in this step concerns about
missing values. The absence of values is common in real-world datasets and it can
occur for a number of reasons like, for instance [2]: malfunctioning measurement
equipment, changes in experimental design during data collection, collation of several
similar but not identical datasets, refusing of some respondents to answer certain
questions in surveys. Missing values resulting from such situations may generate bias
in the data, affecting the quality of the KDD process.

Many approaches have been proposed to deal with the missing values problem -
e.g. see [3,4,5]. A simple solution involves ignoring instances and/or attributes con-
taining missing values, but the waste of data may be considerable and incomplete
datasets may lead to biased statistical analyses. Another alternative is to substitute the

246 E.R. Hruschka, E.R. Hruschka, and N.F.F. Ebecken

missing values by a constant. However, it assumes that all missing values represent
the same value, leading to considerable distortions. The substitution by the
mean/mode value is common and sometimes can even lead to reasonable results.
However, this approach does not take into account the between-attribute relationships,
which are usually explored by data mining methods. Therefore, a more interesting
approach involves trying to fill missing values by preserving such relationships.

The task of fulfilling missing values is often referred to as either missing values
substitution or missing values imputation. Imputation methods can be helpful for a
variety of data mining tasks, such as classification, extraction of association rules and
clustering. In this work, we focus on clustering tasks, in which one seeks to identify a
finite set of categories (clusters) to describe the data. More specifically, we describe
and evaluate a Nearest-Neighbor Method (NNM) to substitute missing values in data-
sets to be partitioned by the Clustering Genetic Algorithm (CGA) [6], which can find
(according to a numeric criterion) the optimal number of clusters. Similar NNMs for
imputation have been proposed in the literature – e.g. see [7,8] for classification prob-
lems and [9,10] for clustering tasks. NNMs usually do not generate a model to de-
scribe the data and, when used for imputation, they basically search for the best in-
stance(s) of the dataset to be used for substituting missing values. This characteristic
may produce a high computational cost. On the other hand, as the learning process is
specific to each query, it may be more accurate. Under this perspective, we believe
that a NNM can be a suitable data preparation tool for the CGA.

The remainder of this paper is organized as follows. The next section presents our
proposed method to substitute missing values. Section 3 reviews the Clustering Ge-
netic Algorithm (CGA) [6]. The employed NNM is evaluated in two datasets that are
benchmarks for data mining methods, and the obtained results are described in Sec-
tion 4. Finally, Section 5 concludes our work.

2 Nearest-Neighbor Method (NNM)

The Nearest-Neighbor Method (NNM) substitutes missing values by the correspond-
ing attribute value of the most similar complete instance, i.e. it is a K-nearest-
neighbor method [11] for K=1. Let us consider that each instance is described by ρ
attributes. Thus, each instance can be represented by a vector y=[y1,y2,...,yρ]. The
distance between two vectors (instances) u and y will be here called d(u,y). Also, let
us suppose that the i-th attribute value (1≤i≤ρ) of vector u is missing. The NNM cal-
culates distances d(u,y), for all y≠u, y representing a complete instance, and use these
distances to compute the value to be imputed in ui. The Euclidean metric – expression
(1) – is used to compute distances between continuous/ordinal instances, whereas the
simple matching approach – expression (2) – is employed to compute distances be-
tween instances formed by nominal/binary attributes.

d(u,y)E = 22
11

2
11

2
11)yu(...)yu()yu(...)yu(iiii ρρ −++−+−++− ++−− . (1)

d(u,y)SM =∑ =
≠=

ρj
ij,j js1 ; sj=0 if uj=yj; sj=1 otherwise . (2)

 Missing Values Imputation for a Clustering Genetic Algorithm 247

In the above expressions, the i-th attribute is not considered, because it is missing
in u. After computing the distances d(u,y) for all y≠u, y representing a complete in-
stance, the more similar instance (the neighbor of u) is employed to complete ui. The
nearest neighbor of u is here called s. This way, d(u,s)=min d(u,y) for all y≠u, and ui
is substituted by si. For a set of instances whose distances d(u,y) are equal, the substi-
tuted value comes from the first instance of this set. Although expressions (1) and (2)
just consider one missing value (in the i-th attribute), they can be easily generalized
for instances with more missing values.

