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Abstract

We studied a number of measures that characterize the
difficulty of a classification problem. We compared a set of
real world problems to random combinations of points in
this measurement space and found that real problems con-
tain structures that are significantly different from the ran-
dom sets. Distribution of problems in this space reveals that
there exist at least two independent factors affecting a prob-
lem’s difficulty, and that they have notable joint effects. We
suggest using this space to describe a classifier’s domain of
competence. This can guide static and dynamic selection
of classifiers for specific problems as well as subproblems
formed by confinement, projections, and transformations of
the feature vectors.

1. Introduction

Many theoretical studies in pattern recognition attempt
to analyze the behavior of classifiers for all possible prob-
lems, i.e., classes defined on arbitrary combinations of
points in a feature space. On the other hand, empirical stud-
ies often conclude with a presentation of the error rates of
a classifier on a small selection of real problems, with lit-
tle analysis on the reasons behind the classifier’s success or
failure. Comparative analysis of classifiers and how their
performances relate to data characteristics has received at-
tention only very recently [9].

In reality, most practical classification problems arise
from nonchaotic processes many of which can be described
by an underlying physical model. Though the models may
contain a stochastic component, there should still exist a
significant structure in the resulting data distributions that
differs from a random combination of points. We believe
that an analysis of such differences will provide us with a
framework for studying classifier behavior.

Structured data differ from random combinations in the
difficulty of obtaining a classifier that can assign correct
class labels for data from the same source. Points with ran-

domly assigned labels are difficult since not much can be
learned from the training data about the unseen points. With
real world recognition data such learning can often be done
with various degree of difficulty. In this paper we attempt to
find a way to characterize this difficulty. A problem can be
difficult for different reasons. Certain problems are known
to have nonzero Bayes error [4]. Others may have a com-
plex decision boundary and/or subclass structures. Some-
times high dimensionality of the feature space and sparse-
ness of available samples lead to estimation difficulties.

Obviously one practical measure of problem difficulty
is the error rate of a chosen classifier. However, since our
eventual goal is to study behavior of classifiers, we want to
find other measures that are independent of such choices.
Early explorations led us to the idea that a single descrip-
tor may not suffice. Instead, we will consider a number of
different descriptors. In essence, we are choosing a feature
space in which each classification problem can be repre-
sented as a point. We are interested in the distribution of
selected real world problems in this space. We attempt to
determine if there exists any continuum, such that a prob-
lem’s difficulty can be described by its position in this con-
tinuum. We also conjecture that the same space can be used
to describe a classifier’s domain of competence.

We assume each problem is represented by a fixed set
of training data consisting of a collection of vectors in
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each associated with a class label. In this study we discuss
only two-class problems. Furthermore, we assume that we
have a sparse sample, not all possible points from the same
source are available for classifier design.

2. Measures of problem complexity

The complexity of a discrimination problem is the com-
plexity of its decision boundary that minimizes Bayes error.
We will refer to the simplest (of minimum measure in the
input space) of such boundaries as the class boundary. With
a complete sample, the class boundary can be characterized
by its Kolmogorov complexity [7], or the minimum length
of a computer program needed to reproduce it. A problem



is difficult if it takes a long algorithm (possibly including an
enumeration of all the points and their labels) to describe the
class boundary. This aspect of difficulty is due to the nature
of the problem and is unrelated to the sampling process.

An incomplete or sparse sample adds another layer of
complexity to a discrimination problem, since an unseen
point in the vicinity of some training points may share their
class labels according to different generalization rules. In
real world situations, often a problem becomes difficult be-
cause of a mixture of these two effects. Sampling density
is more critical for an intrinsically complex problem than
an intrinsically simple problem (e.g. a linearly separable
problem with wide margins). If the sample is too sparse,
an intrinsically complex problem may appear deceptively
simple.

We investigated a number of measures previously pro-
posed in the literature to describe classification problems.
We borrowed from the studies of both supervised learning
and unsupervised learning, as we believe that cluster struc-
tures can also be essential characteristics for a discrimina-
tion problem. A few other measures are defined by our-
selves. All these measures are normalized as far as possible
for comparability across problems. The measures we exam-
ined can be divided into several categories.

2.1. Measures of overlap of individual feature values

Fisher’s discriminant ratio is a classic in this category:
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where ��� , ��� , � � � , � � � are the means and variances of the
two classes respectively.�

as defined above is specific to one feature dimension.
For a multidimensional problem, not necessarily all features
have to contribute to class discrimination. As long as there
exists one highly discriminating feature, the problem can be
easy. Therefore we use the maximum

�
over all the feature

dimensions to describe a problem.
A similar measure is the overlap of the tails of the two

class-conditional distributions. We can measure this by
finding, for each feature, the maximum and the minimum
values of each class, and from which we calculate the length
of the overlap region normalized by the the range of values
spanned by both classes. We multiply the ratio thus ob-
tained from each feature dimension to obtain a measure of
the volume of the overlap region (normalized by the size of
the feature space). Note that the volume is zero as long as
there is at least one dimension in which the two classes do
not overlap.