The imputation by the K-Nearest Neighbor (KNN) method is simple, but it has
provided encouraging results [7,8,9,10]. In clustering problems, this approach is par-
ticularly interesting, because the imputation is based on distances between instances,
as well as the clustering process is. In other words, the inductive biases of clustering
and imputation methods are equal.

3 Review of the Clustering Genetic Algorithm (CGA)

Clustering is a task in which one seeks to identify a finite set of categories (clusters)
to describe a given dataset, both maximizing homogeneity within each cluster and
heterogeneity among different clusters [12]. In other words, instances that belong to
the same cluster should be more similar to each other than instances that belong to
different clusters. Thus, it is necessary to devise means of evaluating the similarities
between instances. This problem is usually tackled indirectly, i.e. distance measures
are used to quantify the dissimilarity between instances. Several dissimilarity meas-
ures can be employed for clustering tasks, such as the Euclidean distance – expression
(1) – or the simple matching approach – expression (2). In both cases, the CGA uses
all the available information (attribute values) to calculate such dissimilarities.

The CGA assumes that clustering involves the partitioning of a set X of instances
into a collection of mutually disjoint subsets Ci of X. Formally, let us consider a set of
N instances X={x1,x2,...,xN} to be clustered, where each xi ∈ ℜρ is an attribute vector
consisting of ρ measurements. The instances must be clustered into non-overlapping
groups C={C1,C2,...,Ck} where k is the number of clusters, such that:

C1 ∪ C2 ∪... ∪ Ck = X , Ci ≠ ∅, and Ci ∩ Cj = ∅ for i ≠ j. (3)

The problem of finding an optimal solution to the partition of N data into k clus-
ters is NP-complete [13] and, provided that the number of distinct partitions of N
instances into k clusters increases approximately as kN/k!, attempting to find a globally
optimum solution is usually not computationally feasible [12]. This difficulty has
stimulated the search for efficient approximate algorithms. Evolutionary algorithms
[14,15] are widely believed to be effective on NP-complete global optimization prob-
lems and they can provide good sub-optimal solutions in reasonable time [13]. Under
this perspective, a genetic algorithm specially designed for clustering problems was
introduced in [6] and it is here reviewed. Figure 1 provides an overview of the CGA,
whose main features are described in the sequel.

248 E.R. Hruschka, E.R. Hruschka, and N.F.F. Ebecken

1) Initialize a population of genotypes;
2) Evaluate each genotype in the population;
3) Apply a linear normalization;
4) Select genotypes by proportional selection;
5) Apply crossover and mutation;
6) Replace the old genotypes by the ones formed in step 5);
7) If the convergence criterion is attained, stop; if not, go to step 2).

Fig. 1. Clustering Genetic Algorithm (CGA)

3.1 Encoding Scheme

The CGA [6] is based on a simple encoding scheme. Let us consider a dataset formed
by N instances. Then, a genotype is an integer vector of (N+1) positions. Each posi-
tion corresponds to an instance, i.e., the i-th position (gene) represents the i-th in-
stance, whereas the last gene represents the number of clusters (k). Thus, each gene
has a value over the alphabet {1,2,3,...,k}. For example, in a dataset composed of 20
instances, a possible genotype is: 223451234533214545525. In this case, 5 instances
{1,2,7,13,20} form the cluster whose label is 2. The cluster whose label is 1 has 2
instances {6,14}, and so on. Finally, the last gene represents the number of clusters.

Standard genetic operators may not be suitable for clustering problems for several
reasons [6,16]. First, the encoding scheme presented above is naturally redundant. In
fact, there are k! different genotypes that represent the same solution. Thus, the size of
the search space is much larger than the original space of solutions. This augmented
space may reduce the efficiency of the genetic algorithm. In addition, the redundant
encoding also causes the undesirable effect of casting context-dependent information
out of context under the standard crossover, i.e., equal parents may originate different
offspring. Mainly for these reasons, the development of genetic operators specially
designed for clustering problems has been investigated [6,16]. In this context, the
CGA operators are of particular interest since they operate on constant length geno-
types.

3.2 Crossover and Mutation Operators

The crossover operator combines partitions codified in different genotypes. It works
in the following way. First, two genotypes (A and B) are selected. Then, assuming
that A represents k1 clusters, the CGA randomly chooses c ∈ {1,2,...,k1} clusters to
copy into B. The unchanged clusters of B are maintained and the changed ones have
their instances allocated to the corresponding nearest clusters (according to their cen-
troids). In this way, an offspring C is obtained. The same procedure is employed to
get an offspring D, but now considering that the changed clusters of B are copied into
A. Thus, the crossover operator produces offspring usually formed by a number of
clusters that are neither smaller nor larger than the number of clusters of their parents.