2.2. Measures of separability of classes

Linear separability Linear separability was intensively
discussed in the early literature. Many algorithms were pro-
posed to determine linear separability, most of which can

only arrive at positive conclusions and may iterate indefi-
nitely for negative cases. In a recent study we found that, for
determining linear separability, linear programming meth-
ods far outperform the adaptive methods in terms of def-
initeness and correctness of decisions and time efficiency
[1]. To handle both separable and nonseparable cases, we
use a formulation proposed by Smith [10] that minimizes an
error function:��������������� ���! "$#�%'& �)(+*�*$, -.�0/ �  2143 2165
where � , 3 are arbitrary constant vectors (both chosen to be7

), / is the weight vector,  is an error vector, and - is a
matrix where each column 8 is defined on an input vector 9
(augmented by adding one dimension with a constant value
1) and its class : (with value : � or : � ) as follows:; 8 � � 9 if : � : �8 � 	 9 if : � : �

The value of the objective function in this formulation is
used as a measure. It is zero for a linearly separable prob-
lem. This measure can be heavily affected by outliers that
happen to be on the wrong side of the optimal hyperplane.
We normalize this measure by the number of points in the
problem and also by the length of the diagonal of the hyper-
rectangular region enclosing all the samples in the feature
space.

Mixture identifiability Friedman and Rafsky [3][11] pro-
posed a test on whether two samples are from the same dis-
tribution. It is thus useful for deciding if the points labeled
as two classes form separable distributions. The method
relies on computing a minimum spanning tree (MST) that
connects all the points to their nearest neighbors (regardless
of class). Then the number of points connected to the op-
posite class by an edge in this MST are counted. These are
considered to be the points lying next to the class boundary.
The fraction of such points over all points in the dataset is
used as a measure.

Understandably for heavily interleaved or randomly la-
beled data, a majority of points will appear next to the class
boundary. However, the same can be true for a linearly sep-
arable problem with a margin narrower than the distance
between points of the same class.

A closely related measure is defined as follows. We first
compute the distances from each point to its nearest neigh-
bor within or outside the class. We then take the average
of all the distances to intra-class nearest neighbors, and the
average of all the distances to inter-class nearest neighbors.
We use the ratio of the two averages as a measure. This
measure compares the dispersion within the classes to the
gap between the classes. While the MST based measure is
sensitive to which (intra or inter class) neighbor is closer to



a point, this measure takes into account the magnitudes of
the differences.

2.3. Measures of geometry, topology, and internal
density of manifolds

Some measures are intended to describe the geometry of
the manifolds spanned by each class. These include var-
ious estimators of intrinsic dimensionality. Others attempt
to describe the shapes of the manifolds, the existence of iso-
lated submanifolds, or variation in the point densities within
the manifolds, such as tests suggested in [13] [14] for data
distributions against hypotheses of uniformity or normality.
We investigated two measures of this category.

Hoekstra and Duin [5] proposed a measure for the non-
linearity of a classifier w.r.t. to a given dataset. Given
a training set, the method first creates a test set by linear
interpolation (with random coefficients) between randomly
drawn pairs of points from the same class. Then the er-
ror rate of the classifier (trained by the given training set)
on this test set is measured. This measure is sensitive to
the smoothness of the classifier’s decision boundary as well
as the overlap of the convex hulls of the two classes. We
consider the nonlinearity of a linear classifier (minimizing
error) and that of a nearest neighbor classifier. We also in-
clude the error rate of that linear classifier on the original
training set and the error of the nearest neighbor classifier
estimated by leave-one-out.

In addition, we considered a supervised k-means cluster-
ing procedure. In this procedure, we first calculate the cen-
troid of each class. Then we remove all points lying closer
to the centroid of its own class than that of the other class.
Next, we update the centroids for the remaining points and
repeat the procedure, until either no more points can be re-
moved or one of the class has no points left. The number
of iterations it takes is used as a measure. This measure is
sensitive to the difference in variances of the two classes,
and also to the amount of overlap of the convex hulls of the
two classes.

The relevance of other measures are less obvious. It is
not clear what role is played by the intrinsic dimensionality
of a problem without differentiation by class. A problem
can be very complex even if embedded in a low dimensional
space (we will show an artificial example). Also, variation
in density within a manifold seems irrelevant as long as the
manifolds can be easily separated. Similarly, existence of
submanifolds of one class surrounding the other may make
a problem difficult for, say, a linear classifier, but may not
affect a nearest neighbor classifier by much.

3. Sources of Data

We considered two collections of problems. The first
collection is from the UC-Irvine Machine Learning Depos-
itory. We selected 14 of the datasets that contain at least

500 points and no missing values: abalone, car, german,
kr-vs-kp, letter, lrs, nursery, pima, segmentation, splice, tic-
tac-toe, vehicle, wdbc, and yeast. The problems we con-
sidered are discrimination between all pairs of classes in
these 14 data sets. Categorical features were numerically
coded. Totally there are 844 two-class discrimination prob-
lems. These problems originated from a variety of physical
and behavioral processes.

The second set consists of 100 artificial two-class prob-
lems each has 1000 points per class. Problem 1 has one
feature dimension, problem 2 has two, so forth and the last
problem contains 100 features. Each feature is a uniformly
distributed pseudorandom number in � ������� . The points are
randomly labeled as one of the two classes. Therefore these
are intrinsically complex problems, and they should delimit
one end of any spectrum of difficulty. We created these for
comparison and contrast with real world data, and will refer
to them as the random noise sets.

4. Results and Discussions

Table 1 summarizes the measures we included in the
study. We implemented algorithms for calculating each
measure and applied them to each of the 944 problems (844
real and 100 artificial). We then examined the distribution
of these 944 points in this space by all the pairwise scat-
ter plots (two-dimensional projections) for interesting struc-
tures. Of the 844 problems, 452 are found to be linearly sep-
arable by a linear programming procedure [1]. Class bound-
ary (if only the training set is concerned) of these problems
can be described by the coefficients of the separating hyper-
plane, so by Kolmogorov’s notion these are simple prob-
lems. We thus expect these to delimit the other end of any
difficulty spectrum. In order to compare the distributions of
these three types of problems (linearly separable, nonsepa-
rable, and random noise), we mark these points differently
in each plot. Some of the more interesting plots are shown
in Figure 1. Notice that all values are plotted on logarithmic
scales so points with zero values are outside the plots.

1 no. of feature dimensions
2 no. of points
3 average no. of points per dimension
4 maximum Fisher’s discriminant ratio
5 volume of overlap region
6 minimized error by linear programming (LP)
7 % points on boundary (MST method)
8 ratio of average intra/inter class NN distance
9 error of 1NN classifier
10 nonlinearity of 1NN classifier
11 error of linear classifier by LP
12 nonlinearity of linear classifier by LP
13 no. of iteration in sup. k-means clustering

Table 1. List of investigated measures.



The results indicate that measures 4,5,7,8,9,10,11,12 are
useful for describing problem difficulty, since with most of
these measures, the linearly separable and the random noise
problems do occupy opposite ends of the point distribution.
We also observe that there are variable degrees of difficulty
among problems of the same type (linearly separable or not,
or random noise), e.g., there are linearly nonseparable prob-
lems that are almost separable.

In most of the scatter plots with these 8 measures, we
observe that the points span a fan-like structure (e.g., plot
7,8). This leads us to believe that at least two factors (pos-
sibly more) affect the problem difficulty independently, but
their joint effects are most significant. Some measures from
the above set are highly correlated (see plots 7,9 and 11,12)
as expected due to their similar definitions. These measures,
when considered in pairs, provide little additional informa-
tion. Furthermore, experimental results support the conjec-
ture that (see plot 9,11) linear separability of a problem may
not correlate strongly with the nearest neighbor error rate,
but it has a distinct effect on the nonlinearity of 1NN clas-
sifier (the convex hull effect).

In several of the plots we see the random noise sets ap-
pear on the boundary of the fan shape, and they stay far from
the real problems due to their exaggerated difficulty (e.g.
plot 7,10). This confirms that these real world problems
do contain structures that are significantly different from
random combinations. Interestingly, in some of these mea-
sures the random noise sets span a large range (e.g. 9,10).
By checking their appearance in the plots with number of
points per dimension, we found that this is due to the appar-
ent simplicity caused by sparseness of samples in the higher
dimensional problems. A simple classifier obtained with
these apparently easier training sets will turn out to perform
very badly on unseen points from the same source.

5. Conclusions

We studied several measures to characterize the com-
plexity of classification problems. We found that there exist
rich structures in such a measurement space that reveal the
intricate relationships among the factors affecting the dif-
ficulty of a problem. The distribution of the selected real
world problems is significantly different from that of ran-
dom noise sets, signifying the existence of learnable struc-
tures in such contexts. Also, in this space linear classifiers
and nearest neighbor classifiers have very different domains
of competence. A challenge is to determine the intrinsic
dimensionality of the point distributions in this space, and
identify the independent factors.

Here we examined the structure of only the given train-
ing set of a problem. Difficulty of real problems also lies in
generalizing the classification to unseen points. To what
extent a training set represents a test set should be dis-
cussed in the context of generalization ability of classifiers.

For this we refer readers to Kleinberg’s arguments on M-
representativeness [6], Berlind’s hierarchy of indiscernibil-
ity [2], Vapnik’s VC-dimension theory and his analysis on
small sample effects [12], and observations and discussions
about several classifiers by Raudys and Jain [8]. An inter-
esting question is the consistency of our chosen measures
on bootstrap samples of the training set.

We emphasize that our analysis of the training data can
also be applied to their subsets or projections, that is, data
confined in selected regions, projected onto selected sub-
spaces, or transformed to another space. Corresponding
choices of classifiers can be made for these altered datasets
as well. This can lead to a way of designing static or dy-
namic classifier selection schemes, e.g., to choose different
classifiers for data falling into different branches of a deci-
sion tree.
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Figure 1. Pairwise plots of selected measures. Markers: diamonds – linearly separable problems;
crosses – linearly nonseparable problems; squares – random noise sets.