Two operators for mutation are used in the CGA. The first operator works only
on genotypes that encode more than 2 clusters. It eliminates a randomly chosen clus-
ter, placing its instances to the nearest remaining clusters (according to their cen-

 Missing Values Imputation for a Clustering Genetic Algorithm 249

troids). The second operator divides a randomly selected cluster into 2 new ones.
The first cluster is formed by the instances closer to the original centroid, whereas
the other cluster is formed by those instances closer to the farthest instance from the
centroid.

3.3 Objective Function

The objective function is based on the silhouette [17]. To explain it, let us consider an
instance i belonging to cluster A. The average dissimilarity of i to all other instances
of A is denoted by a(i), whereas the average dissimilarity of i to all instances of a
different cluster C will be called d(i,C). After computing d(i,C) for all clusters C ≠ A,
the smallest one is selected, i.e. b(i) = min d(i,C), C ≠ A. This value represents the
dissimilarity of i to its neighboring cluster, and the silhouette s(i) is given by:

)}(),(max{

)()(
)(

ibia

iaib
is

−= (4)

It is easy to verify that −1 ≤ s(i) ≤ 1. Thus, the higher s(i) the better the assignment
of instance i to a given cluster. In addition, if s(i) is equal to zero, then it is not clear
whether the instance should have been assigned to its current cluster or to a neighbor-
ing one [18]. Finally, if cluster A is a singleton, then s(i) is not defined and the most
neutral choice is to set s(i) = 0 [17]. The objective function is the average of s(i) over
i = 1,2,...,N and the best clustering is achieved when its value is maximized.

3.4 Selection, Settings and Initial Population

The genotypes corresponding to each generation are selected according to the roulette
wheel strategy [19], which does not admit negative objective function values. For this
reason, a constant equal to one is summed up to the objective function before the
selection procedure takes place. In addition, the best (highest fitness) genotype is
always copied into the succeeding generation.

The CGA does not employ crossover and mutation probabilities; that is, the de-
signed operators are necessarily applied to some selected genotypes after the roulette
wheel selection procedure is performed. Particularly, 50% of the selected genotypes
are crossed-over, 25% are mutated by Operator 1 and 25% are mutated by Operator 2.

In this work, we have employed the methodology developed in [17] to set up the
initial population. The process is based on the selection of representative instances.
The first selected instance is the most centrally located in the set of instances. Subse-
quently, other instances are selected. Basically, the chance of selecting an instance
increases when it is far from the previously selected ones and when there are many
instances next to it. After selecting the representative instances, the initial population
is formed considering that the non-selected instances must be clustered according to
their proximity to the representative ones. Considering k representative instances, the
first genotype represents 2 clusters, the second genotype represents 3 clusters,..., and
the last one represents k clusters. Thus, we have employed initial populations formed
by (k-1) genotypes, each one representing a different data partition.

250 E.R. Hruschka, E.R. Hruschka, and N.F.F. Ebecken

4 Simulation Results

Imputation methods can be evaluated as prediction tools. To do so, known values can
be artificially excluded from a dataset (missing values simulation), with the goal of
predicting them by a particular imputation method. Thus, the predicted value can be
compared with the real, known value artificially eliminated from the dataset. Consid-
ering this scenario, the more similar the imputed value is in relation to the real one,
the better the imputation method is. In this work, we compare the prediction results
obtained by the NNM with those achieved by the mean/mode imputation. Although
the prediction results provide an efficient way to compare different imputation meth-
ods, requiring few computations after imputation, they do not provide any guarantee
that the imputed values will be suitable for the ultimate data mining task – e.g. the
clustering process. In summary, the prediction results are not the only important issue
to be analyzed. Data mining methods usually explore relationships between attributes
and, thus, it is critical to preserve them, as far as possible, when replacing missing
values [3]. This aspect has motivated us to propose the NNM as an imputation tool for
the CGA. Indeed, since both methods (NNM and CGA) are based on distance meas-
ures, which can somehow reflect the between-attribute relationships, the patterns
inserted by the NNM tend to be consistent with the clustering process performed by
the CGA. To assess this aspect, we compare the partitions obtained in the original
datasets with those obtained in the imputed datasets. The next section describes the
procedure employed to generate datasets formed by imputed values.

4.1 Missing Values Simulation and Imputation

Our simulations consider that there is just one missing value at a time. Let us consider

a dataset formed by N instances xi=[iii x,...,x,x ρ21]. First, we simulate that 1
1x is missing

and it is consequently substituted. Second, 1
2x is missing and it is consequently sub-

stituted. This process is repeated until 1
ρx is substituted. After that, we simulate that

2
1x is missing and it is consequently substituted. In summary, this procedure is re-

peated for all i
jx (i=1,...,N; j=1,...,ρ). This way, simulations can be easily reproduced,

i.e. they are not influenced by the choice of random samples. After the imputation
process, we obtain a substituted dataset, which is formed only by imputed values
(same number of instances and attributes of the original dataset). Thus, it is possible
to compare the imputed values with the original ones, as well as the partitions ob-
tained in the original dataset can be compared with those achieved in the imputed
datasets.

4.2 Employed Datasets

The assessment of clustering results usually requires datasets for which the clusters
are a priori known. In this sense, clustering algorithms can be evaluated by means of
classification datasets. To do so, the clustering algorithm is applied in the classifica-
tion dataset (without the class labels) in order to verify whether it finds the correct

 Missing Values Imputation for a Clustering Genetic Algorithm 251

clusters (according to the known classes) or not. Our simulations were performed in
two classification datasets that are benchmarks for data mining methods: Wisconsin
Breast Cancer and Congressional Voting Records. These datasets are available at the
UCI Machine Learning Repository [20]. These datasets were chosen because they are
formed by ordinal and binary attributes, showing the applicability of our method,
which can also be employed for continuous and nominal attributes, e.g. using expres-
sions (1) and (2) to compute distances respectively. In this sense, we extend our pre-
vious work [21], in which only ordinal attributes were considered.

In the Wisconsin Breast Cancer dataset, each instance has 9 ordinal attributes
(A1,…, A9) and an associated class (benign or malignant). The attribute values belong
to the set {1,2,…,9}. There are 699 instances, of which 16 have missing values. We
removed those instances (to allow evaluating the prediction results) and used the
remaining ones to simulate imputations. The Congressional Voting Records dataset
includes votes for each of the U.S. House of Representatives Congressmen on 16 key
votes (attributes A1,…,A16). There are 435 instances, of which 203 have missing val-
ues. These instances were removed (to make the prediction evaluation possible) and
the proposed method was employed in the remaining ones.

4.3 Evaluating the NNM as a Prediction Tool

In this section, we compare the imputed values with the original ones (artificially
excluded from the dataset). This is performed by reporting the average prediction
error for each attribute. For the ordinal attributes of the Wisconsin dataset, we calcu-
late the average absolute differences between substituted and original values for each
attribute – considering all substitutions. In this case, the NNM imputations are com-
pared with those achieved by the mean value, and the obtained results (average pre-
diction error) are depicted in Figure 2. For the binary attributes of the Congress data-
set, the NNM average error rate is compared with the results obtained by the mode
imputation (Figure 3). The NNM provided better results than the substitution by the
mean in all attributes of Wisconsin, whereas in Congressional the NNM provided
better results in 14 out of 16 attributes. The mean/mode imputation was also per-
formed according to the methodology described in Section 4.1.

4.4 Evaluating the Influence of NNM Imputation in a Clustering Task

In this section, we report results that allow estimating the suitability of the NNM in
the context of the partitions found by the CGA. As previously mentioned, imputed
values should preserve the between-attribute relationships observed in the clean
(original) dataset. In a clustering process, it means that the correct clusters should be
preserved, i.e. it is expected that the imputed values do not change the classification
of each particular instance. To evaluate this aspect, it is assumed that the correct clus-
ters are given by the classes. Thus, it is possible to verify to what extent the CGA is
capable of finding the correct clusters, which are given by the instances of each class.
In this sense, we compare the Average Correct Classification Rates (ACCRs) ob-
tained by CGA in the original dataset with those obtained in the substituted datasets.

The CGA was applied in the original dataset and in the dataset formed only by
substituted values, using populations formed by 20 genotypes that, in turn, implies in

252 E.R. Hruschka, E.R. Hruschka, and N.F.F. Ebecken

using 21 clusters at most (see Section 3.4 for details). We simulated the clustering
process 11 times (this number is convenient to perform the Wilcoxon/Mann-Whitney
test [22]) for each dataset and the maximum number of generations was set to 100. In
all simulations, the CGA has found the correct number of clusters. Table 1 shows the
obtained results in terms of the Average Correct Classification Rates (ACCRs).

Table 1. ACCRs (%): average (µ); standard deviation (σ)

Dataset CGA (Original) CGA (Imputed by NNM)
Wisconsin Breast Cancer µ=95.45; σ=0.30 µ=95.27; σ=0.30

Congressional Voting µ=86.41; σ=0.22 µ=88.36; σ=0.00

0
1
2
3

1 2 3 4 5 6 7 8 9

Attribute

A
ve

ra
g

e
E

rr
o

r

NNM

Mean

Fig. 2. Average prediction error - Wisconsin Breast Cancer

0

20

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Attribute

A
ve

ra
g

e
E

rr
o

r

NNM

Mode

Fig. 3. Average prediction error (%) - Congressional Voting Records

The CGA has provided similar ACCRs in both datasets (original and imputed by
NNM). This aspect was statistically evaluated by means of the Wilcoxon/Mann-
Whitney test [22]. In the Wisconsin Breast Cancer, it was performed supposing that
the ACCR values in the original dataset are equal to those obtained in the substituted
dataset, and we concluded that the results are statistically significant at the 5% sig-
nificance level. In the Congressional Voting Records, there is sample evidence
(α=5%) suggesting that the results in the imputed dataset are slightly better than in the
original dataset. These results suggest that the proposed method is a suitable estimator
for missing values, preserving (Wisconsin) or slightly improving (Congress) the rela-
tionships between attributes in the clustering process. Finally, due to the methodology

 Missing Values Imputation for a Clustering Genetic Algorithm 253

employed in our simulations (Section 4.1), most of the values imputed by the
mean/mode are equal across all instances. In this sense, instances in the substituted
dataset form only one cluster. In this case, it does not make sense to evaluate the clus-
tering results achieved by the mean/mode imputation. However, the methodology
described in Section 4.1 is particularly interesting to evaluate clustering results in the
datasets imputed by NNM, because these datasets do not contain any original values
and, thus, the corresponding CGA´s results are not positively biased by them.

5 Conclusions

Missing values are a critical problem in data mining applications. In this work, we
presented a Nearest-Neighbor Method (NNM) to substitute missing values and
showed that it can be useful for a Clustering Genetic Algorithm (CGA). In the NNM,
each instance containing missing values is compared with the complete instances,
using a distance metric, and the most similar complete instance is used to assign the
missing value for a particular attribute.

 The proposed method was assessed by means of simulations performed in two
datasets that are benchmarks for data mining: Wisconsin Breast Cancer and Congres-
sional Voting Records. Our simulations were designed to evaluate the NNM both in
prediction and in clustering tasks. In the prediction task, we compared the results
obtained by the NNM with those achieved by the mean/mode imputation. In the clus-
tering task, we compared the partitions obtained in original datasets with those
achieved in imputed datasets. The prediction results showed that the NNM provided
better results than the mean/mode imputation. Although the prediction results are
relevant, they are not the only important issue to be analyzed. In fact, imputation
methods must generate values that least distort the original characteristics of the
original sample, preserving the between-attribute relationships. In our work, we
evaluated this aspect in the CGA context, performing clustering simulations and com-
paring the results obtained in the original datasets with the substituted ones. These
results indicated that the proposed method is a suitable estimator for missing values.

Considering our future work, there are many aspects that can be further investi-
gated. One important issue involves evaluating the best number of neighbors (K) in
the K-nearest-neighbor method. Finally, we are also going to assess the efficacy of the
proposed method in real-world datasets, comparing the NNM results with those ob-
tained by other imputation methods.

Acknowledgements. The authors acknowledge CNPq, FAPESP and FAPERJ for the
financial support.

References

1. Fayyad, U. M., Shapiro, G. P., Smyth, P. From Data Mining to Knowledge Discovery: An
Overview. In: Advances in Knowledge Discovery and Data Mining, Fayyad, U.M., Piatet-
sky-Shapiro, G., Smyth, P., Uthurusamy, R., Editors, MIT Press, pp. 1-37, 1996.

2. Witten, I. H., Frank, E., Data Mining – Practical Machine Learning Tools and Techniques
with Java Implementations, Morgan Kaufmann Publishers, USA, 2000.

254 E.R. Hruschka, E.R. Hruschka, and N.F.F. Ebecken

3. Pyle, D., Data Preparation for Data Mining, Academic Press, 1999.
4. Little, R., Rubin, D. B., Statistical Analysis with Missing Data, John Wiley & Sons, New

York, 1987.
5. Rubin, D. B., Multiple Imputation for non Responses in Surveys, New York, John Wiley

& Sons, 1987.
6. Hruschka, E. R., Ebecken, N.F.F. A genetic algorithm for cluster analysis, Intelligent Data

Analysis (IDA), Netherlands, v.7, n.1, 2003.
7. Batista, G. E. A. P. & Monard, M. C., An Analysis of Four Missing Data Treatment Meth-

ods for Supervised Learning, Applied Artificial Intelligence, v.17, n.5-6, 519-534, 2003.
8. Hruschka, E. R., Hruschka Júnior, E.R., Ebecken, N.F.F, Towards Efficient Imputation by

Nearest-Neighbors: A Clustering Based Approach, Proc. of the 17th Australian Joint Con-
ference on Artificial Intelligence , LNAI 3339, pp. 513-525, Springer, 2004.

9. Hruschka, E. R., Hruschka Junior, E. R., Ebecken, N. F. F. Evaluating a Nearest-Neighbor
Method to Substitute Continuous Missing Values In: The 16th Australian Joint Conference
on Artificial Intelligence, LNAI 2903, pp. 723-734, Springer-Verlag, 2003.

10. Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie, T., Tibshirani, R., Botstein,
D., Altman, R.B., Missing value estimation methods for DNA microarrays, Bioinformat-
ics, 17(6), 520-525, 2001.

11. Mitchell, T. M., Machine Learning, McGraw-Hill, 1997.
12. Arabie, P., Hubert, L. J., An Overview of Combinatorial Data Analysis (Chapter 1). Clus-

tering and Classification, ed. P. Arabie, L.J. Hubert, G. DeSoete, World Scientific, 1999.
13. Park, Y., Song, M., A Genetic Algorithm for Clustering Problems, Proceedings of the Ge-

netic Programming Conference, University of Wisconsin, July, 1998.
14. Yao, X., Evolutionary Computation: Theory and Applications, World Scientific, Singa-

pore, 1999.
15. Tan, K. C., Lim, M. H., Yao, X., Wang, L., Recent Advances in Simulated Evolution and

Learning, World Scientific, Singapore, 2004.
16. Falkenauer, E., Genetic Algorithms and Grouping Problems, John Wiley & Sons, 1998.
17. Kaufman, L., Rousseeuw, P. J., Finding Groups in Data – An Introduction to Cluster

Analysis, Wiley Series in Probability and Mathematical Statistics, 1990.
18. Everitt, B.S., Landau, S., Leese, M., Cluster Analysis, Arnold Publishers, London, 2001.
19. Goldberg, D.E., Genetic Algorithms in Search, Optimization and Machine Learning, Ad-

dison Wesley Longmann, 1989.
20. Merz, C.J., Murphy, P.M., UCI Repository of Machine Learning Databases,

http://www.ics.uci.edu, University of California, Irvine, CA.
21. Hruschka, E.R, Hruschka Júnior, E.R., Ebecken, N.F.F., A Nearest-Neighbor Method as a

Data Preparation Tool for a Clustering Genetic Algorithm, Proceedings of the 18th Brazil-
ian Symposium on Databases, pp. 319-327, Manaus, Brazil, 2003.

22. Triola, M. F., Elementary Statistics, 7th Edition, Addison Wesley Longman Inc., 1999.

	Introduction
	Nearest-Neighbor Method (NNM)
	Review of the Clustering Genetic Algorithm (CGA)
	Encoding Scheme
	Crossover and Mutation Operators
	Objective Function
	Selection, Settings and Initial Population

	Simulation Results
	Missing Values Simulation and Imputation
	Employed Datasets
	Evaluating the NNM as a Prediction Tool
	Evaluating the Influence of NNM Imputation in a Clustering Task

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.33333
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.33333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

